首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
The adipocytokine resistin impairs glucose tolerance and insulin sensitivity in rodents. Here, we examined the effect of resistin on glucose uptake in isolated adult mouse cardiomyocytes. Murine resistin reduced insulin-stimulated glucose uptake, establishing the heart as a resistin target tissue. Notably, human resistin also impaired insulin action in mouse cardiomyocytes, providing the first evidence that human and mouse resistin homologs have similar functions. Resistin is a cysteine-rich molecule that circulates as a multimer of a dimeric form dependent upon a single intermolecular disulfide bond, which, in the mouse, involves Cys26; mutation of this residue to alanine (C26A) produces a monomeric molecule that appears to be bioactive in the liver. Remarkably, unlike native resistin, monomeric C26A resistin had no effect on basal or insulin-stimulated glucose uptake in mouse cardiomyocytes. Resistin impairs glucose uptake in cardiomyocytes by mechanisms that involve altered vesicle trafficking. Thus, in cardiomyocytes, both mouse and human resistins directly impair glucose transport; and in contrast to effects on the liver, these actions of resistin require oligomerization.  相似文献   

2.
Resistin has been linked to components of the metabolic syndrome, including obesity, insulin resistance, and hyperlipidemia. We hypothesized that resistin deficiency would reverse hyperlipidemia in genetic obesity. C57Bl/6J mice lacking resistin [resistin knockout (RKO)] had similar body weight and fat as wild-type mice when fed standard rodent chow or a high-fat diet. Nonetheless, hepatic steatosis, serum cholesterol, and very low-density lipoprotein (VLDL) secretion were decreased in diet-induced obese RKO mice. Resistin deficiency exacerbated obesity in ob/ob mice, but hepatic steatosis was drastically attenuated. Moreover, the levels of triglycerides, cholesterol, insulin, and glucose were reduced in ob/ob-RKO mice. The antisteatotic effect of resistin deficiency was related to reductions in the expression of genes involved in hepatic lipogenesis and VLDL export. Together, these results demonstrate a crucial role of resistin in promoting hepatic steatosis and hyperlipidemia in obese mice.  相似文献   

3.
Resistin overexpression impaired glucose tolerance in hepatocytes   总被引:8,自引:0,他引:8  
Resistin is a 12.5-kDa cysteine-rich protein secreted from adipose tissue and is an important factor linking obesity with insulin resistance. Here, we investigated the effect of resistin on glucose tolerance in adult human hepatocytes (L-02 cells). In this study, resistin cDNA was transfected into L-02 cells, and glucose concentration and glucokinase activity were determined subsequently. The data indicated resistin impaired, insulin-stimulated glucose utilization, which implied liver was a target tissue of resistin. To understand its molecular mechanism, mRNA levels of key genes in glucose metabolism and insulin signaling pathway were analyzed. The results demonstrated resistin-stimulated expression of glucose-6-phosphatase (G6Pase), sterol regulatory element-binding protein 1c (SREBP1c) and suppressor of cytokine signaling 3 (SOCS-3), repressed expression of peroxisome proliferator-activated receptor gamma (PPARgamma) as well as insulin receptor substrate 2 (IRS-2). Given that glucokinase (GK) activity and glucose transporter 2 (GLUT2) expression were not altered, we presumed that resistin did not effect them. Moreover, resistin lowered mRNA levels of IRS-2 while stimulating SOCS-3 expression, which suggests it impairs glucose tolerance by blocking the insulin signal transduction pathway.  相似文献   

4.
Resistin, a small secretory molecule, has been implicated to play an important role in the development of insulin resistance under obese condition. For the past few decades, it has been linked to various cellular and metabolic functions. It has been associated with diseases like metabolic disorders, cardiovascular diseases and cancers. Numerous clinical studies have indicated an increased serum resistin level in pathological disorders which have been reported to increase mortality rate in comparison to low resistin expressing subjects. Various molecular studies suggest resistin plays a pivotal role in proliferation, metastasis, angiogenesis, inflammation as well as in regulating metabolism in cancer cells. Therefore, understanding the role of resistin and elucidating its’ associated molecular mechanism will give a better insight into the management of these disorders. In this article, we summarize the diverse roles of resistin in pathological disorders based on the available literature, clinicopathological data, and a compiled study from various databases. The article mainly provides comprehensive information of its role as a target in different treatment modalities in pre as well as post-clinical studies.  相似文献   

