首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The characteristics of Cl transport in isolated tonoplast vesicles from red-beet (Beta vulgaris L.) storage tissue have been investigated using the Cl-sensitive fluorescent probe, 6-methoxy-1-(3-sulfonatopropyl)-quinolinium (SPQ). The imposition of (inside) positive diffusion potentials, generated with K+ and valinomycin, increased the initial rate of Cl transport, demonstrating that Cl could be electrically driven into the vesicles. Chloride influx was unaffected by SO 4 2- , but was competitively blocked by NO 3 , indicating that both Cl and NO 3 may be transported by the same porter. In some preparations, increases in free-Ca2+ concentration from 10–8 to 10–5 mol·dm–3 caused a significant decrease in Cl influx, which may indicate that cytosolic Ca2+ concentration has a role in controlling Cl fluxes at the tonoplast. However, this effect was only seen in about 50% of membrane preparations and some doubt remains over its physiological significance. A range of compounds known to block anion transport in other systems was tested, and some partially blocked Cl transport. However, many of these inhibitors interfered with SPQ fluorescence and so only irreversible effects could be tested. The results are discussed in the context of recent advances made using the patch-clamp technique on isolated vacuoles.Abbreviations and Symbols BTP 1,3-bis[tris(hydroxymethyl)-methylamino]propane - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - membrane potential - pH pH gradient - SPQ 6-methoxy-1-(3-sulfonatopropyl)quinolinium - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl] glycine  相似文献   

2.
Hans Peter Getz 《Planta》1991,185(2):261-268
Sucrose uptake into tonoplast vesicles, which were prepared from red beet (Beta vulgaris L.) vacuoles isolated by two different methods, was stimulated by MgATP. Using the same medium as for osmotic disruption of vacuoles, membrane vesicles were prepared from tissue homogenates of dormant red beet roots and separated by high-speed centrifugation through a discontinuous dextran gradient. A low-density microsomal fraction highly enriched in tonoplast vesicles could be further purified from contaminating ER vesicles by inclusion of 5 mM MgCl2 in the homogenization medium. These vesicles were able to transport sucrose in an ATP-dependent manner against a concentration gradient, whereas vesicles from regions of other densities lacked this feature, indicating that ATP stimulation of sucrose uptake took place only at the tonoplast membrane. Sucrose uptake was optimal at pH 7 in the presence of MgATP and could be stimulated by superimposed pH gradients (vesicle interior acidic) in the absence of MgATP, which is consistent with the operation of a sucrose/H+-antiporter at the tonoplast. Tonoplast vesicles, obtained in high yield from tissue homogenates of red beet roots, exhibited sugar-uptake characteristics comparable to those of intact vacuoles; these characteristics included similarities in K m (1.7 mM), sensitivity to inhibitors and specificity for sucrose.Many experiments were carried out at the Experiment Station of the HSPA, Aiea, Hawaii and financed by an NSF grant to Dr. Maretzki and Mrs. M. Thom.  相似文献   

3.
The mechanism of nitrate transport across the tonoplast of barley root cells   总被引:14,自引:0,他引:14  
Nitrate-selective microelectrodes were used to measure not only nitrate activity in the cytoplasm and vacuole of barley (Hordeum vulgare L.) root cells, but also the tonoplast electrical membrane potential. For epidermal cells, the mean cytoplasmic and vacuolar pNO3 (-log10 [NO3]) values were 2.3±0.04 (n=19) and 1.41±0.03 (n=35), respectively, while for cortical cells, the mean cytoplasmic and vacuolar nitrate values were 2.58±0.18 (n=4) and 1.17±0.06 (n=13), respectively. These results indicate that the accumulation of nitrate in the vacuole must be an active process. Proton-selective microelectrodes were used to measure the proton gradient across the tonoplast to assess the possibility that nitrate transport into the vacuole is mediated by an H+/NO 3 antiport mechanism. For epidermal cells, the mean cytoplasmic and vacuolar pH values were 7.12±0.06 (n=10) and 4.93±0.11 (n=22), respectively, while for cortical cells, the mean cytoplasmic and vacuolar pH values were 7.24±0.07 (n=3) and 5.09±0.17 (n=7), respectively. Calculations of the energetics for this mechanism indicate that the observed gradient of nitrate across the tonoplast of both epidermal and cortical cells could be achieved by an H+/NO 3 antiport with a 11 stoichiometry.Abbreviations and Symbols G/F free-energy change for H+/NO 3 antiport - F Faraday constant - pHc cytoplasmic pH - pHv vacuolar pH - p[NO3]c log10 (cytoplasmic [NO 3 ]) - P[NO3]v -log10 (vacuolar [NO3]) We wish to thank Dr. K. Moore for assistance with statistical analysis.  相似文献   

