首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microsatellites (MSs) are short tandem DNA repeats with the repetitive motif of two to six nucleotides, forming tracts up to hundreds of nucleotides long. Notwithstanding the active use of MSs in genetic studies of various biological problems, the reasons for their wide occurrence in the genome, their possible functions, and mutational behavior are still unclear. The mutation rate in MS repeats is on average several orders of magnitude higher than in the remaining DNA, which allows for direct estimation of evolutionary transformation rate in nucleotide sequences of the genome. Mutation process in MSs is highly heterogeneous, with distinct differences between species; furthermore, within a species it differs among loci with different repeat size, among alleles of one locus, and among individuals of different sex and age. Most MS mutations are caused by DNA slippage during replication but the probability of this event depends on the locus. In this review, a number of models of MS evolution are discussed, which account for the relationship between mutation rate and allele size, different mutation direction in alleles of different size, and the appearance of point mutations within repeat tracts restricting allele size. The MS evolution is considered mainly in the context of selective neutrality, although there is evidence showing functional significance of some variants of tandem repeats and thus their possible selective value.  相似文献   

2.
Human microsatellites: mutation and evolution   总被引:1,自引:0,他引:1  
Nikitina TV  Nazarenko SA 《Genetika》2004,40(10):1301-1318
Microsatellites (MSs) are short tandem DNA repeats with the repetitive motif of two to six nucleotides, forming tracts up to hundreds of nucleotides long. Notwithstanding the active use of MSs in genetic studies of various biological problems, the reasons for their wide occurrence in the genome, their possible functions, and mutational behavior are still unclear. The mutation rate in MS repeats is on average several orders of magnitude higher than in the remaining DNA, which allows for direct estimation of evolutionary transformation rate in nucleotide sequences of the genome. Mutation process in MSs is species-specific; furthermore, within a species it differs among loci with different repeat size, among alleles of one locus, and among individuals of different sex and age. Most MS mutations are caused by DNA slippage during replication but the probability of this event depends on the locus. In this review, a number of models of MS evolution are discussed, which account for the relationship between mutation rate and allele size, different mutation direction in alleles of different size, and the appearance of point mutations within repeat tracts restricting allele size. The MS evolution is considered mainly in the context of selective neutrality, although there is evidence showing functional significance of some variants of tandem repeats and thus their possible selective value.  相似文献   

3.
Polymers of random 14 mer oligonucleotides are shown to detect discrete loci in the human genome. Eighteen different synthetic tandem repeats of random 14 base-pair units (STRs) have been generated and all of them turn out to detect polymorphic loci on southern blots of human DNA samples, presumably corresponding to a variable number of tandem repeats (VNTR). This finding suggests that minisatellites are a major component of the human genome and are strongly associated with the generation of genetic variability. In addition, it should open new strategies to make new polymorphic probes available.  相似文献   

4.
Earlier we found a human hypervariable genomic region (GVR). The DNA hybridization probe isolated from this region detects multiple hypervariability of restriction DNA fragments from genomic loci. The sequencing data suggest that the genomic instability and variability are associated with tandem DNA repeats. The DNA hybridization probe contains two families of simple DNA repeats designated as 'apo' and 'tau'. The (TC)n-rich family of DNA 'tau'-repeats bears some similarity to the simple transcribed repeats of Drosophila virilis, simple repetitive motifs of the human proenkephaline gene exon 1, and short sites of retroviral LTR ends. Apo-repeats show an unusual similarity to Rauscher viral env gene site. Besides GVR, apo- and tau-like repeats are localized in other genomic loci and can form separate tandem clusters and terminal repeats flanking certain copies of retroposons (Alu-SINES).  相似文献   

5.
Protein domains constructed from tandem α-helical repeats have until recently been primarily associated with protein scaffolds or RNA recognition. Recent crystal structures of human mitochondrial termination factor MTERF1 and Bacillus cereus alkylpurine DNA glycosylase AlkD bound to DNA revealed two new superhelical tandem repeat architectures capable of wrapping around the double helix in unique ways. Unlike DNA sequence recognition motifs that rely mainly on major groove read-out, MTERF and ALK motifs locate target sequences and aberrant nucleotides within DNA by resculpting the double-helix through extensive backbone contacts. Comparisons between MTERF and ALK repeats, together with recent advances in ssRNA recognition by Pumilio/FBF (PUF) domains, provide new insights into the fundamental principles of protein-nucleic acid recognition.  相似文献   

