首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The feeding of 18 species of thrcale hetrophi dinoflagellates from three genera (Protoperidininm, Oblea, Zygabikodinium) can all be described within one general framework. These species engulf diatoms and other prey with a pseudopod (herein terned a “Pallium”)which originates at the flagellar pore in the sulcus. The pallium is a highly plastic, membranous organ which rasily strethes to accommodate spines and many as 58 diatom cells in a chain. The contents of the phytoplanklon prey are liquified and transporued throughthe pallioum typically within 7 to 30 minutes of capture (although feeding may last 2 h) teaving an intact but empty cell wall or frustule. Thus far, with few exceptions, Protoperidinium specises have been observed feeding inly on diatoms, whereas two diplopsaloid species feed on dinoflagellates and prasinophytes as well. In four species from the three genera studied. a capture filament has been observed that connects the food to the dinoflagellate prior to extension of the pallium, sometimes allowing the cell to pull the food while swimming. A distinctive precapture swimming behavior is also deseribed foe six species, suggesting that the dinoflagellates are selective grazers.  相似文献   

2.
The non-photosynthetic phagotrophic dinoflagellate, Gymnodinium fungiforme Anissimova, ingests prey cytoplasm through a highly extensible structure called the peduncle. Although the peduncle is not observable when G. fungiforme is swimming, it protrudes 8–12 μm from the sulcal-angular vicinity of the cell during feeding, and is approximately 3.3 μm wide when the cytoplasm of its prey is flowing through it. A circular-oval ring of overlapping microtubules, the ‘microtubular basket’ may be seen in transmission electron microscope sections of G. fungiforme and it is inferred that this structure is a cross section of a retracted peduncle. The microtubular basket-peduncle complex is discussed in relation to similar structures in other dinoflagellates and to the tentacle of the suctorian ciliates which have a homologous ingestion system.  相似文献   

3.
The three-dimensional structure of the flagellar apparatus in the dinoflagellate Oxyrrhis marina has been reinvestigated and found to consist of several previously unknown components and component combinations that appear strikingly similar to those of some gymnodinoid taxa. The flagellar apparatus of this dinoflagellate is asymmetric and extremely complex consisting of a longitudinal and a transverse basal body that gives rise to eight structurally different components. The only posteriorly directed component is the large microtubular root that consists of 45–50 microtubules at its origin and is attached proximally to a perpendicularly oriented striated fibrous component. Arising from each basal body, two striated fibrous roots with different periodicities extend to the cell's left. A single stranded microtubular root with associated electron dense material emanates from the transverse basal body and also extends to the cell's left. A striated fibrous connective arises from the longitudinal basal body and extends toward the cell's right ventral surface and terminates near the sub-thecal microtubular system. A compound root consisting of microtubules and electron dense material also originates from the longitudinal basal body and extends ventrally into the anterior region of the tentacle. Structural similarities between the parallel striated fibrous roots of Oxyrrhis and Polykrikos are discussed as are flagellar apparatus similarities among other gymnodinoid dinoflagellates. A diagrammatic reconstruction of the Oxyrrhis flagellar apparatus is also presented.  相似文献   

4.
Gymnodinium acidotum Nygaard is a freshwater dinoflagellate that is known to harbor a cryptomonad endosymbiont whose chloroplasls give the organism an overall blue-green color. The ultrastructure of G. acidotum was examined with particular attention being given to the three dimensional nature of the flagellar apparatus. The fiagellar apparatus is composed of two functional basal bodies that are slightly offset and lie at an angle of approximately 90° to one another. As in other dinoflagellates the transverse basal body is associated with a striated, fibrous root that extends from the proximal end of the basal body to the transverse flagellar opening. At least one microtubular root extends from the proximal end of the transverse basal body, and a multi-membered longitudinal microtubular root is associated with the longitudinal basal body. The most striking feature of the flagellar apparatus of G. acidotum is the large fibrous connective that extends from the region of the proximal ends of the basal bodies to the cingulum on the dorsal side of the cell. A similar structure has been reported from only one other dinoflagellate, Amphidinium cryophilum Wedemayer, Wilcox, and Graham. The presence of this structure as well as similarities in external morphology suggest thai these two species may be more closely related to each other than either is to other gymnodinioid taxa. The taxonomic importance of dinoflagellate flagellar apparatus components is discussed.  相似文献   