4.
The effects of anions on inorganicpyrophosphate-dependent H+-transport in isolated tonoplast vesicles from oat (Avena sativa L.) roots were determined. Both fluorescent and radioactive probes were used to measure formation of pH gradients and membrane potential in the vesicles. Pyrophosphate hydrolysis by the H+-translocating pyrophosphatase was unaffected by anions. Nonetheless, some anions (Cl-, Br- and NO3-) stimulated H+-transport while others (malate, and iminodiacetate) did not. These differential effects were abolished when the membrane potential was clamped at zero mV using potassium and valinomycin. Stimulation of H+-transport by Cl- showed saturation kinetics whereas that by NO3- consisted of both a saturable component and a linear phase. For Cl- and NO3-, the saturable phase had a K m of about 2 mol·m-3. The anions that stimulated H+-transport also dissipated the membrane potential (.) generated by the pyrophosphatase. It is suggested that the stimulatory anions cross the tonoplast in response to the positive generated by the pyrophosphatase, causing dissipation of and stimulation of pH, as expected by the chemiosmotic hypothesis. The work is discussed in relation to recent studies of the effects of anions on ATP-dependent H+-transport at the tonoplast, and its relevance to anion accumulation in the vacuole in vivo is considered.Abbreviations and symools BTP 1,3-bis[tris(hydroxymethyl)-methylamino]-propane - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid - IDA iminodiacetate - membrane potential - pH pH gradient - PPase inorganic pyrophosphatase - PPi morganic pyrophosphate  相似文献   

5.
A possible role of the charasome in terms of chloride transport into Chara corallina Klein ex. Willd., em. R.D.W. is examined. The branches of Chara contain the most charasome material and are shown to be very effective in acquiring Cl- to support continued shoot growth. The early maturation of the branches, the rather large Cl- fluxes into these cells, and their ability of translocate Cl- to growing cells of the shoot indicate a special role of these branches in Cl- accumulation. The structure of the charasome, with its extensive periplasmic space, appears especially suited as a site for H+–Cl- cotransport (influx). We show, by histochemical assay, that the charasomes of mature cells contain ATPase activity; such activity is absent in growing charasomes of very young cells. ATPase activity is also associated with the plasmodesmata of C. corallina. Charasome ATPase activity and Cl- uptake are both inhibited by p-chloromercuribenzenesulfonic acid (1 mM) or diethylstibestrol (40 M; 45 min). The anion transport inhibitor, 4,4-diisothiocyano-2,2-disulfonic acid stilbene (1 mM) had no effect on Cl- transport and inhibited ATPase activity only when applied after chemical fixation of the cells. Results of an attempt to demonstrate the presence of Cl- within the cytoplasmic tubules of the charasome, using a silver precipitation technique, proved difficult to interpret because of a reaction between the silver and a cellular substance produced in the light.Abbreviations CPW Chara pond water - DES diethylstilbestrol - DIDS 4,4-diisothiocyano-2,2-disulfonic acid stilbene - Mops 3-(N-morpholino)propanesulfonic acid - PCMBS p-chloromercuribenzenesulfonic acid  相似文献   

