首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pigment content of a B800-850 light-harvesting pigment-protein complex isolated from three different stains of Rhodopseudomonas sphaeroides has been determined. In each case the ratio of carotenoid to bacteriochlorophyll present is very nearly 1 : 3 an no specificity with regard to carotenoid type was observed. The fourth derivative of the infra-red absorption bands of the complex was determined and it is concluded that the minimal functional unit of B800-850 complex consists of 1 carotenoid molecule and three bacteriochlorophyll molecules. The data presented here, together with the previous study of Austin, (Austin, L.A. (1976) Ph.D. Thesis, University of California at Berkeley, Lawrence Berkeley Laboratory Report No. LBL 5512) suggest that the 800 nm absorption band represents one of these bacteriochlorophyll molecules while the remaining two bacteriochlorophylls are responsible for the 850 nm band. The absorption spectra and circular dichroism spectra of the complexes suggests that their structure has not been greatly altered during the purification.  相似文献   

2.
The pigment content of a B800–850 light-harvesting pigment-protein complex isolated from three different stains of Rhodopseudomonas sphaeroides has been determined. In each case the ratio of carotenoid to bacteriochlorophyll present is very nearly 1 : 3 an no specificity with regard to carotenoid type was observed.The fourth derivative of the infra-red absorption bands of the complex was determined and it is concluded that the minimal functional unit of B800–850 complex consists of 1 carotenoid molecule and three bacteriochlorophyll molecules. The data presented here, together with the previous study of Austin, (Austin, L.A. (1976) Ph.D. Thesis, University of California at Berkeley, Lawrence Berkeley Laboratory Report No. LBL 5512) suggest that the 800 nm absorption band represents one of these bacteriochlorophyll molecules while the remaining two bacteriochlorophylls are responsible for the 850 nm band.The absorption spectra and circular dichroism spectra of the complexes suggests that their structure has not been greatly altered during the purification.  相似文献   

3.
Certain redox properties of bacteriochlorophyll alpha were used to probe the structure of several light-harvesting pigment-protein complexes or holochromes. To attribute redox properties unequivocally to a given holochrome, we worked with purified holochromes. We developed purification procedures for the B880 holochromes from Rhodospirillum rubrum, Rhodopseudomonas sphaeroides and Ectothiorhodospira sp. and for the B800-850 holochromes from the latter two species. In all these holochromes, bacteriochlorophyll alpha could be oxidized by ferricyanide as witnessed by the bleaching of their near-infrared absorption bands. However, only in B880 holochromes was this oxidation reversible. Another important difference between the B800-850 and the B880 holochromes is that oxidation of the latter gives rise to a g = 2.0025 electron paramagnetic resonance (EPR) signal with linewidth varying, according to species, from 0.37 mT to 0.48 mT. Both the reversible EPR signal and absorption changes titrate with a midpoint redox potential (pH 8.0) of approximately 570 mV. Linewidth narrowing can be interpreted by delocalization of the free electron spin over approximately 12 bacteriochlorophyll molecules. While the B880 holochromes from the three species considered had indistinguishable redox properties, the B800-850 holochromes differed from one another by their circular dichroic spectra and by the relative ease of oxidation of their 800-nm and 850-nm bands. This indicates that, contrary to the B880 holochromes, the B800-850 holochromes may not form a homogeneous class.  相似文献   

4.
The absorption and circular dichroism spectra of the B800-850 complex from Chromatium minutissimum before and after the Triton X-100 treatment were simulated by means of standard exciton theory, taking into account inhomogeneous broadening. To explain the spectral changes of the B800-850 complex treated with Triton X-100, we have assumed that all bacteriochlorophyll pigments absorbing at 850 nm exhibit the same additional rotation of approximately 20 degrees around the axis perpendicular to the membrane plane. This has been sufficient to fit the transformation in absorption and circular dichroism spectra induced by detergent treatment of the B800-850 complex.  相似文献   

5.
The light-harvesting complex II of the purple bacteria has two strong near infrared electronic absorption bands, around 800 (B800) and 850 (B850) nm, arising from the Qy transitions of bacteriochlorophyll a. It was previously reported that under some specific acid/chaotropic conditions the B850 bacteriochlorophylls of the light-harvesting complex II of Ectothiorhodospira sp. are strongly reorganised. Part of these pigments absorbs at 843 nm while another set absorbs around 858 nm. The current work should investigate whether a mix of two different complexes could generate the 843- and 858-nm bands. Acid/chaotropic conditions inducing the reorganisation of B850 were reproduced on a sample bound to an ionic-exchange column. The chromatographic pattern was found strongly homogeneous. The findings indicate that the heterogeneity of the reorganised B850 results from two forms of differently structured bacteriochlorophylls bound to the same polypeptide backbone.  相似文献   

