首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The success of recent spacecraft from the U.S.A. and the U.S.S.R. has given us a wealth of new data about the planets in our solar system. We can now develop a much better rationale for the reasons that abundant life is only found on our planet. Mars, smaller and more distant from the Sun, may nevertheless hold clues to the early development of Earth's atmosphere. The origin of life on Mars early in that planet's history cannot be ruled out. Titan offers a contemporary example of extremely primitive conditions, where chemical reactions resembling those that preceded the development of life on Earth may be occurring today. Venus and Jupiter illustrate the need for a planet to be the right size and the right distance from the sun if chemical evolution leading to the origin of life is to occur.  相似文献   

2.
THE SEARCH FOR LIFE ON MARS   总被引:2,自引:0,他引:2  
Mars appears to have no life on its surface today. However, the presence of fluvial features provides evidence that liquid water was once present on the martian surface. By analogy with Earth, life may have originated on Mars early in its history, possibly during the end of the late heavy bombardment. Analysis of the one meteorite from Mars which dates to this early time appears to contain evidence of this early environment and possibly life. As the climate cooled and liquid water became unavailable, life would have eventually died out. The cold deserts of Antarctica provide a glimpse of what martian ecosystems might have been like as conditions worsened. The search for fossil evidence of past life on Mars may provide the first direct indication of life beyond Earth.  相似文献   

3.
Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as "absolute extreme". Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.  相似文献   

4.
Errata corrige     
Abstract

Ecological research on extreme environments can be applied to exobiological problems such as the question of life on Mars. If life forms (fossil or extant) are found on Mars, their study will help to solve fundamental questions about the nature of life on Earth. Extreme environments that are beyond the range of adaptability of their inhabitants are defined as “absolute extreme.” Such environments can serve as terrestrial models for the last stages of life in the history of Mars, when the surface cooled down and atmosphere and water disappeared. The cryptoendolithic microbial community in porous rocks of the Ross Desert in Antarctica and the microbial mats at the bottom of frozen Antarctic lakes are such examples. The microbial communities of Siberian permafrost show that, in frozen but stable communities, long-term survival is possible. In the context of terraforming Mars, selected microorganisms isolated from absolute extreme environments are considered for use in creation of a biological carbon cycle.  相似文献   

5.
André Brack 《Grana》2013,52(2):505-509
Terrestrial life can be schematically described as organic molecules organized in liquid water. According to Oparin's hypothesis, organic building blocks required for early life were produced from simple organic molecules formed in a primitive reducing atmosphere. Precursors of lipids, nucleic acids and enzymes obtained in the laboratory under simulating conditions are reviewed. Geochemists favor now a less reducing atmosphere dominated by carbon dioxide. In such an atmosphere, very few building blocks are formed under prebiotic conditions. Import of extraterrestrial organic molecules may represent an alternative supply. Experimental support for such an alternative scenario is examined in comets, cosmic dust, meteorites and micrometeorites. Even the prebiotic broth receives today severe criticism for being implausible. In contrast to the classical scenario, a chemoautotrophic origin of life is discussed. Finally, interesting information related to early terrestrial life may be gained from Mars exploration.  相似文献   

6.
The problems of how warm and wet Mars once was and when climate transitions may have occurred are not well understood. Mars may have had an early environment similar to Earth's that was conductive to the ermergence of life. In addition, increasing geologic evidence indicates that water, upon which terrestrial life depends, has been present on Mars throughout its history. This evidence suggests that life could have developed not only on early Mars but also over longer periods of time in longer lasting, more clement local environments. Indications of past or present life most likely would be found in areas where liquid water existed in sufficient quantities to provide for the needs of biological systems. We suggest that paleolakes may have provided such environments. Unlike the case on Earth, this record of the origin and evolution of life has probably not been erased by extensive deformation of the Martian surface. Our work has identified eleven prospective areas where large lacustrine basins may once have existed. These areas are important for future biological, geological, and climatological investigations.Presented at the International Symposium on The Biological Exploration of Mars, October 26–27, 1990, Tallahassee, FL, U.S.A.  相似文献   

7.
The oldest sedimentary rocks on Earth, the 3.8‐Ga Isua Iron‐Formation in southwestern Greenland, are metamorphosed past the point where organic‐walled fossils would remain. Acid residues and thin sections of these rocks reveal ferric microstructures that have filamentous, hollow rod, and spherical shapes not characteristic of crystalline minerals. Instead, they resemble ferric‐coated remains of bacteria. Modern so‐called iron bacteria were therefore studied to enhance a search image for oxide minerals precipitated by early bacteria. Iron bacteria become coated with ferrihydrite, a metastable mineral that converts to hematite, which is stable under high temperatures. If these unusual morphotypes are mineral remains of microfossils, then life must have evolved somewhat earlier than 3.8 Ga, and may have involved the interaction of sediments and molecular oxygen in water, with iron as a catalyst. Timing is constrained by the early in fall of planetary materials that would have heated the planet's surface.