6.
The tonoplast amino-acid transporter of barley (Hordeum vulgare L.) mesophyll cells was functionally reconstituted by incorporating solubilized tonoplast membranes, vacuoplast membranes or tonoplast-enriched microsomal vesicles into phosphatidylcholine liposomes. (i) Time-, concentration- and ATP-dependence of amino-acid uptake were similar to results with isolated vacuoles. Although the orientation of incorporation could not be controlled, the results indicate that the transporter functions as a uniport system which allows regulated equilibration by diffusion between the cytosolic and vacuolar amino-acid pools. (ii) The ATP-modulated amino-acid carrier was also successfully reconstituted from barley epidermal protoplasts and Valerianella or Tulipa vacuoplasts, indicating its general occurrence. (iii) Fractionation of solubilized tonoplasts by size-exclusion chromatography followed by reconstitution of the fractions for glutamine transport gave two activity peaks: the first eluted in the region of high-molecular-mass vesicles and the second at a size of 300 kDa for the Triton-protein micelle.Abbreviation SDS-PAGE sodium dodecyl sulfate-polyacryl-amide gel electrophoresis This work was part of our research efforts within the Sonderforschungsbereich 176 of the University. We gratefully acknowledge experimental support by Marion Betz and valuable discussions with Professors U. Heber and U.-I. Flügge and Dr. Armin Gross (University of Würzburg) and Dr. E. Martinoia (ETH, Zürich, Switzerland).  相似文献   

7.
8.
I. Struve  U. Lüttge 《Planta》1987,170(1):111-120
Membrane vesicles were isolated from mesophyll cells of Mesembryanthemum crystallinum in the C3 state and in the crassulacean acid metabolism (CAM) state. The distribution of ATP-hydrolysis and H+-transport activities, and the activities of hydroxypyruvate reductase and Antimycin-insensitive cytochrome-c-reductase on continuous sucrose gradients was studied. For isolations carried out routinely a discontinuous sucrose gradient (24%/37%/50%) was used. Nitrate-sensitive ATP-hydrolysis and H+-transport activities increased several-fold during the transition from C3 photosynthesis to CAM. Nitrate-sensitive ATPase showed a substrate preference for ATP with an apparent Km (MgATP2-) of 0.19–0.37 mM. In both C3 and CAM states the ATPase showed a concentration-dependent stimulation by the anions chloride and malate. However, the pH optima of the two states were different: the ATPase of C3- M. crystallinum had an optimum of pH 7.4 and that of CAM-M. crystallinum an optimum of pH 8.4. The optical probe oxonol-VI was used to demonstrate the formation of MgATP2--dependent electric-potential gradients in tonoplast vesicles.Abbreviations Bistris-Pronane 1,3-bis [tris(hydroxymethyl)-methylaminol propane - CAM Crassulacean acid metabolism - DIDS 4,4-dilsothiocyano-2,2-stilbene disulfonic acid: - DTT dithiothreitol - ER endoplasmic reticulum - Hepes 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - HPR hydroxypyruvate reductase - IDPase inosine 5-diphosphatase - OX-VI oxonol VI - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

9.
Summary Anthroylouabain, a fluorescent derivative of ouabain, was used to localize Na+,K+-ATPase in transport epithelia of two species of teleosts. Exposure of the opercular membrane of seawater-adapted tilapia (Oreochromis mossambicus) and the jaw skin of the long-jawed mudsucker (Gillichthys mirabilis) to a 2 M anthroylouabain solution resulted in the appearance of cells stained bright blue. These were deemed to be chloride cells by their large size, distinct morphology and co-localization of DASPEI fluorescence, a mitochondrial stain. Addition of ouabain (1 mM final concentration) greatly decreased anthroylouabain fluorescent staining of chloride cells of seawater-adapted fish. Exposure of opercular membranes from freshwater tilapia to 2 M anthroylouabain did not result in significant staining. Anthroylouabain is therefore a useful vital stain for localizing Na+,K+-ATPase in chloride cells of seawater-adapted teleosts, and may be useful for fluorescent labelling of ouabain-sensitive Na+,K+-ATPase in other tissues and species.  相似文献   