5.
Activation of SOCS-3 by resistin   总被引:44,自引:0,他引:44       下载免费PDF全文
Resistin is an adipocyte hormone that modulates glucose homeostasis. Here we show that in 3T3-L1 adipocytes, resistin attenuates multiple effects of insulin, including insulin receptor (IR) phosphorylation, IR substrate 1 (IRS-1) phosphorylation, phosphatidylinositol-3-kinase (PI3K) activation, phosphatidylinositol triphosphate production, and activation of protein kinase B/Akt. Remarkably, resistin treatment markedly induces the gene expression of suppressor of cytokine signaling 3 (SOCS-3), a known inhibitor of insulin signaling. The 50% effective dose for resistin induction of SOCS-3 is approximately 20 ng/ml, close to levels of resistin in serum. Association of SOCS-3 protein with the IR is also increased by resistin. Inhibition of SOCS function prevented resistin from antagonizing insulin action in adipocytes. SOCS-3 induction is the first cellular effect of resistin that is independent of insulin and is a likely mediator of resistin's inhibitory effect on insulin signaling in adipocytes.  相似文献   

6.
Resistin is a recently discovered hormone that is exclusively expressed in adipose tissue. Its expression in rodents was reported to be elevated or suppressed in genetic and diet-induced obesity, respectively. Resistin treatment impaired glucose tolerance and insulin action. Immunoneutralization of resistin improved insulin sensitivity, while thiazolidinedione treatment reduced resistin expression. Therefore, resistin could play a critical role in the development of obesity and type 2 diabetes. In this study were determined resistin plasma levels in humans suffering from type 1 and type 2 diabetes and in healthy controls. Plasma levels of resistin in healthy controls were 38.78 ng/ml. They were not statistically different in individuals with a broad BMI range. Resistin plasma levels in type 2 diabetes were 38.7 ng/ml, and 39.4 ng/ml in type 1 diabetes. Thiazolidinedione treatment did not influence resistin plasma levels. We conclude from our data: 1. resistin can be detected in human plasma, 2. plasma resistin levels are not different in type 1 and type 2 diabetes.  相似文献   

7.
Resistin is expressed in pancreatic islets   总被引:21,自引:0,他引:21  
Resistin, a recently described adipocyte factor, is regulated by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. While resistin has been proposed to mediate insulin resistance in rodents, little is known about human resistin and its expression in pancreatic islets has not been tested. The goal of the present study was therefore to analyze whether resistin, like PPARgamma, is expressed in islets. Human islets from seven donors were analyzed by quantitative RT-PCR revealing resistin expression in all samples. Immunohistochemistry using a resistin-specific antibody on human pancreatic sections localized resistin protein to the islets. Mouse resistin was also detected in the Min6 beta cell line. Interestingly, we found a 4-fold increase in islet resistin expression in insulin resistant A-ZIP transgenic compared to wild-type mice. Our results demonstrate that resistin is expressed in islets and up-regulated in insulin resistance and thereby shed new light on the role of resistin in mice and humans.  相似文献   

8.
Zhou L  Sell H  Eckardt K  Yang Z  Eckel J 《FEBS letters》2007,581(22):4303-4308
Adipocyte-derived factors might play a role in the development of hepatic insulin resistance. Resistin was identified as an adipokine linking obesity and insulin resistance. Resistin is secreted from adipocytes in rodents but in humans it was proposed to originate from macrophages and its impact for insulin resistance has remained elusive. To analyze the role of adipokines in general and resistin as a special adipokine, we cultured the human liver cell line HepG2 with adipocyte-conditioned medium (CM) containing various adipokines such as IL-6 and MCP-1, and resistin. CM and resistin both induce insulin resistance with a robust decrease in insulin-stimulated phosphorylation of Akt and GSK3. Insulin resistance could be prevented by co-treatment with troglitazone but not by co-stimulation with adiponectin. As human adipocytes do not secrete resistin, HepG2 cells were also treated with resistin added into CM. CM with resistin addition induced stronger insulin resistance than CM alone pointing to a specific role of resistin in the initiation of hepatic insulin resistance in humans.  相似文献   