6.
Mild proteolysis of Rhodopseudomonas capsulata chromatophores results in a parallel loss of the 800 nm bacteriochlorophyll absorption band and a blue shift in the carotenoid absorption bands associated with the B-800–850 light-harvesting complex. Both the light-induced and the salt-induced electrochromic carotenoid band shift disappear in parallel to the loss of the 800 nm bacteriochlorophyll absorption upon pronase treatment of chromatophores. During the time required for the loss of the 800 nm bacteriochlorophyll absorption and the loss of the electrochromic carotenoid band shift photochemistry is not inhibited and the ionic conductance of the membrane remains very low. We conclude that the carotenoid associated with the B-800–850 light-harvesting complex is the one that responds electrochromically to the transmembrane electric field. Analysis of the pigment content of Rps. capsulata chromatophores indicates that all of the carotenoid may be accounted for in the well defined pigment-protein complexes.  相似文献   

7.
A theoretical model of exciton dynamics in circular molecular aggregates of light-harvesting bacteriochlorophyll of photosynthetic bacteria is proposed. The spectra and anisotropy of photoinduced absorption changes in the femto- and picosecond time domain are under its scope. The excited state of aggregate was treated due to the standard exciton theory, taking into account a pigment inhomogeneity. Dephasing processes via the exciton-phonon interactions were described by means of the Haken-Strobl equation. It was shown that only two exciton levels are dipole-allowed in the case of homogeneous circular aggregate. The pigment inhomogeneity results in the appearance of several weak transitions to higher exciton levels. It was proposed that the minor band (B896) in an absorption spectrum of the B875 complex as well as the similar minor band in spectra of B800-850 complex correspond to electron transition from the ground to the lowest exciton level, whereas the major band corresponds to transition to the higher exciton level. The proposed model shows the subpicosecond decay of anisotropy at the short-wavelength side of absorption band and a high degree of anisotropy at the long-wavelength side, even at high temperatures.  相似文献   

8.
To obtain information on the structural and functional role of highly conserved amino acid residues in the B870 alpha and beta light-harvesting polypeptides of Rhodobacter capsulatus, site-directed mutagenesis was performed. 18 mutants with single amino acid substitutions at nine different positions in the B870 antenna polypeptides were prepared in a B800-850-lacking strain. The characterization of the resulting phenotypes was based on a quantification of the core-complex elements (reaction center, light-harvesting polypeptides, bacteriochlorophyll a and carotenoid) and the core-complex spectral characteristics (absorption maximum, absorption coefficient and fluorescence intensity). These data generally showed that strong structural effects were caused by the amino acid substitutions. Thus, the three tryptophan exchanges at the position alpha 8 resulted in either the absence of a core complex (alpha Trp8----Leu), the absence of the core antenna (alpha Trp8----Ala) or a reduction in the carotenoid content (alpha Trp8----Tyr). Likewise, the mutants alpha Pro13Gly (i.e. alpha Pro13----Gly), beta Gly10Val and alpha Phe23Ala demonstrated an abnormal protein/pigment ratio in the core antenna, while a drastically reduced antenna size resulted from the amino acid exchange beta Arg45Asp. In contrast to the structural effects, the absorption maxima and the fluorescence intensities of the mutant antennae differed only slightly from the wild type. The strongest blue shift of the bacteriochlorophyll a (8-11 nm) was induced by substitutions of the Trp at position alpha 43 (alpha Trp43----Ala, Leu or Tyr). Contrary to the other spectral effects, the absorption coefficient of bacteriochlorophyll a was strongly influenced by the amino acid substitutions and varied by 1.6-times less (beta Arg45Asp) and 1.3-times greater (alpha Phe25Ala) than normal. The antenna-free mutant, alpha Trp8Ala, yielded a high rate of B800-850 revertants during phototrophic growth, indicating a direct energy transfer from the B800-850 antenna to the reaction center in these strains. Although conditions for growth were generally observed to influence phenotypic expression, the structural as well as spectral effects were demonstrated to differ to the greatest extent between chemotrophically grown and phototrophically grown cells.  相似文献   

