首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dense community of shade adapted microalgae dominated by the diatom Trachyneis aspera is associated with a siliceous sponge spicule mat in McMurdo Sound, Antarctica. Diatoms at a depth of 20 to 30 m were found attached to spicule surfaces and in the interstitial water between spicules. Ambient irradiance was less than 0.6 μE · m?2· s?1 due to light attenuation by surface snow, sea ice, ice algae, and the water column. Photosynthesis-irradiance relationships determined by the uptake of NaH14CO3 revealed that benthic diatoms beneath annual sea ice were light-saturated at only 11 μE·m?2·s?1, putting them among the most shade adapted microalgae reported. Unlike most shade adapted microalgae, however, they were not photoinhibited even at irradiances of 300 μE·m?2·s?1. Although in situ primary production by benthic diatoms was low, it may provide a source of fixed carbon to the abundant benthic invertebrates when phytoplankton or ice algal carbon is unavailable.  相似文献   

2.
The surface morphology of the dinoflagellate Coolia monotis Meunier was compared with the surface morphology of Ostreopsis, The apical pore of C. monotis is similar in architecture to that of Ostreopsis but considerably longer (12 μm) than in O. heptagona (8–9 μm) and O. ovata (6–7 μm). A ventral pore in C. monotis is located on the right ventral margin between apical plate l′ and precingular plate 6″ and is similar in appearance and location to the ventral pore of O. ovata. The longitudinal flagellum (20 μm) in C. monotis is longer than in O. ovata (12 μ). Although Coolia and Ostreopsis appear to be distinctly different and should remain as two separate genera, they appear to be related. Cells of C. monotis divided by binary fission. Doubling time was 3–4 days in the logarithmic phase of growth at 23°C, 12:12 h L:D, 30–90 μE-m?2·s?1, and a salinity of 36%. Cultures reached cell densities of 2.5 × 103 cells·L?1 after 15 days of growth. The sexual process in C. monotis occurred in Erdschreiber's medium when Danish soil extract was substituted with mangrove sediment extract under the culture conditions described above. Gamete fusion produced large biflagellated planozygotes (70–75 μm diam). Planozygote maturation involved cytoplasmic reorganization, loss of motility, development of a spherical shape (80–90 μm diam), and two to three orange accumulation bodies. The cells at this stage appeared to be thin-walled cysts. Further development included reorganization of cyst contents, emergence of non-motile gametes, and development of chloroplasts, sulcus, and girdle. The nucleus of the newly formed cells occupied 50% or more of the total cell volume. Meiosis occurred in the cyst, but nuclear cyclosis was not observed. Four daughter cells were produced within 36–48 h, and motile gametes developed. The gametes exhibited sexuality for 2 months and completed the sexual life cycle by going through a thin-walled cyst stage.  相似文献   

3.
Despite being an essential part of the marine food web during periods of ice cover, sea ice algae have not been studied in any detail in the Bering Sea. In this study, we investigated the diversity, abundance and ultimate fate of ice algae in the Bering Sea using sea ice, water and sub-ice sediment trap samples collected during two spring periods in 2008 and 2009: ice growth (March–mid-April) and ice melt (mid-April–May). The total ice algal species inventory included 68 species, dominated by typical Arctic ice algal diatom taxa. Only three species were determined from the water samples; we interpret the strong overlap in species as seeding of algal cells from the sea ice. Algal abundances in the ice exceeded 107 cells l?1 in the bottom 2-cm layer and were on average three orders of magnitude higher than in the water column. The vertical flux of algal cells beneath the ice during the period of ice melt (>108 cells m?2 day?1) exceeded export during the ice growth period by one order of magnitude; the vertical flux during both periods can only be sustained by the release of algae from the ice. Differences in the relative species proportions of algae among sample types indicated that the fate of the released ice algae was species specific, with some taxa contributing to seeding in the water column, while other taxa were preferentially exported.  相似文献   