9.
Resistin expression and regulation in mouse pituitary   总被引:27,自引:0,他引:27  
  相似文献   

10.
Palanivel R  Sweeney G 《FEBS letters》2005,579(22):5049-5054
Resistin has been proposed as a potential link between obesity and insulin resistance. It is also well established that altered metabolism of fatty acids by skeletal muscle can lead to insulin resistance and lipotoxicity. However, little is known about the effect of resistin on long chain fatty acid uptake and metabolism in skeletal muscle. Here we show that treating rat skeletal muscle cells with recombinant resistin (50 nM, 24 h) decreased uptake of palmitate. This correlated with reduced cell surface CD36 content and lower expression of FATP1, but no change in FATP4 or CD36 expression. We also found that resistin decreased fatty acid oxidation by measuring 14CO2 production from [1-14C] oleate and an increase in intracellular lipid accumulation was detected in response to resistin. Decreased AMPK and ACC phosphorylation were observed in response to resistin while expression of ACC and AMPK isoforms was unaltered. Resistin mediated these effects without altering cell viability. In summary, our results demonstrate that chronic incubation of skeletal muscle cells with resistin decreased fatty acid uptake and metabolism via a mechanism involving decreased cell surface CD36 content, FATP1 expression and a decrease in phosphorylation of AMPK and ACC.  相似文献   

11.
Objective: Resistin is associated with insulin resistance in mice and may play a similar role in humans. The aim of our study was to examine the relationship of serum resistin level to body composition, insulin resistance, and related obesity phenotypes in humans. Research Methods and Procedures: Sixty‐four young (age 32 ± 10 years), obese (BMI 32.9 ± 5.6), nondiabetic subjects taking no medication, and 15 lean (BMI 21.1 ± 1.3) volunteers were studied cross‐sectionally. Thirty‐five of the subjects were also reevaluated after 1.5 years on a weight reduction program entailing dieting and exercise; changes of serum resistin were compared with changes of BMI, body composition, fat distribution, and several indices of insulin sensitivity derived from plasma glucose and serum insulin levels measured during 75‐g oral glucose tolerance test. Results: In a cross‐sectional analysis, serum resistin was significantly higher in obese subjects than in lean volunteers (24.58 ± 12.93 ng/mL; n = 64 vs. 12.83 ± 8.30 ng/mL; n = 15; p < 0.01), and there was a correlation between resistin level and BMI, when the two groups were combined (ρ = 0.35, p < 0.01). Although cross‐sectional analysis in obese subjects revealed no correlation between serum resistin and parameters related to adiposity or insulin resistance, longitudinal analysis revealed change in serum resistin to be positively correlated with changes in BMI, body fat, fat mass, visceral fat area, and mean glucose and insulin (ρ = 0.39, 0.40, 0.44, 0.50, 0.40, and 0.50; p = 0.02, 0.03, 0.02, <0.01, 0.02, and <0.01, respectively). Discussion: Resistin appears to be related to human adiposity and to be a possible candidate factor in human insulin resistance.  相似文献   