9.
A peripheral light-harvesting complex from the aerobic purple bacterium Roseobacter (R.) denitrificans was purified and its photophysical properties characterized. The complex contains two types of pigments, bacteriochlorophyll (BChl) a and the carotenoid (Car) spheroidenone and possesses unique spectroscopic properties. It appears to lack the B850 bacteriochlorophyll a Q(y) band that is typical for similar light-harvesting complex 2 antennas. Circular dichroism and low temperature steady-state absorption spectroscopy revealed that the B850 band is present but is shifted significantly to shorter wavelengths and overlaps with the B800 band at room temperature. Such a spectral signature classifies this protein as a member of the light-harvesting complex 4 class of peripheral light-harvesting complexes, along with the previously known light-harvesting complex 4 from Rhodopseudomonas palustris. The influence of the spectral change on the light-harvesting ability was studied using steady-state absorption, fluorescence, circular dichroism, femtosecond and microsecond time-resolved absorption and time-resolved fluorescence spectroscopies. The results were compared to the properties of the similar (in pigment composition) light-harvesting complex 2 from aerobically grown Rhodobacter sphaeroides and are understood within the context of shared similarities and differences and the putative influence of the pigments on the protein structure and its properties.  相似文献   

10.
We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.  相似文献   

11.
Buche A  Picorel R 《Biochemistry》2001,40(9):2894-2900
The light-harvesting complex II of the purple bacteria has two strong near-infrared electronic absorption bands around 800 (B800) and 850 (B850) nm, arising from the Q(y)() transitions of the bacteriochlorophyll a. In the present work, high concentrations of NaOH were used to study the destabilization of the complex of the Ectothiorhodospira sp. The majority of the bacteriochlorophylls were monomerized within 90 min of treatment. However, the kinetic patterns of the two near-infrared bands were remarkably different. After an instantaneous blue shift from 853 to 828 nm, B850 showed a first-order monomerization with a rate constant of -0.016 min(-1). This instantaneous blue shift was previously attributed to the deprotonation of a lysine and was independent of the monomerization process. The observed native B800 is in fact composed of two bands, one at 796 nm and the other at 780 nm. The band absorbing at 780 nm red shifted also instantaneously to 786-788 nm and then disappeared in a first-order process as B850. The other band absorbing at 796 nm has a two-step process of monomerization; after a rapid conversion a slower first-order process occurred with a rate constant of -0.025 min(-1). The similarity between the kinetic behaviors of B850 and the 780 nm band indicated a strong relationship between these two bands. Our interpretation of the results considers the 780 nm band as the upper exciton component of the B850 bacteriochlorophylls.  相似文献   

12.
Light-harvesting mutants of Rhodopseudomonas sphaeroides lacking either the B800-850 complex or the B875 complex have been characterized by their absorption spectra in the visible and near-infrared region, and by their ability to transfer energy from the light-harvesting complexes to the reaction center. A new method of measuring the relative efficiency of energy transfer from the light-harvesting complexes to the reaction center is described. The B875- mutant had absorption maxima in the near-infrared at 800 and 849 nm with no evidence of an 875-nm shoulder. The efficiency of energy transfer from the light-harvesting complexes to the reaction center in the B875- mutant was 24% of the value measured for the wild-type strain and the B800-850- mutant. Yet, despite the fact that the efficiency of energy transfer for the B800-850- mutant and the wild-type strain were the same, there was a large difference in their photosynthetic unit size. These results are discussed in the context of a model in which light energy captured by the B800-850 complexes is transferred through the B875 complexes to the reaction center.  相似文献   

13.
Comparison of absorption and circular dichroism (CD) spectra in the near infrared region was made with chromatophore and subchromatophore preparations obtained from Rhodopseudomonas sphaeroides. The 850 nm absorption band had a positive correlation with the 850 nm and 870 nm CD bands. The 800 nm and 870 nm absorption bands seemed not to correlate with any CD bands. Lipid contents in chromatophores and subchromatophores were measured. Lipids in membranes seemed to contribute to the appearance of the 870 nm absorption band, but not to that of the 800 nm and 850 nm absorption bands. The time courses of absorbance changes were compared at 800, 850, and 870 nm in detergent-treated chromatophores. Relative changes of absorbances differed from one another. The present results suggest that the three absorption bands are due to three different bacteriochlorophyll a-types and the 850 nm absorption band originates from exciton-coupling of bacteriochlorophyll a.  相似文献   