6.
7.
Hyperchromicity, S1 nuclease digestion, and reassociation studies of Syrian hamster repetitive DNA have led to novel conclusions about repetitive sequence organization. Re-evaluation of the hyperchromicity techniques commonly used to determine the average length of genomic repetitive DNA regions indicates that both the extent of reassociation, and the possibility of non-random elution of hyperpolymers from hydroxyapatite can radically affect the observed hyperchromicity. An alternative interpretation of hyperchromicity experiments, presented here, suggests that the average length of repetitive regions in Syrian hamster DNA must be greater than 4000 nucleotides.S1 nuclease digestion of reassociated 3200 nucleotide Syrian hamster repetitive DNA, on the other hand, yields both long (>2000 nucleotides) and short (300 nucleotides) resistant DNA duplexes. Calculations indicate that the observed mass of short nuclease-resistant duplexes (>60%) is too large to have arisen only from independent short repetitive DNA sequences alternating with non-repetitive regions. Reassociation experiments using long and short S1 nuclease-resistant duplexes as driver DNA indicate that all repetitive sequences are present in both fractions at approximately the same concentration. Isolated long S1 nuclease-resistant duplexes, after denaturation, renaturation, and a second S1 nuclease digestion, again produce both long and short DNA duplexes. Reassociation experiments indicate that all repetitive DNA sequences are still present in the “recycled” long S1 nuclease-resistant duplexes. These experiments imply that many of the short S1 nuclease-resistant repetitive DNA duplex regions present in reassociated Syrian hamster DNA were initially present in the genome as part of longer repetitive sequence blocks. This conclusion suggests that the majority of “short” repetitive regions in Syrian hamster DNA are organized into scrambled tandem clusters rather than being individually interspersed with non-repetitive regions.  相似文献   

8.
We describe a new class of DNA length polymorphism that is due to a variation in the number of tandem repeats associated with Alu sequences (Alu sequence-related polymorphisms). The polymerase chain reaction was used to selectively amplify a (TTA)n repeat identified in the 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase gene from genomic DNA of 41 human subjects, and the size of the amplified products was determined by gel electrophoresis. Seven alleles were found that differed in size by integrals of three nucleotides. The allele frequencies ranged from 1.5% to 52%, and the overall heterozygosity index was 62%. The polymorphic TTA repeat was located adjacent to a repetitive sequence of the Alu family. A homology search of human genomic DNA sequences for the trinucleotide TTA (at least five members in length) revealed tandem repeats in six other genes. Three of the six (TTA)n repeats were located adjacent to Alu sequences, and two of the three (in the genes for beta-tubulin and interleukin-1 alpha) were found to be polymorphic in length. Tandemly repetitive sequences found in association with Alu sequences may be frequent sites of length polymorphism that can be used as genetic markers for gene mapping or linkage analysis.  相似文献   

9.
Screening of a hybrid Barbus barbus-B. meridionalis genome was performed for CA, GA, TAT, TCT, TAG, TGT, TATT, TACT, ATCT motifs, and simultaneously on another fish species, tilapia S. melanotheron . Sequences of positive clones were obtained for Barbus and revealed that repetitive structure significantly depends on the motif: most TAT and TATT repeats contain small numbers of repeats, and these repeats are highly heterogeneous, whereas other motifs (we mainly obtained CA and GATA repeats) form longer and much more homogeneous arrays. Polymorphism data from five loci in two different species of barbel show that perfectly repetitive loci are much more variable than imperfect loci (TAT and TATT). We compared the frequency of positive clones for different repeat motifs between barbel and tilapia. For dinucleotide repeats (CA and GA), the comparison was extended to additional fish species, trout and sea bass, which were screened in nearly identical conditions for these motifs. The most salient feature of these comparisons reveals that arrays of dinucleotide motifs are significantly under-represented and shorter in Barbus than in other fish species. We propose an explanation that can account for most features of microsatellites characterizing the genome of barbel. A bias toward deletion affecting slipped-strand mispairing events would lead to shortening and loss of microsatellite loci. Such a bias would represent an efficient way of eliminating useless DNA from polyploidized species with an excessive amount of DNA.  相似文献   