4.
Microbial community dynamics within the fast sea ice of Prydz Bay (68°S?78°E) were investigated over an annual cycle at two sites (1 and 3?km offshore) between April and November 2008. There are few long-term sea ice studies, and few that cover the phase of winter darkness when autotrophic processes are curtailed. Mean chlorophyll a concentrations in the ice column ranged between 0.76 and 44.8?μg?L?1 at the 1-km site (Site 1) and 3.11–144.6?μg?L?1 at the 3-km site (Site 2). Highest chlorophyll a usually occurred at the base of the ice. Bacterial concentrations ranged between 0.30 and 2.08?×?108?cells?L?1, heterotrophic nanoflagellates (HNAN) between 0.21?×?105 and 2.98?×?105?cells?L?1 and phototrophic nanoflagellates (PNAN) 0–1.06?×?105?cells?L?1. While HNAN occurred throughout the year, PNAN were largely absent in winter. Dinoflagellates were a conspicuous and occasionally an abundant element of the community (maximum 17,460?cells?L?1), while ciliates were sparse. The bacterial community showed considerable morphological diversity with a dominance of filamentous forms. Bacterial production continued throughout the year ranging between 0 and 22.92?μg?C?L?1?day?1 throughout the ice column. Lowest rates occurred between late June and early August. The sea ice sustained an active and diverse microbial community through its annual extent. The data suggest that during winter darkness the microbial community is dominated by heterotrophic processes, sustained by a pool of dissolved organic carbon.  相似文献   

5.
The structure, productivity and heterotrophic potential of an extensive microalgal community growing on the underside of sea ice near the Australian Antarctic Station of Casey, are described. Underwater observations made near the Australian Antarctic stations of Davis and Mawson are also reported. This community develops during September, is largely suspended from the bottom surface of annual sea ice and often extends into the underlying water column as conspicuous strands up to 15 cm long. The algal community structure in the strands is dominated by an unidentified tube diatom belonging to the Amphipleura/Berkeleya group and chains of a species of Entomoneis cf. Amphiprora paludosa var. hyperborea (Grunow) Cleve. Unlike previously described bottom ice environments, a brash ice layer under the hard sea ice is absent. Living cells, predominantly Nitzschia frigida Grunow, also occur in microbrine channels in the bottom 3 cm of the ice. Maximal primary production rates of 81 μg C · L-1· h-1 occurred during November, then began declining near the end of December. Minimal rates (2.8 μg C · L-1· h-1) were reached in mid-January and coincided with changes in the physical structure of the sea ice and in the stability of the water column. An abundant epibacterial community associated with the microalgal strands assimilated 3H-labelled amino acids suggesting significant heterotrophic recycling of dissolved organic matter. Turnover times of assimilated amino acids in the bottom ice community averaged 55 h during November while negligible turnover of these substrates occurred in the water column 1.5 m below the ice. These bottom ice communities have higher primary productivity than typical brash ice communities; they are also accessible to marine herbivores and so may be more important to the Antarctic marine food chain than previously supposed.  相似文献   

6.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

7.
The brown tide picoalga Aureococcus anophagefferens Hargraves et Sieburth was present in approximately equal numbers in 12 large scale (13,000 L) mesocosms at the start of a nutrient addition experiment in June 1985. Increases in abundance in untreated systems mimicked the pattern of bloom development in Narragansett Bay, Rhode Island, the seawater source for the experiment. Aureococcus increased to maximal values of 2.6 × 109 cells. L?1 and persisted at high numbers (108 cells·L?1) for 7–8 weeks. In nutrient addition tanks, the picoalgae bloomed briefly (1–3 weeks) but rapidly declined to the usual level (~107 cells·L?1) for eukaryotic algae in Narragansett Bay. The decline in picoalgae abundance was followed by an increase in total diatoms in all nutrient treated tanks. Mean picoalgae abundance in the mesocosms and the bay was significantly (P < 0.05) and inversely correlated (r =–0.93) with mean concentration of dissolved inorganic nitrogen. The persistence of the brown tide species in control mesocosms and Narragansett Bay appears related to its ability to grow at very low concentrations of dissolved inorganic nitrogen, levels previously shown to limit diatom growth.  相似文献   