12.
Iglesias P  Díez JJ 《Cytokine》2007,40(2):61-70
Thyroid hormones act on several aspects of metabolic and energy homeostasis influencing body weight, thermogenesis, and lipolysis in adipose tissue. Adipocytokines are biologically active substances produced by adipocyte with different physiological functions. These substances have multiple effects on several tissues acting on the intermediate and energy metabolism. For these reasons, attention has recently been focused on the possible relationship between adipocytokines, thyroid status, and thyroid dysfunction. Leptin, a signal of satiety to the brain and regulator of insulin and glucose metabolism, reflects the amount of fat storage and is considered as a pro-inflammatory adipocytokine. Adiponectin is inversely related to the degree of adiposity, increases insulin sensitivity, and may have antiatherogenic and anti-inflammatory properties. Resistin impairs glucose homeostasis and insulin action in mice but not in humans. Resistin might be considered a pro-inflammatory adipocytokine and participate in obesity-associated inflammation. Several reports indicate that leptin regulates thyroid function at hypothalamic-hypophyseal level and, conversely, thyroid hormones might control leptin metabolism at least in some animals studies. Both adiponectin and thyroid hormones share some physiological actions as reduction of body fat by increasing thermogenesis and lipid oxidation. Resistin also seems to be regulated by thyroid hormones, at least in rats. Thyroid dysfunction does not significantly affect serum leptin concentrations. Serum levels of adiponectin are no influenced by thyroid hypofunction; however, hyperthyroidism is associated with normal or elevated adiponectin levels. Finally, discordant results in resistin levels in thyroid dysfunction have been reported in humans.  相似文献   

13.
It now appears that, in most obese patients, obesity is associated with a low-grade inflammation of white adipose tissue (WAT) resulting from chronic activation of the innate immune system and which can subsequently lead to insulin resistance, impaired glucose tolerance and even diabetes. WAT is the physiological site of energy storage as lipids. In addition, it has been more recently recognized as an active participant in numerous physiological and pathophysiological processes. In obesity, WAT is characterized by an increased production and secretion of a wide range of inflammatory molecules including TNF-alpha and interleukin-6 (IL-6), which may have local effects on WAT physiology but also systemic effects on other organs. Recent data indicate that obese WAT is infiltrated by macrophages, which may be a major source of locally-produced pro-inflammatory cytokines. Interestingly, weight loss is associated with a reduction in the macrophage infiltration of WAT and an improvement of the inflammatory profile of gene expression. Several factors derived not only from adipocytes but also from infiltrated macrophages probably contribute to the pathogenesis of insulin resistance. Most of them are overproduced during obesity, including leptin, TNF-alpha, IL-6 and resistin. Conversely, expression and plasma levels of adiponectin, an insulin-sensitising effector, are down-regulated during obesity. Leptin could modulate TNF-alpha production and macrophage activation. TNF-alpha is overproduced in adipose tissue of several rodent models of obesity and has an important role in the pathogenesis of insulin resistance in these species. However, its actual involvement in glucose metabolism disorders in humans remains controversial. IL-6 production by human adipose tissue increases during obesity. It may induce hepatic CRP synthesis and may promote the onset of cardiovascular complications. Both TNF-alpha and IL-6 can alter insulin sensitivity by triggering different key steps in the insulin signalling pathway. In rodents, resistin can induce insulin resistance, while its implication in the control of insulin sensitivity is still a matter of debate in humans. Adiponectin is highly expressed in WAT, and circulating adiponectin levels are decreased in subjects with obesity-related insulin resistance, type 2 diabetes and coronary heart disease. Adiponectin inhibits liver neoglucogenesis and promotes fatty acid oxidation in skeletal muscle. In addition, adiponectin counteracts the pro-inflammatory effects of TNF-alpha on the arterial wall and probably protects against the development of arteriosclerosis. In obesity, the pro-inflammatory effects of cytokines through intracellular signalling pathways involve the NF-kappaB and JNK systems. Genetic or pharmacological manipulations of these effectors of the inflammatory response have been shown to modulate insulin sensitivity in different animal models. In humans, it has been suggested that the improved glucose tolerance observed in the presence of thiazolidinediones or statins is likely related to their anti-inflammatory properties. Thus, it can be considered that obesity corresponds to a sub-clinical inflammatory condition that promotes the production of pro-inflammatory factors involved in the pathogenesis of insulin resistance.  相似文献   