10.
The mechanism and specificity of amino-acid transport at the plasma membrane of Ricinus communis L. roots was investigated using membrane vesicles isolated by phase partitioning. The transport of glutamine, isoleucine, glutamic acid and aspartic acid was driven by both a pH gradient and a membrane potential (internally alkaline and negative), created artificially across the plasma membrane. This is consistent with transport via a proton symport. In contrast, the transport of the basic amino acids, lysine and arginine, was driven by a negative internal membrane potential but not by a pH gradient, suggesting that these amino acids may be taken up via a voltage-driven uniport. The energized uptake of all of the amino acids tested showed a saturable phase, consistent with carrier-mediated transport. In addition, the membrane-potential-driven transport of all the amino acids was greater at pH 5.5 than at pH 7.5, which suggests that there could be a direct pH effect on the carrier. Several amino-acid carriers could be resolved, based on competition studies: a carrier with a high affinity for a range of neutral amino acids (apart from asparagine) but with a low affinity for basic and acidic amino acids; a carrier which has a high affinity for a range of neutral amino acids except isoleucine and valine, but with a low affinity for basic and acidic amino acids; and a carrier which has a higher affinity for basic and some neutral amino acids but has a lower affinity for acidic amino acids. The existence of a separate carrier for acidic amino acids is discussed.Abbreviations PM plasma membrane - TPP+ tetraphenylphosphonium ion - pH pH gradient - membrane potential This work was supported by the Agricultural and Food Research Council and The Royal Society. We would like to thank Mrs. Sue Nelson for help with some of the membrane preparations.  相似文献   

11.
C. Niemietz  J. Willenbrink 《Planta》1985,166(4):545-549
The pH gradient and the electric potential across the tonoplast in mechanically isolated beetroot vacuoles has been studied by following the uptake of [14C]methylamine and [14C]triphenyl-methylphosphoniumchloride. In response to Mg-ATP, the vacuolar interior is acidified by 0.8 units. This strong acidification is accompanied by a slight hyperpolarization of the membrane potential, which is probably caused by a proton diffusion potential. In preparations where only a small acidification (0.4 units) occurred, the membrane potential was depolarized by the addition of Mg-ATP. Different monovalent cations and anions were tested concerning their effect on the pH gradient and ATPase activity in proton-conducting tonoplasts. Chloride stimulation and NO 3 - inhibition were clearly present. The observed decline of the pH gradient upon the addition of Na+ salts is probably caused by an Na+/H+ antiport system.Abbreviations and symbol CCCP carbonylcyanide-m-chlorophenylhydrazone - Mes 2(N-morpholino)ethanesulfonic acid - TPMP+ triphenylmethylphosphoniumchloride - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol - membrane potential Dedicated to Professor A. Betz on the occasion of his 65th birthday  相似文献   

12.
A plant lipid was isolated from zucchini (Cucurbita pepo L.) membranes and from soybean (Glycine max [L.] Merr) phospholipids by thinlayer chromatography and further purified by high-performance liquid chromatography. This plant lipid was chromatographically very similar to the platelet-activating factor, an ether phospho-lipid with hormone-like properties found in mammals. Both the plant lipid and the platelet-activating factor stimulated ATP-dependent H+ transport in isolated membrane vesicles from zucchini hypocotyls.Abbreviations HPLC high-performance liquid chromatography - PAF platelet-activating factor  相似文献   