8.
The net carbon uptake rate and net production rate of mycosporine‐like amino acids (MAAs) were measured in phytoplankton from 2 different melt ponds (MPs; closed and open type pond) in the western Arctic Ocean using a 13C stable isotope tracer technique. The Research Vessel Araon visited ice‐covered western‐central basins situated at 82°N and 173°E in the summer of 2012, when Arctic sea ice declined to a record minimum. The average net carbon uptake rate of the phytoplankton in polycarbonate (PC) bottles in the closed MP was 3.24 mg C · m?3 · h?1 (SD = ±1.12 mg C · m?3 · h?1), while that in the open MP was 1.3 mg C · m?3 · h?1 (SD = ±0.05 mg C · m?3 · h?1). The net production rate of total MAAs in incubated PC bottles was highest (1.44 (SD = ±0.24) ng C · L?1 · h?1) in the open MP and lowest (0.05 (SD = ±0.003) ng C · L?1 · h?1) in the closed MP. The net production rate of shinorine and palythine in incubated PC bottles at the open MP presented significantly high values 0.76 (SD = ±0.12) ng C · L?1 · h?1and 0.53 (SD = ±0.06) ng C · L?1 · h?1. Our results showed that high net production rate of MAAs in the open MP was enhanced by a combination of osmotic and UVR stress and that in situ net production rates of individual MAA can be determined using 13C tracer in MPs in Arctic sea ice.  相似文献   

9.
Close to 100% encystment efficiency and a yield above 105 cysts·mL ? 1 were routinely achieved in full strength f/2 medium‐based batch cultures (883 μM NO3 ? and 36 μM PO4 ? 3) of the marine dinoflagellate Scrippsiella cf. lachrymosa Lewis. Increases in cell density led to nutrient depletion in this enriched medium, which was the most likely cause for initiation of cyst formation. Lowering the concentration of either nutrient to 1/10 the initial levels decreased the encystment efficiency, whereas use of ammonium as the N source resulted in both low cell yield and low encystment efficiency. The mandatory dormancy period was ca. 60 days and was not affected by cold dark storage of the cysts. Cysts produced in the initial phase of sexual reproduction were relatively large (length 47 μm, width 31 μm) with a heavy calcareous cover. Cysts produced thereafter lacked apparent calcareous cover and were smaller (length 29 μm, width 19 μm). The decrease of cyst volume (by a factor of 0.24–0.4) suggested strong resource limitation during the course of encystment. However, after the mandatory dormancy period, germination success of the smaller cysts was higher (80%), compared with the larger cysts that had been produced initially (50%). Germling survival (74%) was independent of cyst type but was enhanced by higher nutrient concentration during incubation. The ratio of initial nutrient concentration in the medium to the cyst yield was used as a proxy to estimate the cellular nutrient quota. The conservative estimates of 9 pmol N·cyst ? 1 and 0.4 pmol P·cyst ? 1 obtained in this manner are at the low end of the range of previous published estimates for other dinoflagellate cysts. Given the high encystment observed in laboratory experiments, we have no reason to assume an inherently lower encystment success in dinoflagellate field populations. Our results do not challenge the low nutrient paradigm for dinoflagellate sexuality. We believe that the high encystment success and cyst yield of this particular species is at least partly due to its ability to achieve very high cell densities in cultures, which evidently leads to nutrient depletion even in f/2 medium.  相似文献   

10.
Photosynthesis of marine benthic diatom mats was examined before and after sea ice breakout at a coastal site in eastern Antarctica (Casey). Before ice breakout the maximum under‐ice irradiance was between 2.5 and 8.2 μmol photons·m?2·s?1 and the benthic microalgal community was characterized by low Ek (12.1–32.3 μmol photons·m?2·s?1), low relETRmax (9.2–32.9), and high alpha (0.69–1.1). After breakout, 20 days later, the maximum irradiance had increased to between 293 and 840 μmol photons·m?2·s?1, Ek had increased by more than an order of magnitude (to 301–395 μmol photons·m?2·s?1), relETRmax had increased by more than five times (to 104–251), and alpha decreased by approximately 50% (to 0.42–0.68). During the same time interval the species composition of the mats changed, with a decline in the abundance of Trachyneis aspera (Karsten) Hustedt, Gyrosigma subsalsum Van Heurck, and Thalassiosira gracilis (Karsten) Hustedt and an increase in the abundance of Navicula glaciei Van Heurck. The benthic microalgal mats at Casey showed that species composition and photophysiology changed in response to the sudden natural increase in irradiance. This occurred through both succession shifts in the species composition of the mats and also an ability of individual cells to photoacclimate to the higher irradiances.  相似文献   