10.
In the human genome, short tandem repetitive (STR) DNA sequences often show restriction fragment length polymorphisms (RFLPs) due to variation in the number of copies of the repeat unit. For a subset of these sequences known as minisatellites or variable number tandem repeat loci (VNTR), it has been proposed that a homologous "core" sequence of 10-12 nucleotides is involved in the mechanism(s) generating the polymorphism. In our present study we have prepared oligonucleotide probes complementary to one or two repeat units of several VNTR loci. Under stringent hybridization and wash conditions these probes hybridize locus specifically thus allowing the evaluation of the intrinsic polymorphism of individual loci. Our results indicate that not all of the loci having STR DNA sequences are polymorphic despite the fact that they share the "core" sequence. This suggests that more than the DNA sequence of the locus is involved in the mechanism(s) generating the polymorphism.  相似文献   

11.
Mycobacterial interspersed repetitive units (MIRUs) are 40-100 bp DNA elements often found as tandem repeats and dispersed in intergenic regions of the Mycobacterium tuberculosis complex genomes. The M. tuberculosis H37Rv chromosome contains 41 MIRU loci. After polymerase chain reaction (PCR) and sequence analyses of these loci in 31 M. tuberculosis complex strains, 12 of them were found to display variations in tandem repeat copy numbers and, in most cases, sequence variations between repeat units as well. These features are reminiscent of those of certain human variable minisatellites. Of the 12 variable loci, only one was found to vary among genealogically distant BCG substrains, suggesting that these interspersed bacterial minisatellite-like structures evolve slowly in mycobacterial populations.  相似文献   

12.
The simultaneous analysis of multiple loci could substantially increase the efficiency of mapping studies. Toward this goal, we used the polymerase chain reaction to amplify multiple DNA fragments originating from dispersed genomic segments that are flanked by Alu repeats. Analysis of different human DNA samples revealed numerous amplification products distinguishable by size, some of which vary between individuals. A family study demonstrated that these polymorphic fragments are inherited in a Mendelian fashion. Because of the ubiquitous distribution of Alu repeats, these markers, called "alumorphs," could be useful for linkage mapping of the human genome. A major advantage of alumorphs is that no prior knowledge of DNA sequence of marker loci is required. This approach may find general application for any genome where interspersed repetitive sequences are found.  相似文献   

13.
The Evolution of Tandemly Repetitive DNA: Recombination Rules   总被引:13,自引:0,他引:13       下载免费PDF全文
R. M. Harding  A. J. Boyce    J. B. Clegg 《Genetics》1992,132(3):847-859
Variable numbers of tandem repeats (VNTRs), which include hypervariable regions, minisatellites and microsatellites, can be assigned together with satellite DNAs to define a class of noncoding tandemly repetitive DNA (TR-DNA). The evolution of TR-DNA is assumed to be driven by an unbiased recombinational process. A simulation model of unequal exchange is presented and used to investigate the evolutionary persistence of single TR-DNA lineages. Three different recombination rules are specified to govern the expansion and contraction of a TR-DNA lineage from an initial array of two repeats to, finally, a single repeat allele, which cannot participate in a misalignment and exchange process. In the absence of amplification or selection acting to bias array evolution toward expansion, the probability of attaining a target array size is a function only of the initial number of repeats. We show that the proportions of lineages attaining a targeted array size are the same irrespective of recombination rule and rate, demonstrating that our simulation model is well behaved. The time taken to attain a target array size, the persistence of the target array, and the total persistence time of repetitive array structure, are functions of the initial number of repeats, the rate of recombination, and the rules of misalignment preceding recombinational exchange. These relationships are investigated using our simulation model. While misalignment constraint is probably greatest for satellite DNA it also seems important in accounting for the evolution of VNTR loci including minisatellites. This conclusion is consistent with the observed nonrandom distributions of VNTRs and other TR-DNAs in the human genome.  相似文献   