5.
The three-dimensional structure of the flagellar apparatus in the gonyaulacoid dinoflagellate. Ceratium hirundinella var. furcoïdes (Schröder) Hub.-Pest. was determined using serial section electron microscopy. The flagellar apparatus is quite large and consists of several components. The two basal bodies nearly abut at their proximal ends and are separated by an angle of approximately 120° The broad longitudinal microtubular root extends from the cell's left edge of the longitudinal basal body and bends around the sulcal/cingular depression into the cell's left antapical horn. A transverse striated fibrous root is associated with the transverse basal body and a narrow electron dense extension is present along the anterior edge of the transverse basal body. This study revealed severa1 hitherto unreported fibrous components of the flagellar apparatus that link the various microtubular and fibrous components to themselves and to the two striated collars. A large striated fibrous connective links the two striated collars to one another. This fibrous connective is linked to another striated fibrous connective that originates from the longitudinal basal body and lies perpendicular to the longitudinal microtubular root. The readily identifiable and numerous components of the Ceratium flagellar apparatus are comparable to those of other dinoflagellates. The combined presence of well dpveloped striated collars, a striated collar connective, and a basal body angle of approximately 120° indicates that this flagellar apparatus is most like that described for Peridinioid dinoflagellates. Important similarities are also noticeable between this flagellar apparatus and that of Oxyrrhis marina.  相似文献   

6.
The three-dimensional structure of the flagellar apparatus in Woloszynskia sp. was determined. This recently discovered dinoflagellate possesses two basal bodies that are offset from one another and lie at an angle of approximately 110°. The transverse basal body is associated with a striated fibrous root assemblage that consists of two differently staining fibrous portions with identical striation periodicity. Unlike the transverse striated fibrous roots reported in other dinoflagellates, this assemblage extends to the cell's right beyond the proximal end of the transverse basal body. The striated fibrous root complex is attached to the anterior end of the longitudinal microtubular root by a broad striated fibrous connective. The longitudinal basal body is also associated with the longitudinal microtubular root. The flagellar opening of each emerging axoneme is surrounded by a striated collar. The striated collars are linked to one another by a striated fibrous, striated collar connective. The variations and similarities of the flagellar apparatus and the ventral ridge/striated collar connective in Woloszynskia sp. are compared to similar components in other dinoflagellates.  相似文献   

7.
Peranema trichophorum (Ehrenberg) Stein, a colorless phagotrophic euglenoid flagellate, has a typically euglenoid microtubular root complement. Striated root components, relatively uncommon in euglenoids, are connected to the basal bodies and to a microtubular root. The flagellar system of Peranema consists of three unequal microtubular roots which extend anteriorly beneath the reservoir membrane, and narrow-band striated roots (periodicity = 29–33 nm) which connect one of the four basal bodies to the movable rodorgan of the feeding apparatus. An inter basal body striated fiber forms a three-way connection between one particular microtubular root, a flagellar basal body, and the striated roots. A striated fibril (periodicity = 18–25 nm), which may be an extension of the striated root system, extends beneath the reservoir membrane. Associated with the striated fibril and the striated roots are cisternae of smooth endoplasmic reticulum.  相似文献   

8.
The detailed structure of the flagellar apparatus has been determined in a small dinoflagellate of the genus Gymnodinium. Although diminutive, this dinoflagellate possesses a complex flagellar apparatus consisting of a posteriorly directed microtubular root, a transverse striated fibrous root, several striated fibrous connectives that attach the basal bodies to one another as well as to the different roots, and a conspicuous non-striated fibrous connective that directly links the posteriorly directded microtubular root with the extended lobe of the nucleus. This represents the second discovery of a nuclear connective linked to the flagellar apparatus in the Dinophyceae but is the first report to elucidate the spatial relationships of the connective with the flagellar apparatus and the cell. A detailed diagrammatic reconstruction is provided and the similarities between these flagellar apparatus features are compared with those known for other dinoflagellates. Additionally, the structure and displacement of the nuclear connective are compared with nuclear connectives described in other protists.  相似文献   