11.
Crustose coralline algae occupied ~1%–2% (occasionally up to 7%) of the sea floor within their depth range of 15–50 m, and they were the dominant encrusting organisms and macroalgae beyond 20 m depth in Young Sound, NE Greenland. In the laboratory, oxygen microelectrodes were used to measure net photosynthesis (P) versus downwelling irradiance (Ed) and season for the two dominant corallines [Phymatolithon foecundum (Kjellman) Düwel et Wegeberg 1996 and Phymatolithon tenue (Rosenvinge) Düwel et Wegeberg 1996] representing> 90% of coralline cover. Differences in P‐Ed curves between the two species, the ice‐covered and open‐water seasons, or between specimens from 17 and 36 m depth were insignificant. The corallines were low light adapted, with compensation irradiances (Ec) averaging 0.7–1.8 μmol photons·m ? 2·s ? 1 and light adaptation (Ek) indices averaging 7–17 μmol photons·m ? 2·s ? 1. Slight photoinhibition was evident in most plants at irradiances up to 160 μmol photons·m ? 2·s ? 1. Photosynthetic capacity (Pm) was low, averaging 43–67 mmol O2·m ? 2 thallus·d ? 1 (~250–400 g C·m ? 2 thallus·yr ? 1). Dark respiration rates averaged ~5 mmol O2·m ? 2 thallus·d ? 1. In ice covered periods, Ed at 20 m depth averaged ~1 μmol photons·m ? 2·s ? 1, with daily maxima of 2–3 μmol photons·m ? 2·s ? 1. During the open water season, Ed at 20 m depth averaged ~7 μmol photons·m ? 2·s ? 1 with daily maxima of ~30 μmol photons·m ? 2·s ? 1. Significant net primary production of corallines was apparently limited to the 2–3 months with open water, and the small contribution of corallines to primary production seems due to low Pm values, low in situ irradiance, and their relatively low abundance in Young Sound.  相似文献   

12.
Although sea‐ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea‐ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII), photosynthetic efficiency (α), and the irradiance (Ek) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom‐ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m?2 · s?1. In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m?2 · s?1, indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII, α, and rETRmax in bottom‐ice algae reduced when exposed to irradiances >26 μmol photons · m?2 · s?1, indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom‐ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom‐ice algae are photoinhibited in a dose‐dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea‐ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long‐term acclimation to the postmelt light regime of the Southern Ocean.  相似文献   

13.
Biogeochemical, isotope geochemical and microbiological investigation of Lake Svetloe (White Sea basin), a meromictic freshwater was carried out in April 2014, when ice thickness was ~0.5 m, and the ice‐covered water column contained oxygen to 23 m depth. Below, the anoxic water column contained ferrous iron (up to 240 μμM), manganese (60 μM), sulfide (up to 2 μM) and dissolved methane (960 μM). The highest abundance of microbial cells revealed by epifluorescence microscopy was found in the chemocline (redox zone) at 23–24.5 m. Oxygenic photosynthesis exhibited two peaks: the major one (0.43 μmol C L?1 day?1) below the ice and the minor one in the chemocline zone, where cyanobacteria related to Synechococcus rubescens were detected. The maximum of anoxygenic photosynthesis (0.69 μmol C L?1 day?1) at the oxic/anoxic interface, for which green sulfur bacteria Chlorobium phaeoclathratiforme were probably responsible, exceeded the value for oxygenic photosynthesis. Bacterial sulfate reduction peaked (1.5 μmol S L?1 day?1) below the chemocline zone. The rates of methane oxidation were as high as 1.8 μmol CH4 L?1 day?1 at the oxi/anoxic interface and much lower in the oxic zone. Small phycoerythrin‐containing Synechococcus‐related cyanobacteria were probably involved in accumulation of metal oxides in the redox zone.  相似文献   