14.
EET between the two circular bacteriochlorophyll compartments B800 and B850 in native (containing the carotenoid rhodopin) and carotenoidless LH2 isolated from the photosynthetic purple sulfur bacterium Allochromatium minutissimum was investigated by femtosecond time-resolved transient absorption spectroscopy. Both samples were excited with 120-fs laser pulses at 800 nm, and spectral evolution was followed in the 720-955 nm range at different delay times. No dependence of transient absorption in the B800 band on the presence of the carotenoid rhodopin was found. Together with the likewise virtually unchanged absorption spectra in the bacteriochlorophyll Qy region, these observations suggest that absence of rhodopin does not significantly alter the structure of the pigment-protein complex including interactions between bacteriochlorophylls. Apparently, rhodopin does also not accelerate B800 to B850 EET in LH2, contrary to what has been suggested previously. Moreover, “carotenoid-catalyzed internal conversion” can also be excluded for the bacteriochlorophylls in LH2 of A. minutissimum. Together with previous results obtained with two-photon fluorescence excitation spectroscopy, it can also be concluded that there is neither EET from rhodopin to B800 nor (back-)EET from B800 to rhodopin.  相似文献   

15.
We investigated the formation of the B800-850 complex in cells of the bacterium Rhodopseudomonas palustris AB illuminated by red and blue light under anaerobic growth conditions. Under red illumination, the B800-850 complex was assembled with a reduced absorption band at 850 nm. The results of re-electrophoresis of the B800-850 complex and oxidation in the presence of potassium iridate suggest its heterogeneity. It may be a mixture of two complexes (B800 and B800-850). The B800-850 complex lacks the capacity for conformational transitions if assembled under blue illumination. Accordingly, the light-harvesting complex assembled in the blue light contains polypeptides that are not synthesized under normal conditions or at increased or decreased light intensities. The mechanism of regulation of the synthesis of the polypeptides of light-harvesting B800-850 complex and its dependence on the spectral composition of the light is discussed.  相似文献   

16.
Energy transfer processes in photosynthetic light harvesting 2 (LH2) complexes isolated from purple bacterium Rhodopseudomonas palustris grown at different light intensities were studied by ground state and transient absorption spectroscopy. The decomposition of ground state absorption spectra shows contributions from B800 and B850 bacteriochlorophyll (BChl) a rings, the latter component splitting into a low energy and a high energy band in samples grown under low light (LL) conditions. A spectral analysis reveals strong inhomogeneity of the B850 excitons in the LL samples that is well reproduced by an exponential-type distribution. Transient spectra show a bleach of both the low energy and high energy bands, together with the respective blue-shifted exciton-to-biexciton transitions. The different spectral evolutions were analyzed by a global fitting procedure. Energy transfer from B800 to B850 occurs in a mono-exponential process and the rate of this process is only slightly reduced in LL compared to high light samples. In LL samples, spectral relaxation of the B850 exciton follows strongly nonexponential kinetics that can be described by a reduction of the bleach of the high energy excitonic component and a red-shift of the low energetic one. We explain these spectral changes by picosecond exciton relaxation caused by a small coupling parameter of the excitonic splitting of the BChl a molecules to the surrounding bath. The splitting of exciton energy into two excitonic bands in LL complex is most probably caused by heterogenous composition of LH2 apoproteins that gives some of the BChls in the B850 ring B820-like site energies, and causes a disorder in LH2 structure.  相似文献   

17.
P Braun  A Scherz 《Biochemistry》1991,30(21):5177-5184
The light-harvesting complex (LHC) B850 from Rhodobacter sphaeroides was dissociated into several fragments by treatment with sodium dodecyl sulfate. The molecular weight of each fragment was determined by using transverse polyacrylamide gel electrophoresis under nondenaturing conditions and gel filtration techniques. Four B850 LHCs were observed, having molecular weights of 60,000, 72,000-75,000, 105,000, and 125,000-145,000, and two small bacteriochlorophyll (Bchl)-polypeptide complexes having molecular weights of 6000-8000 and 12,000-14,000. Each of the B850 complexes contains ca. one Bchl a for each 6.5-kDa protein. The optical absorption and circular dichroism of the B850 LHCs recorded directly from the gels are similar to those measured previously for a 22-24-kDa B850 LHCs by Sauer and Austin [(1978) Biochemistry 17, 2011-2019]. These data, combined with studies of other groups, indicate that the smallest LHC in LH1 and LH2 is a Bchl-polypeptide tetramer. Each tetramer contains two Bchl dimers that probably have the structure of P-860, the primary electron donor in Rhodobacter sphaeroides, and two alpha-beta-polypeptide pairs. Interactions among the paired Bchls shift their individual Qy transitions from 780-800 to 850-860 nm, and interactions among two such pairs induce the circular dichroism signal of the LHCs. Three Bchl-polypeptide tetramers probably form a dodecamer having C3 symmetry, and six such dodecamers organize into a large hexagon that can accommodate one or two reaction center complexes.  相似文献   