9.
A small, broadly ovoidal and heterotrophic dinoflagellate containing round, brownish, and spiny cyst was found in the water column of Huibertsplaat in the Wadden Sea off the coast of the Netherlands. This dinoflagellate had these conspicuous morphological characters: a five‐sided first apical plate (1′), only three cingular plates, and an extremely small first antapical plate. Based on these morphological features, Protoperidinium tricingulatum Kawami, vanWezel, Koeman et Matsuoka is described as a new species. The flagellar pore of P. tricingulatum is covered with a small fin, which rises from the left side of the right sulcal plate to the large V‐shaped posterior sulcal plate. This feature suggests that P. tricingulatum is assigned to the Abé's Monovela Group. The cyst stage of P. tricingulatum was positively linked to the vegetative stage by comparison of the ribosomal 5.8S rDNA, internal transcribed spacers (ITS1 and ITS2). Living cysts of P. tricingulatum are round, brownish, and covered with many slender spines bearing capitate or cauliforate distal ends. The cyst also possesses a theropylic archeopyle formed by a slit corresponding to parasutures between three apical and two apical intercaraly plates. These morphological characters indicate that this species is morphologically related to two dinoflagellate cyst‐genera Islandinium and Echinidinium.  相似文献   

10.
The flagellar apparatus of the marine dinoflagellate Amphidinium rhynchocephalum Anissimowa was examined using the techniques of rapid freezing/freeze substitution and serial thin section three dimensional reconstruction. The flagellar apparatus is composed of two basal bodies that are offset from one another and lie at an angle of approximately 150° The transverse basal body is associated with two individual microtubules that extend from the proximal end of the basal body toward the flagellar opening. One of these microtubules is closely appressed to a striated fibrous root that also extends from the proximal base of the transverse basal body. The longitudinal basal body is associated with a nine member microtubular root that extends from the proximal end of the basal body toward the posterior of the cell. The longitudinal microtubular root and the transverse striated fiber are connected by a striated connective fiber. In addition to the microtubules associated with the transverse and longitudinal basal bodies, a group of microtubules originates adjacent to one of the transverse flagellar roots and extends into the cytoplasm. Vesicular channels extend from the flagellar openings to the region of the basal bodies where they expand to encompass the various connective structures of the flagellar apparatus. The possible function and evolutionary importance of these structures is discussed.  相似文献   

11.
Summary Modern microscopical approaches have allowed more accurate investigations of the three-dimensional nature of the dinoflagellate flagellar apparatus (FA) and several other cytoskeletal protein complexes. Our presentation overviews the nature of the dinoflagellate FA and cytoskeleton in a number of taxa and compares them with those of other protists. As with other protists, the FA of the dinoflagellates can be characterized by the presence of fibrous and microtubular components. Our studies and others indicate that the dinoflagellate FA can be expected to possess a striated fibrous root on the basal body of the transverse flagellum and a multimembered microtubular root on the basal body of the longitudinal flagellum. Two other features that appear widespread in the group are the transverse striated root associated microtubule (tsrm) and the transverse microtubular root (tmr). The tsrm extends at least half the length of the transverse striated root while the tmr extends from the transverse basal body toward the exit aperture of the transverse flagellum. In most cases, the tmr gives rise to several cytoplasmic microtubules at a right angle. The apparent conserved nature of these roots leads us to the conclusion that the dinoflagellate FA can be compared to the FA of the cryptomonads, chrysophytes, and the ciliates for phylogenetic purposes. Of these groups, the chrysophytes possess an FA with the most structures in common with the dinoflagellates. Our immunomicroscopical investigations of the microtubular, actin and centrin components of the dinoflagellate cytoskeleton point to the comparative usefulness of these cytological features.Abbreviations aptb apical transverse microtubular band - FA flagellar apparatus - Imr longitudinal microtubular root - mls multilayered structure - tmr transverse microtubular root - tmre transverse microtubular root extension - tsr transverse striated fibrous root - tsrm transverse striated root associated microtubule  相似文献   