13.
M. C. Drew  L. R. Saker 《Planta》1984,160(6):500-507
The extent to which uptake and transport of either phosphate, potassium or chloride are controlled by the concentration of these ions within the root, perhaps through an allosteric mechanism, was investigated with young barley plants in nutrient solution culture. Plants were grown with their roots divided between two containers, such that a single seminal root was continuously supplied with all the required nutrient ions, while the remaining four or five seminal roots were either supplied with the same solution (controls) or, temporarily, a solution lacking a particular nutrient ion (nutrient-deficient treatment). Compared with controls, there was a marked stimulation of uptake and transport of labelled ions by the single root following 24 h or more of nutrient dificiency to the remainder of the root system. This stimulation, which comprised an increased transport to the shoot and, for all ions except Cl-, increased transport to the remainder of the root system, took place without appreciable change in the concentration of particular ions within the single root. However, nutrient deficiency quickly caused a lower concentration of ions in the shoot and the remaining roots. The results are discussed in relation to various mechanisms, proposed in the literature, by which the coordination of ion uptake and transport may be maintained within the plant. We suggest that under our conditions any putative allosteric control of uptake and transport by root cortical cells was masked by an alternative mechanism, in which ion influx appears to be regulated by ion efflux to the xylem, perhaps controlled by the concentration of particular ions recycled in the phloem to the root from the shoot.  相似文献   

14.
The characteristics of sulphate uptake into right-side-out plasma-membrane vesicles isolated from roots of Brassica napus L., Metzger, cv. Drakkar, and purified by aqueous polymer two-phase partitioning, were investigated. Sulphate uptake into the vesicles was driven by an artificially imposed pH gradient (acid outside), and could be observed for 5–10 min before a plateau was reached and no further net uptake occurred. The uptake was partially inhibited in the presence of depolarizing agents and little uptake was observed in the absence of an imposed pH gradient. Uptake was strongly pH-dependent, being greatest at more acidic pH. After imposition of a pH gradient, the capacity for uptake decreased slowly (t1/2>10 min). The uptake had a high-affinity component which was strongly dependent on the external proton concentration (K m=10μM at pH 5.0, 64 μM at pH 6.5). The K m for protons varied from 0.4–1.9 μM as the sulphate concentration was reduced from 33 to 1 μM. A low-affinity component was observed which could be resolved at low temperatures (0 °C). Microsomal membranes that partitioned into the lower phase of the two-phase system gave no indication of high-affinity sulphate transport. Sulphate uptake into plasma-membrane vesicles isolated from sulphur-starved plant material was approximately twofold greater than that observed in those isolated from sulphate-fed plant material. Isolated vesicles therefore mirror the well-known in-vivo response of roots, indicating an increase in the number of transporters to be, at least in part, the underlying cause of derepression.  相似文献   

15.
Achim Hager  Christa Lanz 《Planta》1989,180(1):116-122
Functional properties and the localization of essential SH-groups of the tonoplast H+-ATPase fromZea mays L. were studied. In contrast to the pyrophosphate-dependent H+-translocation activity of the tonoplast, the H+-ATPase activity was inhibited by SH-blocking agents, such as N-ethylmaleimide and iodoacetic acid. In the case ofp-hydroxymercuribenzoate, HgCl2 and oxidized glutathione, the inhibition could be reversed by adding reduced glutathione or dithiothreitol. Incubation of tonoplast vesicles with oxidized glutathione or N-ethylmaleimide in the presence of Mg·ADP—a competitive inhibitor of the ATP-dependent H+ pump—avoided the inhibition of the H+-pumping activity. This effect is an indication for the occurrence of essential SH-groups at the catalytic site of the H+-ATPase. In order to characterize the active center these thiols were specifically labeled with maleimidobutyrylbiocytin. Subsequently, the membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to an immobilizing membrane. The maleimidobutyrylbiocytin-labeled active-center protein was detected by a biotin-streptavidin-peroxidase staining system and was shown to be a 70-kDa subunit of the tonoplast H+-ATPase. It is suggested that the oxidation state of the critical sulfhydryl groups within the active center of the enzyme and their reversible blocking by endogenous compounds might be of great importance for the regulation of the enzyme activity in vivo.  相似文献   