Because there are no earlier sedimentary rocks to study on Earth, it may be necessary to expand the search elsewhere in the solar system for clues to any biotic precursors or other types of early life. Evidence from Mars shows geophysical and geochemical differentiation at a very early stage, which makes it an important candidate for such a search if sedimentation is an important process in life's origins. Not only does Mars have iron oxide‐rich soils, but its oldest regions have river channels where surface water and sediment may have been carried, and seepage areas where groundwater may have discharged. Mars may have had an atmosphere and liquid water in the crucial time frame of 3.9–4.0 Ga. A study of morphologies of iron oxide minerals collected in the southern highlands during a Mars sample return mission may therefore help to fill in important gaps in the history of Earth's earliest biosphere.  相似文献   

8.
We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth''s earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration.  相似文献   

9.
McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.  相似文献   

10.
Five conditions for life to arise are discussed with referring to early Martian environment. The key to determine whether any life form appeared on Mars is found to be the early Martian carbon dioxide atmospheric pressure and then the temperature. The importance to determine the heat flow is indicated. The items to be measured for future Martian exploration are listed. The surface materials, which has been poorly understood, are emphasized for further exploration. Two strategies for search for life on Mars, "step by step" strategy and quick strategy, are suggested.  相似文献   

11.
Currently, the surface of Mars is probably too cold, too dry, and too oxidizing for life, as we know it, to exist. But the subsurface is another matter. Life forms that might exist below the surface could not obtain their energy from photosynthesis, but rather they would have to utilize chemical energy. Methanogens are one type of microorganism that might be able to survive below the surface of Mars. A potential habitat for existence of methanogens on Mars might be a geothermal source of hydrogen, possibly due to volcanic or hydrothermal activity, or the reaction of basalt and anaerobic water, carbon dioxide, which is abundant in the martian atmosphere, and of course, subsurface liquid water. We report here that certain methanogens can grow on a Mars soil simulant when supplied with carbon dioxide, molecular hydrogen, and varying amounts of water.  相似文献   

12.
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.  相似文献   

13.

Background  

Cyanobacteria are one of the oldest and morphologically most diverse prokaryotic phyla on our planet. The early development of an oxygen-containing atmosphere approximately 2.45 - 2.22 billion years ago is attributed to the photosynthetic activity of cyanobacteria. Furthermore, they are one of the few prokaryotic phyla where multicellularity has evolved. Understanding when and how multicellularity evolved in these ancient organisms would provide fundamental information on the early history of life and further our knowledge of complex life forms.  相似文献   

14.
Primitive terrestrial life – defined as a chemical system able to transfer its molecular information via self-replication and to evolve – probably originated from the evolution of reduced organic molecules in liquid water. Several sources have been proposed for the prebiotic organic molecules: terrestrial primitive atmosphere (methane or carbon dioxide), deep-sea hydrothermal systems, and extraterrestrial meteoritic and cometary dust grains. The study of carbonaceous chondrites, which contain up to 5% by weight of organic matter, has allowed close examination of the delivery of extraterrestrial organic material. Eight proteinaceous amino acids have been identified in the Murchison meteorite among more than 70 amino acids. Engel reported that l-alanine was surprisingly more abundant than d-alanine in the Murchison meteorite. Cronin also found excesses of l-enantiomers for nonprotein amino acids. A large collection of micrometeorites has been recently extracted from Antarctic old blue ice. In the 50- to 100-μm size range, carbonaceous micrometeorites represent 80% of the samples and contain 2% of carbon, on average. They might have brought more carbon than that involved in the present surficial biomass. The early histories of Mars and Earth clearly show similarities. Liquid water was once stable on the surface of Mars, attesting the presence of an atmosphere capable of deccelerating C-rich micrometeorites. Therefore, primitive life may have developed on Mars as well and fossilized microorganisms may still be present in the near subsurface. The Viking missions to Mars in 1976 did not find evidence of either contemporary or past life, but the mass spectrometer on the lander aeroshell determined the atmospheric composition, which has allowed a family of meteorites to be identified as Martian. Although these samples are essentially volcanic in origin, it has been recognized that some of them contain carbonate inclusions and even veins that have a carbon isotopic composition indicative of an origin from Martian atmospheric carbon dioxide. The oxygen isotopic composition of these carbonate deposits allows calculation of the temperature regime existing during formation from a fluid that dissolved the carbon dioxide. As the composition of the fluid is unknown, only a temperature range can be estimated, but this falls between 0° and 90°C, which would seem entirely appropriate for life processes. It was such carbonate veins that were found to host putative microfossils. Irrespective of the existence of features that could be considered to be fossils, carbonate-rich portions of Martian meteorites tend to have material, at more than 1000 ppm, that combusts at a low temperature; i.e., it is an organic form of carbon. Unfortunately, this organic matter does not have a diagnostic isotopic signature so it cannot be unambiguously said to be indigenous to the samples. However, many circumstantial arguments can be made to the effect that it is cogenetic with the carbonate and hence Martian. If it could be proved that the organic matter was preterrestrial, then the isotopic fractionation between it and the carbon is in the right sense for a biological origin. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