12.
Two closely related, photosynthetic species belonging to the genus Dinophysis were examined, D. acuminata Claparède et Lachmann and D. fortii Pavillard. Typical dinoflagellate features include the amphiesmal covering enclosing the cells and the structure of the nucleus and mitochondria. Many other characteristics seem to be specific to the order Dinophysiales. Many rhabdosomes are present, and complex mucocysts are found beneath the amphiesma. The thecal pores are unusual with the base of the pore occluded by a thin disc that is continuous with the main amphiesmal plate. The structure of the apical pore is also distinctive. Chloroplasts are grouped together in chromatospheres, enclosed by a double membrane, and contain paired thylakoids with electron dense contents in the lumen. The two pusules are extensive, each branching off the flagellar canal, and consisting of a large antechamber and a number of convoluted sacs. The entrance of each antechamber, and site of an emerging flagellum, is surrounded by a striated fibrous collar. Near the flagellar pore is a prominent microtubular/microbody complex which penetrates deep into the cell cytoplasm. Consideration is given to taxonomic position of the Dinophysiales and also to the nature and origins of the chloroplasts.  相似文献   

13.
In the present study, we investigated the intrageneric and intergeneric phylogenetic relationships of the heterotrophic marine dinoflagellate genus Protoperidinium. Using single‐cell polymerase chain reaction methods, we determined small subunit ribosomal RNA gene sequences for 10 Protoperidinium species belonging to four sections and two subgenera. Phylogenetic trees were constructed using maximum parsimony, neighbor joining and maximum likelihood methods. We found intraspecific variability of small subunit rDNA sequences in Protoperidinium conicum (Gran) Balech, Protoperidinium crassipes (Kofoid) Balech and Protoperidinium denticulatum (Gran et Braarud) Balech, but not in other species. The small subunit rDNA phylogeny revealed that the genus is monophyletic, but its phylogenetic position within the Dinophyceae could not be determined because of ambiguous basal topologies. Within the genus Protoperidinium, species of the subgenus Archaeperidinium with two anterior intercalary plates (2a) were shown to be monophyletic, but species of the subgenus Protoperidinium with three anterior intercalary plates (3a) were resolved as paraphyletic. The sections Avellana, Divergentia and Protoperidinium were shown to be monophyletic, while the section Conica was paraphyletic. Based on the trees obtained in the present study, most of the traditionally defined sections are supported by molecular phylogeny. It was also indicated that the section Avellana evolved from one of the Conica‐type dinoflagellates.  相似文献   

14.
Photoinhibition of mechanically stimulable bioluminescence (MSL) in the heterotrophic dinoflagellate Protoperidinium depressum Bailey was investigated using samples collected from the Massachusetts and southern Texas coasts. The times for both photoinhibition of MSL (ca. 10 min) and dark recovery from photoinhibition of MSL (ca. 45 min) in this species were similar to those reported for autotrophic dinoflagellates. The degree of photoinhibition of MSL was a linear function of the logarithm of photon flux density (PFD). The threshold PFDs for the photoinhibition of MSL were 0.02, 0.6, and 21 μmol photons · m?2· s?1 for broad-band blue, green, and red light, respectively. These PFDs are lower than those required for photoinhibition of MSL by the autotrophic dinoflagellates Pyrocystis lunula and Ceratium fusus. We speculate that photosynthetic pigments in autotrophic dinoflagellates shield the photoreceptor that causes photoinhibition of MSL, thus lowering the sensitivity of these dinoflagellates to light. When field-collected P. depressum were kept in the laboratory without growth for a week, photoinhibition of MSL's sensitivity to light increased progressively along with 1) a decrease in its bioluminescence capacity (BCAP), 2) a decrease in the ratio of MSL to BCAP (MSL/BCAP), and 3) a decrease in the orange pigmentation (probably carotenoid) of the dinoflagellate. The action spectrum for photoinhibition of MSL in P. depressum was characterized primarily with a broad peak in the blue extending into the green. We suggest that carotenoid was not a photoreceptor for the photoinhibition of MSL in P. depressum because the peak of the action spectrum was too broad and extended too far into the green part of the spectrum, and because the orange pigment present decreased as photoinhibition of MSL became more sensitive to light.  相似文献   