18.
The aim of this study was to investigate the spectral modifications of the LHII antenna complex from the purple bacterium Ectothiorhodospira sp. upon acid pH titration both in the presence and absence of urea. A blue shift specifically and reversibly affected the B850 band around pH 5.5-6.0 suggesting that a histidine residue most probably participated in the in vivo absorption red shifting mechanism. This transition was observed in the presence and absence of urea. Under strong chaotropic conditions, a second transition occurred around pH 2.0, affecting the B800 band irreversibly and the B850 reversibly. Under these conditions a blue shift from 856 to 842 nm occurred and a new and strong circular dichroism signal from the new 842 nm band was observed. Reverting to the original experimental conditions induced a red shift of the B850 band up to 856 nm but the circular dichroism signal remained mostly unaffected. Under the same experimental conditions, i.e. pH 2.1 in the presence of urea, part of the B800 band was irreversibly destroyed with concomitant appearance of a band around 770 nm due to monomeric bacteriochlorophyll from the disrupted B800. Furthermore, Gaussian deconvolution and second derivative of the reverted spectra at pH 8.0 after strong-acid treatment indicated that the new B850 band was actually composed of two bands centered at 843 and 858 nm. We ascribed the 858 nm band to bacteriochlorophylls that underwent reversible spectral shift and the 843 nm band to oligomeric bacteriopheophytin formed from a part of the B850 bacteriochlorophyll. This new oligomer would be responsible for the observed strong and mostly conservative circular dichroism signal. The presence of bacteriopheophytin in the reverted samples was definitively demonstrated by HPLC pigment analysis. The pheophytinization process progressed as the pH decreased below 2.1, and at a certain point (i.e. pH 1.5) all bacteriochlorophylls, including those from the B800 band, became converted to oligomeric bacteriopheophytin, as shown by the presence of a single absorption band around 843 nm and by the appearance of a single main elution peak in the HPLC chromatogram which corresponded to bacteriopheophytin.  相似文献   

19.
We investigated the formation of the B800-850 complex in cells of the bacterium Rhodopseudomonas palustris AB illuminated by red and blue light under anaerobic growth conditions. Under red illumination, the B800-850 complex was assembled with a reduced absorption band at 850 nm. The results of re-electrophoresis of the B800-850 complex and oxidation in the presence of potassium iridate suggest its heterogeneity. It may be a mixture of two complexes (B800 and B800-850). The B800-850 complex lacks the capacity for conformational transitions if assembled under blue illumination. Accordingly, the light-harvesting complex assembled in the blue light contains polypeptides that are not synthesized under normal conditions or at increased or decreased light intensities. The mechanism of regulation of the synthesis of the polypeptides of light-harvesting the B800-850 complex and its dependence on the spectral composition of the light is discussed.  相似文献   

20.
Gall A  Robert B 《Biochemistry》1999,38(16):5185-5190
In this paper we demonstrate that the spectroscopically different peripheral light-harvesting complexes from Rhodopseudomonas palustris, strain 2.6.1, isolated from high- and low-light grown cells have widely differing bacteriochlorophyll a (BChl a) resonance Raman spectra in the high-frequency carbonyl region (1550-1750 cm-1). Complexes synthesized in low-light grown cells exhibit Raman spectra characteristic of B800-850 and B800-820 complexes, depending on the excitation conditions. The in vivo strategy for low-light adaptation in this bacterium is thus somewhat different from that generally encountered in the Rhodospirillaceae. In these bacteria, as typified by Rps. acidophila and Rps. cryptolactis, low-light conditions induce the synthesis of B800-820 only complexes in which the hydrogen bonds between the acetyl carbonyl and the B850 binding pocket are broken, inducing changes in the absorption properties of the monomeric bacteriochlorophylls. In the case of Rps. palustris, additional spectral effects occur due to the coupling of the electronic levels of the differently interacting dimers. The extensive use of differential alpha/beta-polypeptide expression [Tadros et al. (1993) Eur. J. Biochem. 217, 867-875] thus allows Rps. palustris to alter its BChl a binding site environments causing the observed spread of BChl a Qy transitions, ranging from 801 to 856 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号