16.
Thomas J. Buckhout 《Planta》1989,178(3):393-399
An analysis of the molecular mechanism of sucrose transport across the plasmalemma was conducted with isolated plasma-membrane (PM) vesicles. Plasma membrane was isolated by aqueous two-phase partitioning from fully expanded sugar beet (Beta vulgaris L.) leaves. The isolated fraction was predominantly PM vesicles as determined by marker-enzyme analysis, and the vesicles were oriented right-side-out as determined by structurally linked latency of the PM enzyme, vanadate-sensitive Mg2+-ATPase. Sucrose uptake was investigated by equilibrating PM vesicles in pH 7.6 buffer and diluting them 20-fold into pH 6.0 buffer. Using this pH-jump technique, vesicles accumulated acetate in a pH-dependent, protonophore-sensitive manner, which demonstrated the presence of a pH gradient (pH) across the vesicle membrane. Addition of sucrose to pH-jumped PM vesicles resulted in a pH-dependent, protonophoresensitive uptake of sucrose into the vesicles. Uptake was sucrose-specific in that a 10-fold excess of mannose, glucose, fructose, mannitol, melibiose, lactose or maltose did not inhibit sucrose accumulation. The rate of pH-dependent uptake was saturable with respect of sucrose concentration and had an apparent K m, of 0.45 mM. Sucrose uptake was stimulated approximately twofold by the addition of valinomycin and K+, which indicated an electrogenic sucrose-H+ symport. Membrane potentials () were imposed across the vesicle membrane using valinomycin and K+. A membrane potential, negative inside, stimulated pH-dependent sucrose uptake while a , positive inside, inhibited uptake. Conditions that produce a negative in the absence of a pH gradient supported, although weakly, sucrose uptake. These data support an electrogenic sucrose-H+ symport as the mechanism of sucrose transport across the PM in Beta leaves.Abbreviations and symbols CCCP carbonyl cyanide m-chlorophenylhydrazone - cyt cytochrome - PM plasma-membrane(s) - electrical potential difference  相似文献   

17.
To evaluate the role of the gill chloride cells in regulating metabolic alkalosis in rainbow trout (Oncorhynchus mykiss), the surface area of branchial chloride cells was altered experimentally using combined cortisol/ovine growth hormone injections. Long-term (10-day) treatment of fish with cortisol/ovine growth hormone caused an increase in the two-dimensional chloride cell fractional surface area when compared to uninjected fish (from 8.4 to 29.7%). This was the combined result of an increase in the size of individual cells (from 34.6 to 59.2 m2) and increased numbers of cells (from 2368 to 5006 cells · mm-2). Metabolic alkalosis was induced by intra-arterial infusion of 140 mmol · l-1 NaHCO3; control fish were infused with 140 mmol · l-1 NaCl. Blood pH and plasma [HCO3 -] increased in both the untreated and the cortisol/ovine growth hormone-treated fish. However, the increases in pH (from 8.05 to 8.53) and [HCO3 -] (from 5.9 to 22.2 mmol · l-1) in the untreated fish were significantly greater than in the cortisol/ovine growth hormone-treated fish (pH increased from 7.78 to 8.11; [HCO3 -] increased from 5.5 to 13.9 mmol · l-1). In all fish, NaHCO3 infusion elicited an increase in the rate of branchial basic equivalent excretion (acidic equivalent uptake) which, in turn, was caused by decreases and increases in branchial Na+ uptake and Cl- uptake, respectively. In the untreated fish, there was a pronounced increase (75%) in chloride cell surface area during NaHCO3 infusion. The attenuation of the metabolic alkalosis during HCO3 - infusion in the cortical/ovine growth hormone-treated fish was caused, at least in part, by an enhancement of branchial basic equivalent excretion. In these fish that already displayed a proliferation of chloride cells, there was no further increase in chloride cell surface area. The changes in Na+ influx and Cl- influx were quantitatively similar during NaHCO3 infusion in both groups. This suggests that the greater rate of base excretion in the cortisol/ovine growth hormone-treated fish was caused by a greater percentage of Cl- uptake being coupled to HCO3 - excretion and less to Cl- excretion (Cl- exchange diffusion).Abbreviations Amm total ammonia - bw body weight - CC chloride cell - CCFA chloride cell fractional area - cort/oGH cortisol/ovine growth hormone - dpm disintegrations per minute - J Amm net flux of total ammonia - J in unidirectional influx - J inCl- chloride ion uptake - J inNa+ sodium ion uptake - J netH+ net acidic equivalent flux - J TA net flux of titrable alkalinity - MS 222 ethyl-m-aminobenzoate - oGH ovine growth hormone - PVC pavement cell - SEM scanning electron microscope - TA titrable alkalinity  相似文献   