14.
Endothelin-1 inhibits resistin secretion in 3T3-L1 adipocytes   总被引:7,自引:0,他引:7  
Resistin is an adipocyte-derived hormone whose role in the development of insulin resistance is controversial. Endothelin-1 (ET-1) is a 21 amino acid peptide demonstrated to possess vasoconstrictor, positive inotropic, mitogenic, and metabolic properties. In numerous disease states, including congestive heart failure, obesity, and diabetes, elevated levels of ET-1 have been reported and are thought to contribute to the pathology of the disease. A recent study demonstrated that ET-1 induces the expression and stimulates the secretion of the adipose tissue-derived hormone leptin. However, the effect of ET-1 on resistin secretion has not been determined. To characterize the effect of ET-1 on resistin secretion, 3T3-L1 fibroblasts were differentiated into adipocytes and allowed to mature for 14 days. Cells were incubated for 24h with ET-1 (1-100 nM), insulin (1-100 nM), insulin+ET-1 (100 nM I+E) or the appropriate vehicle or antagonist. At the end of the incubation period, resistin secretion was determined in the media by immunoblotting and densitometric analysis. ET-1 (1-100 nM) significantly decreased basal resistin secretion by 49% (1 nM), 43% (10nM), and 59% (100 nM). Insulin (1-100 nM) produced a concentration-dependent increase in resistin secretion from 3T3-L1 adipocytes (1 nM-42%, 10nM-55%, and 100 nM-86% vs. control). Insulin-stimulated resistin secretion (100 nM) was almost completely inhibited (94%) by ET-1 (100 nM). The effects of ET-1 on resistin protein secretion were inhibited by co-incubation with the ET(A) receptor antagonist BQ-610. In conclusion, our studies demonstrate that basal and hormonal stimulation of resistin secretion by insulin are inhibited by ET-1. Such findings demonstrate that resistin secretion is regulated in a similar manner to other adipose tissue factors, including leptin, in 3T3-L1 adipocytes. In addition, our findings suggest that vascular factors such as ET-1 may regulate whole body energy metabolism through adipocyte-derived hormones, including leptin and resistin.  相似文献   

15.
Resistin, an adipocyte secreted cysteine rich hormone has been implicated as molecular link between obesity and type 2 diabetes in a murine model. Although, at the protein level mouse and human resistin show remarkable similarities with respect to conserved cysteine residues, the physiological role of human resistin is not yet clear. In the present study we describe the purification and refolding of human recombinant resistin using two different refolding processes. Gel filtration analysis of protein refolded by both the methods revealed that human recombinant resistin, like mouse resistin, has a tendency to form dimers. Interestingly, dimerization of resistin appears to be mediated by both covalent (disulfide bond mediated) and non-covalent interactions as seen on reducing and non-reducing SDS-PAGE. Circular dichroism spectral analysis revealed that human resistin peptide backbone is a mixture of alpha-helical and beta-sheet conformation with significant amounts of unordered structure, similar to the mouse resistin. It is likely that the first cysteine (Cyst22) of human resistin, which is equivalent to mouse Cyst26, may be involved in stabilizing the dimers through covalent interaction.  相似文献   

16.
17.
18.
Objective: Resistin was recently identified as a hormone secreted by adipocytes that is under hormonal and nutritional control. This hormone has been suggested to be the link between obesity and type 2 diabetes. The aim of this study was to assess the influence of gender, gonadal status, thyroid hormones, pregnancy, and food restriction on resistin mRNA levels in adipose tissue of rats. Research Methods and Procedures: We have determined resistin mRNA expression by Northern blot analysis in all experimental sets. Results: Resistin mRNA expression is influenced by age, with the highest hormone levels existing at 45 days after birth and decreasing thereafter. Resistin mRNA expression is higher in men than in women. Moreover, we studied the effect of orchidectomy and ovariectomy in rats of different ages and showed that gonadal hormones increase adipose tissue resistin mRNA expression in male rats. Resistin is also regulated by thyroid hormones; it is severely decreased in hyperthyroid rats. Our results clearly show that chronic food restriction (30% of ad libitum food intake) led to a decrease in adipose tissue mRNA levels in normal cycling female rats and pregnant rats. In pregnancy, resistin mRNA levels were enhanced particularly at midgestation. Discussion: Our observations indicate that resistin is influenced by gender, gonadal status, thyroid hormones, and pregnancy. These findings suggest that resistin could explain the decreased insulin sensitivity during puberty and could be the link between sex steroids and insulin sensitivity. Moreover, resistin could mediate the effect of thyroid hormones on insulin resistance and the state of insulin resistance present during pregnancy.  相似文献   