14.
Large numbers of repetitive stretches of DNA are present within the human genome that are associated with human individuality due to their polymorphic character. Approximately one-third of these repeat sequences is arranged as microsatellites or short tandem repeats (STRs) whose valuable application as state-of-the-art technique in human identity testing will be briefly summarized in this review. Prerequisties for successful DNA typing using STRs amplified by polymerase chain reaction (PCR) are outlined and particular attention is paid to the molecular structure of STRs from autosomes as well as from the Y chromosome. A comprehensive overview about current and emerging methods of STR analysis is given as well.  相似文献   

15.
Short tandem repeats are highly polymorphic sequences of nucleotides, which are abundant in eukaryotic genome. They form approximately 3% of the total human genome and occur on average in every 10, 000 nucleotides. Due to their small dimension, low mutation, and high level of polymorphism, these markers are intensely used as important genetic markers for mapping studies, disease diagnosis, and human identity testing. In the present study allelic distribution of four autosomal short tandem repeat markers (D21S2055, D21S11, D21S1435 and D21S1411) has been analyzed in Indian population. For determination of heterogeneity and their allelic frequency QF-PCR analysis have been done. All the loci were found highly polymorphic. Marker D21S1411 was the most informative (93.6%) and D21S1435 (70.1%) was the least informative marker in Indian population.  相似文献   

16.
A collection of 1,069 human PCR-based genetic markers has been developed, and their distribution over the 22 autosomes and the X chromosome has been determined. Each marker was developed around a short-tandem-repeat DNA sequence. The majority (85%) of the markers described here were selected to contain tetranucleotide repeats, because these repeats show better stability during PCR than do dinucleotide repeats. Linkage maps constructed from genotypes collected with these markers in four CEPH pedigrees (1331, 1332, 1362, and 884) covered 3,417 cM of the human genome. More than 600 of the loci revealed heterozygosities > .70. Overall, 444 loci were ordered, with odds > 100:1 against inversion of adjacent loci. The average distance between markers was 7.4 cM on the autosomes and 24.8 cM on the X chromosome. Likely locations (100:1 odds intervals) were assigned for the remaining 621 short-tandem-repeat polymorphisms, as well as for 160 other markers that are present on the framework maps published by the Cooperative Human Linkage Center. Four markers specific to the Y chromosome are also reported here. From our maps, 347 markers were chosen to define "index" maps for each of the 22 autosomes. The index markers detect loci with an average heterozygosity of .85 and cover 3,169 cM of the autosomes, with an average distance between markers of 9.2 cM. These polymorphic short tandem repeats will be highly useful as reagents for the ongoing genetic and physical mapping of the human genome and for characterization of genetic changes in cancer.  相似文献   

17.
The lengths of simple repeat sequences are generally unstable or polymorphic (highly variable with respect to the numbers of tandem repeats). Previously we have isolated a family of minisatellite DNA (GenBank accession AF422186) that appears specifically and abundantly in the genome of yellow fin sea bream Acanthopagrus latus but not in closely-related red sea bream Pagrus major, and found that the numbers of tandem arrays in the homologous loci are polymorphic. This means that the minisatellite sequence has appeared and propagated in A. latus genome after speciation. In order to understand what makes the minisatellite widespread within the A. latus genome and what causes the polymorphic nature of the number of tandem repeats, the structural features of single-stranded polynucleotides were analyzed by electrophoresis, chemical modification, circular dichroism (CD), differential scanning calorimetry (DSC) and electron microscopy. The results suggest that a portion of the repeat unit forms a stable minihairpin structure, and it can cause polymerase pausing within the minisatellite DNA.  相似文献   