18.
The molecular weight exclusion limit of plasmodesmata in subveinal epidermal cells of Nicotiana clevelandii (Gray) leaves was estimated by microinjection and fluorescence microscopy using fluorescein isothiocyanate-peptide conjugates, carboxyfluorescein and Lucifer Yellow CH. The largest fluorochrome which moved symplastically between cells had a molecular weight of 749, although movement did not appear to depend purely on molecular weight parameters. Systemic infection of plants by tobacco rattle tobravirus, tomato black ring nepovirus or potato Y potyvirus did not alter the limits of plasmodesmatal conductance of the fluorochromes. However, carrot mottle umbravirus and groundnut rosette umbravirus diminished the symplastic mobility of some fluorescent tracers. These results imply that intercellular movement of these viruses does not involve a long-lasting increase in the plasmodesmatal molecular size exclusion limit.Abbreviations CMotV carrot mottle umbravirus - GRV groundnut rosette umbravirus - Glu l-glutamate - GluGlu -glutamyl glutamate - FITC fluorescein isothiocyanate - Ala6 hexa-l-alanine - Gly6 hexa-l-glycine - PVY potato Y potyvirus - TBRV tomato black ring nepovirus - TRY tobacco rattle tobravirus - TyrGlyGly tyrosylglycylglycine  相似文献   

19.
20.
The steady-state levels of Ca2+ within the endoplasmic reticulum (ER) and the transport of 45Ca2+ into isolated ER of barley (Hordeum vulgare L. cv. Himalaya) aleurone layers were studied. The Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the ER was measured using the Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the lumen of the ER was determined by the fluorescence-ratio method to be at least 3 M. Transport of 45Ca2+ into the ER was studied in microsomal fractions isolated from aleurone layers incubated in the presence and absence of gibberellic acid (GA3) and Ca2+. Isopycinic sucrose density gradient centrifugation of microsomal fractions isolated from aleurone layers or protoplasts separates ER from tonoplast and plasma membranes but not from the Golgi apparatus. Transport of 45Ca2+ occurs primarily in the microsomal fraction enriched in ER and Golgi. Using monensin and heat-shock treatments to discriminate between uptake into the ER and Golgi, we established that 45Ca2+ transport was into the ER. The sensitivity of 45Ca2+ transport to inhibitors and the Km of 45Ca2+ uptake for ATP and Ca2+ transport in the microsomal fraction of barley aleurone cells. The rate of 45Ca2+ transport is stimulated several-fold by treatment with GA3. This effect of GA3 is mediated principally by an effect on the activity of the Ca2+ transporter rather than on the amount of ER.Abbreviations CCR cytochrome-c reductase - DCCD dicyclohexylcarbodiimide - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - ER endoplasmic reticulum - FCCP carbonylcyanide p-trifluoromethoxyphenyl hydrazone - GA3 gibberellic acid - IDPase inosine diphosphatase - Mon monensin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号