14.
The perennially ice-covered lakes of Antarctica have hydrodynamically stable water columns with a number of vertically distinct phytoplankton populations. We examined the photosynthesis-irradiance characteristics of phytoplankton from four depths of Lake Bonney to determine their physiological condition relative to vertical gradients in irradiance and temperature. All populations studied showed evidence of extreme shade adaptation, including low Ik values (15–45 μE · m?2· s?1) and extremely low maximal photosynthetic rates (PBm less than 0.3 μg C ·μg chl a?1· h?1). Photosynthetic rates were controlled by temperature as well as light variations with depth. Lake Bonney has an inverted temperature profile within the trophogenic zone that increased from 0° C at the ice-water interface to 6° C from 10 to 18 m. Deeper phytoplankton (10 m and 17 m) were found to have photosynthetic capacities (PBm) and efficiences (α) three to five times higher than those at the ice-water interface. However, Q10 values were only ca. 2 for PBm (no temperature dependence was evident for α), suggesting that a simple temperature response cannot explain all the differences between populations. Lake Bonney phytoplankton (primarily cryptophytes and chlorophytes) had photosynthetic characteristics similar to diatoms from other physically stable environments (e.g. sea ice, benthos) and may be ecologically analogous to multiple deep chlorophyll maxima.  相似文献   

15.
16.
The growth rate of Laminaria saccharina (L.) Lamour. is dependent on inorganic nitrogen in culture. Growth rates were saturated between 5 and 10 μmol · L?1 nitrate. The activities of ribulose-1,5 bisphosphate carboxylase, phosphoenolpyruvate carboxykinase, mannitol-1-phosphate dehydrogenase, nitrate reductase and glutamine synthetase also varied with the concentration of inorganic nitrogen in the medium. All enzyme activities were lowest at 2.5 μmol · L?1 nitrate (the lowest concentration used) increasing to a maximum activity between 10 and 30 μmol · L?1 nitrate. Most enzyme activities followed a hyperbolic curve resembling those described by the Michaelis-Menten equation, with different half-saturation constants.  相似文献   

17.
A survey of the spatial distribution of benthic macroalgae in a fluvial lake of the St. Lawrence River (Lake Saint‐Pierre, Quebec, Canada) revealed a shift in composition from chlorophytes to cyanobacteria along the flow path of nutrient‐rich waters originating from tributaries draining farmlands. The link between this shift and changes in water quality characteristics was investigated by sampling at 10 sites along a 15 km transect. Conductivity, current, light extinction, total phosphorus (TP; >25 μg P · L?1), and ammonium (8–21 μg N · L?1) remained fairly constant along the transect in contrast to nitrate concentrations, which fell sharply. Filamentous and colonial chlorophytes [Cladophora sp. and Hydrodictyon reticulatum (L.) Bory] dominated in the first 5 km where nitrate concentrations were >240 μg N · L?1. A mixed assemblage of chlorophytes and cyanobacteria characterized a 1 km transition zone where nitrate decreased to 40–80 μg N · L?1. In the last section of the transect, nitrate concentrations dropped below 10 μg N · L?1, and cyanobacteria (benthic filamentous mats of Lyngbya wollei Farl. ex Gomont and epiphytic colonies of Gloeotrichia) dominated the benthic community. The predominance of nitrogen‐fixing, potentially toxic cyanobacteria likely resulted from excessive nutrient loads and may affect nutrient and trophic dynamics in the river.  相似文献   