19.
Elevated levels of resistin have been proposed to cause insulin resistance and therefore may serve as a link between obesity and type 2 diabetes. However, its role in skeletal muscle metabolism is unknown. In this study, we examined the effect of resistin on insulin-stimulated glucose uptake and the upstream insulin-signaling components in L6 rat skeletal muscle cells that were either incubated with recombinant resistin or stably transfected with a vector containing the myc-tagged mouse resistin gene. Transfected clones expressed intracellular resistin, which was released in the medium. Incubation with recombinant resistin resulted in a dose-dependent inhibition of insulin-stimulated 2-deoxyglucose (2-DG) uptake. The inhibitory effect of resistin on insulin-stimulated 2-DG uptake was not the result of impaired GLUT4 translocation to the plasma membrane. Furthermore, resistin did not alter the insulin receptor (IR) content and its phosphorylation, nor did it affect insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation, its association with the p85 subunit of phosphatidylinositol (PI) 3-kinase, or IRS-1-associated PI 3-kinase enzymatic activity. Insulin-stimulated phosphorylation of Akt/protein kinase B-alpha, one of the downstream targets of PI 3-kinase and p38 MAPK phosphorylation, was also not affected by resistin. Expression of resistin also inhibited insulin-stimulated 2-DG uptake when compared with cells expressing the empty vector (L6Neo) without affecting GLUT4 translocation, GLUT1 content, and IRS-1/PI 3-kinase signaling. We conclude that resistin does not alter IR signaling but does affect insulin-stimulated glucose uptake, presumably by decreasing the intrinsic activity of cell surface glucose transporters.  相似文献   

20.
Resistin is originally reported as an adipose tissue‐specific hormone and is thought to represent a link between obesity and insulin‐resistant diabetes. Adipokines exert energy‐regulation and has been reported to have neuroprotective effect like leptin, adiponectin, and ghrelin. However, the role of resistin in neuroprotective effect has not been explored. 6‐hydroxydopamine (6‐OHDA), one of the most investigated Parkinson's disease neurotoxins, is widely used to study mechanisms of cell death in dopaminergic neurons. In the present study, our results show that treatment of resistin protects 6‐OHDA‐induced cell death in dopaminergic‐like MES23.5 cells. Resistin also antagonizes 6‐OHDA‐induced apoptotic cell death measured by fluorescence‐activated cell sorter (FACS) analysis and Hochest 33342 staining. Furthermore, treatment of resistin also dramatically reduces 6‐OHDA‐mediated ROS production and mitochondria transmembrane potential dissipation. Moreover, expression of 6‐OHDA‐induced apoptotic markers, such as Bcl‐2 degradation, Bax expression, PARP degradation and caspase 3 activity increase, are all attenuated by resistin treatment. Our results also show that resistin induces up‐regulation of heat shock protein (Hsp) 32 (heme oxygenase‐1, HO‐1) and Hsc (heat shock cognate) 70. The protective effect of resistin on 6‐OHDA‐induced cell death is abolished by HO‐1 inhibitor zinc protoporphyrin IX and HSP inhibitor KNK437. These results suggest the neuroprotective effects of resistin against 6‐OHDA‐induced cell death with the underlying mechanisms of inhibiting oxidative stress and apoptosis. Therefore, we suggest that resistin may provide a useful therapeutic strategy for neurodegenerative diseases such as Parkinson's disease. J. Cell. Physiol. 228: 563–571, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号