15.
Three types of feeding mechanisms are known in dinoflagellates: pallium feeding, tube feeding, and direct engulfment. Pallium feeding has only been described for heterotrophic thecate species (Protoperidinium, Diplopsalis group). Tube feeding is commonly found among both naked and thecate species of mixotrophic and heterotrophic dinoflagellates (e.g. Amphidinium, Dinophysis, Gyrodinium, Peridiniopsis). Direct engulfment is mainly found among naked species (e.g. Gymnodinium, Gyrodinium, Noctiluca): recently, however, some thecate species have been shown to use this feeding mechanism as well. Feeding behavior in dinoflagellates involves several steps prior to actual ingestion, including precapture, capture, and prey manipulation. As feeding mechanisms allow the ingestion of relatively large prey or parts thereof, dinoflagellates are regarded as raptorial feeders. While prey size plays an important role in the ability of dinoflagellates to ingest food, this alone cannot explain observed prey preferences. Some dinoflagellate species can be very selective in their choice of prey, while others show a remarkable versatility.  相似文献   

16.
The flagellar apparatus of an undescribed species of Chrysochromulina Lackey that bears “eyelash” scales is reconstructed. The transitional region consists of two transitional plates each with an axosome, with no stellate pattern between them. Fine osmiophilic rings lie between the flagellar membrane and the outer doublets in the transitional region. The two jagella and the haptonema are inserted in a subapical depression that is lined ventrally by a spine-like projection formed by one of the parietal chloroplasts. The angles of insertion are similar to those of some other Chrysochromulina species in that both the haptonema and the right basal body lie at an extreme angle to the left basal body. The connectives of the apparatus consist of a striated distal band with a dorsal extension to the R1 and a ventral extension overlying the R2, a striated distal accessory band, an auxiliary connective from the right basal body to the adjacent ventral chloroplast, a well-developed intermediate band, two striated proximal bands, and a striated proximal accessory band. Of the microtubular roots in this Chrysochromulina species, three are associated with the left side of the cell (an R1 of 8+3; a small crystalline compound root, the R1C, associated with the R1; an R2 of three micro-tubules), and two are associated with the right basal body (an R3 of 2/2 microtubules with which the single-stranded R4 converges to form a 2/2+1 and then a 2/3 tiered arrangement). Comparisons are drawn with other species in the genus and related genera, particularly Prymne-sium.  相似文献   

17.
The overall appearance of the flagellar apparatus in the isogametes of Batophora oerstedii. J. Ag. is most like that which occurs in motile cells of the Ulvophyceae. Like other Ulvophyceae, the basal bodies overlap and are arranged in the 11/5 configuration, microtubular roots are arranged in a cruciate pattern and system II striated fibers are present. The basal body connective which generally lacks striation in the Ulvophyceae is clearly different in Batophora, being composed of two large non-striated halves which connect to the anterior surface of each basal body and are then connected to one another by a distinctly fibrous centrally striated region. This variation in the basal body connective and the presence of two posteriorly directed system II striated fibers is clearly different from homologous structures reported in siphonous green algae of the Caulerpales. Based upon these variations and similarities among flagellar apparatus components in siphonous green algae, it is suggested that the Dasycladales and Siphonodadales are more closely related to one another than to the Caulerpales.  相似文献   