15.
Origins of life: A comparison of theories and application to Mars   总被引:1,自引:0,他引:1  
The field of study that deals with the origins of life does not have a consensus for a theory of life's origin. An analysis of the range of theories offered shows that they share some common features that may be reliable predictors when considering the possible origins of life on another planet. The fundamental datum dealing with the origins of life is that life appeared early in the history of the Earth, probably before 3.5 Ga and possibly before 3.8 Ga. What might be called the standard theory (the Oparin-Haldane theory) posits the production of organic molecules on the early Earth followed by chemical reactions that produced increased organic complexity leading eventually to organic life capable of reproduction, mutation, and selection using organic material as nutrients. A distinct class of other theories (panspermia theories) suggests that life was carried to Earth from elsewhere — these theories receive some support from recent work on planetary impact processes. Other alternatives to the standard model suggest that life arose as an inorganic (clay) form and/or that the initial energy source was not organic material but chemical energy or sunlight. We find that the entire range of current theories suggests that liquid water is the quintessential environmental criterion for both the origin and sustenance of life. It is therefore of interest that during the time that life appeared on Earth we have evidence for liquid water present on the surface of Mars.  相似文献   

16.
17.
Evidence of past liquid water on the surface of Mars suggests that this world once had habitable conditions and leads to the question of life. If there was life on Mars, it would be interesting to determine if it represented a separate origin from life on Earth. To determine the biochemistry and genetics of life on Mars requires that we have access to an organism or the biological remains of one—possibly preserved in ancient permafrost. A way to determine if organic material found on Mars represents the remains of an alien biological system could be based on the observation that biological systems select certain organic molecules over others that are chemically similar (e.g., chirality in amino acids).  相似文献   

18.
In looking ahead to possibe new attempts to search for extant life on Mars, the history of the Viking biological investigations is reviewed here. Scientific considerations that led to the selection of specific experimental approaches for life detection are discussed, as well as the overall results obtained from that mission. Despite extensive preflight testing of the concepts that were to be used, unanticipated artefacts arose in the actual mission. These almost certainly reflect the fact that, at that time, there were many gaps in our understanding of the physical and chemical characteristics of the Martian environment. After Viking, many of these issues still remain unresolved, and future attempts to search for extant biology should be restrained until adequate new information about potential habitable microenvironments is obtained.Presented at the International Symposium on the Biological Exploration of Mars, October 26–27, 1990, Tallahasee, Fla., U.S.A.  相似文献   

19.
In the evolution of life forms non-photosynthetic mechanisms have developed. The question remains whether a total life system could evolve which is not dependent upon photosynthesis. In trying to visualize life on other planets, the photosynthetic process has problems. On Mars, the high intensity of light at the surface is a concern and alternative mechanisms need to be defined and analyzed. In the UV search for alternate mechanisms, several different areas may be identified. These involve activated inorganic compounds in the atmosphere, such as the products of photodissociation of carbon dioxide and the organic material which may be created by natural phenomena. In addition, a life system based on the pressure of the atmospheric constituents, such as carbon dioxide, is a possibility. These considerations may be important for the understanding of evolutionary processes of life on another planet. Model systems which depend on these alternative mechanisms are defined and related to our presently planned and future planetary missions.  相似文献   

20.
Over the last several years, many of the fundamental ideas concerning the composition and chemical evolution of the Earth's early atmosphere have changed. While many aspects of this subject are clouded--either uncertain or unknown, a new picture is emerging. We are just beginning to understand how astronomical, geochemical, and atmospheric processes each contributed to the development of the gaseous envelope around the third planet from the sun some 4.6 billion years ago and how that envelope chemically evolved over the history of our planet. Simple compounds in that gaseous envelope, energized by atmospheric lightning and/or solar ultraviolet radiation, formed molecules of increasing complexity that eventually evolved into the first living systems on our planet. This process is called "chemical evolution" and immediately preceded biological evolution; once life developed and evolved, it began to alter the chemical composition of the atmosphere that provided the very essence of its creation. Photosynthetic organisms which have the ability to biochemically transform carbon dioxide and water to carbohydrates, which they use for food, produce large amounts of molecular oxygen (O2) as a by-product of the reaction. Atmospheric oxygen photochemically formed ozone, which absorbs ultraviolet radiation from the sun and shields the Earth's surface from this biologically lethal radiation. Once atmospheric ozone levels increased sufficiently, life could leave the safety of the oceans and go ashore for the first time. Throughout the history of our planet, there has been strong interaction between life and the atmosphere. Understanding our cosmic roots is particularly relevant as we embark on a search for life outside the Earth. At this very moment, several radio telescopes around the world are searching for extraterrestrial intelligence (SETI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号