18.
Complex chemistry and biological uptake pathways render iron bioavailability particularly difficult to assess in natural waters. Bioreporters are genetically modified organisms that are useful tools to directly sense the bioavailable fractions of solutes. In this study, three cyanobacterial bioreporters derived from Synechococcus PCC 7942 were examined for the purpose of optimizing the response to bioavailable Fe. Each bioreporter uses a Fe‐regulated promoter (isiAB, irpA and mapA), modulated by distinct mechanisms under Fe deficiency, fused to a bacterial luciferase (luxAB). In order to provide a better understanding of the way natural conditions may affect the ability of the bioreporter to sense iron bioavailability, the effect of relevant environmental parameters on the response to iron was assessed. Optimal conditions (and limits of applicability) for the use of these bioreporters on the field were determined to be: a 12 h (12–24 h) exposure time, temperature of 15°C (15°C–22°C), photon flux density of 100 μmol photons·m?2·s?1 (37–200 lmol photons·m?2·s?1), initial biomass of 0.6–0.8 lg chlorophyll a (chl a)·L?1 (0.3–1.5 lg chl a·L?1) or approximately 105 bioreporter cells·mL?1, high phosphate (10 lM), and low micronutrients (absent). The measured luminescence was optimal with an exogenous addition of 60 lM aqueous decanal substrate allowing a 5 min reaction time in the dark before analysis. This study provides important considerations relating to the optimization in the use of bioreporters under field conditions that can be used for method development of other algal and cyanobacterial bioreporters in aquatic systems.  相似文献   

19.
Y. Xia  F. Conen  C. Alewell 《Aerobiologia》2013,29(1):153-159
Over a period from June to October 2010, we carried out four short campaigns on the northern alpine ridge (High Altitude Research Station Jungfraujoch, 3,450 m above sea level) to determine bacterial number concentrations by collecting aerosol with liquid impingers, followed by filtration, fluorescent staining and counting with a microscope. Impinger liquid was also subjected to drop freeze tests to determine the number of ice nucleators. Parallel measurements of 222Rn enabled us to distinguish air masses with no, or little, recent land surface contact (free troposphere, 222Rn ≤ 0.50 Bq m?3) from air masses influenced by recent contact with land surface (222Rn > 0.50 Bq m?3). In free tropospheric air, concentration of total bacteria was on average 3.4 × 104 cells m?3 (SD = 0.8 × 104 cells m?3). When wind conditions preceding sampling were calm, or when the station was in clouds during sampling, there was no detectable difference in bacterial number concentrations between free tropospheric air and air influenced by recent land surface contact. One campaign was preceded by a storm. Here, recent land surface contact had enriched the air in bacterial cells (up to 7.5 × 104 cells m?3). Very few of these bacteria may act as ice nucleators in clouds. The median ratio of ice nucleators to the number of bacterial cells in our study was 1.0 × 10?5. We conclude that injection of bacterial cells into the free troposphere is an intermittent process. Conditions controlling the release of bacteria into near surface air are probably more of a limiting factor than vertical transport and mixing of near surface air into the free troposphere.  相似文献   

20.
Twelve species, representing 12 families of the chrysophytes sensu lato, were tested for their ability to take up inorganic carbon. Using the pH‐drift technique, CO2 compensation points generally varied between 1 and 20 μmol · L?1 with a mean concentration of 5 μmol · L?1. Neither pH nor alkalinity affected the CO2 compensation point. The concentration of oxygen had a relatively minor effect on CO2‐uptake kinetics, and the mean CO2 compensation point calculated from the kinetic curves was 3.6 μmol · L?1 at 10–15 kPa starting oxygen partial pressure and 3.8 μmol · L?1 at atmospheric starting oxygen partial pressure (21 kPa). Similarly, uptake kinetics were not affected by alkalinity, and hence concentration of bicarbonate. Membrane inlet mass spectrometry (MIMS) in the presence and absence of acetazolamide suggested that external carbonic anhydrase in Dinobryon sertularia Ehrenb. and Synura petersenii Korschikov was either very low or absent. Rates of net HCO3? uptake were very low (~5% of oxygen evolution) using MIMS and decreased rather than increased with increasing HCO3? concentration, suggesting that it was not a real uptake. The CO2 compensation points determined by MIMS for CO2 uptake and oxygen evolution were similar to those determined in pH‐drift and were >1 μmol · L?1. Overall, the results suggest that chrysophytes as a group lack a carbon‐concentrating mechanism (CCM), or an ability to make use of bicarbonate as an alternative source of inorganic carbon. The possible evolutionary and ecological consequences of this are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号