18.
甲藻的异养营养型   总被引:3,自引:0,他引:3  
孙军  郭术津 《生态学报》2011,31(20):6270-6286
综述了甲藻的异养类型。目前已知异养营养型在甲藻中广泛存在,只有很少几种甲藻营严格自养营养方式。有近一半的甲藻物种是没有色素体的,还有很多甲藻即使具有色素体也会有异养营养需求,称为兼养营养类型。这些兼养类群不一定主要以有机物作为其获取碳的来源,而仅仅是补充一些生长必需的有机物如维生素、生物素等。兼养类群以渗透营养和腐食营养方式进行,同时也可以寄生方式和共生方式进行兼养生活。无色素体的甲藻以有机物作为碳的唯一来源,仅仅依靠异养方式生存,属于严格异养营养方式,又称有机营养型。它们是甲藻异养营养型的主体,其主要类型有寄生、渗透营养和吞噬营养。由于吞噬营养是甲藻异养的主要类型,因此论述了3种吞噬营养型:吞噬营养方式、捕食茎营养方式和捕食笼营养方式。吞噬营养方式在无甲类和具甲类甲藻中都有存在,主要通过甲藻细胞的纵沟或底部对猎物进行吞噬,也有研究发现吞噬部位为顶孔或片间带。捕食茎营养方式是通过捕食茎刺穿猎物细胞膜并吸食其细胞质来获取营养,在异养甲藻中也较常见。捕食笼营养方式只在原多甲藻属(Protoperidinium)和翼藻属(Diplopsalis)里发现,是甲藻通过鞭毛孔分泌细胞质到胞外形成捕食笼将猎物包裹并进行消化来摄食的。甲藻摄食对象尺寸范围变化较大,小至几微米,大至几百微米。有些甲藻具有摄食选择性,通过感应猎物释放的化学物质来判断猎物的位置并进行摄食,摄食完成后由于体积的增加经常会发生细胞分裂和蜕鞘。对于甲藻异养的其他形式如拦截摄食营养方式、伪足摄食营养方式、口足摄食营养方式、触手摄食营养方式等只作简单介绍。还就甲藻异养的研究方法、其生态学意义和进化学意义进行简要论述,并对相关研究进行展望。  相似文献   

19.
The genus Protoperidinium is an assemblage of heterotrophic dinoflagellates, several species of which have been successfully cultured in the past using various photosynthetic algae as a food source. We succeeded in culturing Protoperidinium crassipes (Kof.) Balech on three separate occasions for periods ranging from 2 to 21 months using rice flour as a food source. In these cultures, unusual small types of cells that were never observed to actively feed sometimes appeared. We confirmed that P. crassipes in culture exhibited bioluminescence.  相似文献   

20.
The heterotrophic marine dinoflagellate genus Protoperidinium is the largest genus in the Dinophyceae. Previously, we reported on the intrageneric and intergeneric phylogenetic relationships of 10 species of Protoperidinium, from four sections, based on small subunit (SSU) rDNA sequences. The present paper reports on the impact of data from an additional 5 species and, therefore, an additional two sections, using the SSU rDNA data, but now also incorporating sequence data from the large subunit (LSU) rDNA. These sequences, in isolation and in combination, were used to reconstruct the evolutionary history of the genus. The LSU rDNA trees support a monophyletic genus, but the phylogenetic position within the Dinophyceae remains ambiguous. The SSU, LSU and SSU + LSU rDNA phylogenies support monophyly in the sections Avellana, Divergentia, Oceanica and Protoperidinium, but the section Conica is paraphyletic. Therefore, the concept of discrete taxonomic sections based on the shape of 1′ plate and 2a plate is upheld by molecular phylogeny. Furthermore, the section Oceanica is indicated as having an early divergence from other groups within the genus. The sections Avellana and Excentrica and a clade combining the sections Divergentia/Protoperidinium derived from Conica‐type dinoflagellates independently. Analysis of the LSU rDNA data resulted in the same phylogeny as that obtained using SSU rDNA data and, with increased taxon sampling, including members of new sections, a clearer idea of the evolution of morphological features within the genus Protoperidinium was obtained. Intraspecific variation was found in Protoperidinium conicum (Gran) Balech, Protoperidinium excentricum (Paulsen) Balech and Protoperidinium pellucidum Bergh based on SSU rDNA data and also in Protoperidinium claudicans (Paulsen) Balech, P. conicum and Protoperidinium denticulatum (Gran et Braarud) Balech based on LSU rDNA sequences. The common occurrence of base pair substitutions in P. conicum is indicative of the presence of cryptic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号