18.
Accurate methods for measuring the biological effects of radiation are critical for estimating an individual’s health risk from radiation exposure. We investigated the feasibility of using radiation-induced mutations in repetitive DNA sequences to measure genetic damage caused by radiation exposure. Most repetitive sequences are in non-coding regions of the genome and alterations in these loci are usually not deleterious. Thus, mutations in non-coding repetitive sequences might accumulate, providing a stable molecular record of DNA damage caused by all past exposures. To test this hypothesis, we screened repetitive DNA sequences to identify the loci most sensitive to radiation-induced mutations and then investigated whether these mutations were stable in vivo over time and after multiple exposures. Microsatellite repeat markers were identified that exhibited a linear dose response up to 1 Gy of 1 GeV/nucleon 56Fe ions and 137Cs gamma rays in mouse and human cells. Short tandem repeats on the Y chromosome and mononucleotide repeats on autosomal chromosomes exhibited significant increases in mutations at ≥ 0.5 Gy of 56Fe ions with frequencies averaging 4.3–10.3 × 10−3 mutations/locus/Gy/cell, high enough for direct detection of mutations in irradiated cells. A significant increase in radiation-induced mutations in extended mononucleotide repeats was detectible in vivo in mouse blood and cheek samples 10 and 26 weeks after radiation exposure and these mutations were additive over multiple exposures. This study demonstrates the feasibility of a novel method for biodosimetry that is applicable to humans and other species. This new approach should complement existing methods of biodosimetry and might be useful for measuring radiation exposure in circumstances that are not amenable to current methods.  相似文献   

19.
Exact Tandem Repeats Analyzer 1.0 (E-TRA) combines sequence motif searches with keywords such as ‘organs’, ‘tissues’, ‘cell lines’ and ‘development stages’ for finding simple exact tandem repeats as well as non-simple repeats. E-TRA has several advanced repeat search parameters/options compared to other repeat finder programs as it not only accepts GenBank, FASTA and expressed sequence tags (EST) sequence files, but also does analysis of multiple files with multiple sequences. The minimum and maximum tandem repeat motif lengths that E-TRA finds vary from one to one thousand. Advanced user defined parameters/options let the researchers use different minimum motif repeats search criteria for varying motif lengths simultaneously. One of the most interesting features of genomes is the presence of relatively short tandem repeats (TRs). These repeated DNA sequences are found in both prokaryotes and eukaryotes, distributed almost at random throughout the genome. Some of the tandem repeats play important roles in the regulation of gene expression whereas others do not have any known biological function as yet. Nevertheless, they have proven to be very beneficial in DNA profiling and genetic linkage analysis studies. To demonstrate the use of E-TRA, we used 5,465,605 human EST sequences derived from 18,814,550 GenBank EST sequences. Our results indicated that 12.44% (679,800) of the human EST sequences contained simple and non-simple repeat string patterns varying from one to 126 nucleotides in length. The results also revealed that human organs, tissues, cell lines and different developmental stages differed in number of repeats as well as repeat composition, indicating that the distribution of expressed tandem repeats among tissues or organs are not random, thus differing from the un-transcribed repeats found in genomes.  相似文献   

20.
Zhang D  Yang Q  Ding Y  Cao X  Xue Y  Cheng Z 《Genomics》2008,92(2):107-114
Tandem repetitive sequences are DNA motifs common in the genomes of eukaryotic species and are often embedded in heterochromatic regions. In most eukaryotes, ribosomal genes, as well as centromeres and telomeres or subtelomeres, are associated with abundant tandem arrays of repetitive sequences and typically represent the final barriers to completion of whole-genome sequencing. The nature of these repeats makes it difficult to estimate their actual sizes. In this study, combining the two cytological techniques DNA fiber-FISH and pachytene chromosome FISH allowed us to characterize the tandem repeats distributed genome wide in Antirrhinum majus and identify four types of tandem repeats, 45S rDNA, 5S rDNA, CentA1, and CentA2, representing the major tandem repetitive components, which were estimated to have a total length of 18.50 Mb and account for 3.59% of the A. majus genome. FISH examination revealed that all the tandem repeats correspond to heterochromatic knobs along the pachytene chromosomes. Moreover, the methylation status of the tandem repeats was investigated in both somatic cells and pollen mother cells from anther tissues using an antibody against 5-methylcytosine combined with sequential FISH analyses. Our results showed that these repeats were hypomethylated in anther tissues, especially in the pollen mother cells at pachytene stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号