首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The lysosomal proton pump is electrogenic   总被引:11,自引:0,他引:11  
Lysosomes were purified approximately 40-fold from rat kidney cortex by differential and Percoll density gradient centrifugation. In a sucrose medium, the lysosomes quenched the fluorescence of the potential sensitive dye diS-C3-(5) (3,3'-dipropylthiocarbo-cyanine iodide) in a time-dependent manner, indicating that the dye accumulates within the lysosomal interior. After treatment of the lysosomes with valinomycin, the dye fluorescence displayed a logarithmic dependence upon the external K+ concentration; thus, the fluorescence signal provides a semiquantitative measure of the lysosomal membrane potential (delta psi). In the absence of valinomycin, lysosomal quenching of diS-C3-(5) fluorescence was partially reversed by agents which collapse the lysosomal pH gradient (ammonium sulfate, chloroquine, and K nigericin), suggesting that the proton gradient across the lysosomal membrane contributes to delta psi. A rapid increase in diS-C3-(5) fluorescence, indicative of an increase in delta psi, was observed upon the addition of Mg-ATP to the lysosomes. The ATP-dependent fluorescence change was inhibited by protonophores, K valinomycin, permeable anions, and N-ethylmaleimide, but was unaffected by ammonium sulfate, K nigericin, or sodium vanadate. Oligomycin had no effect at concentrations below 2 micrograms/ml; at higher concentrations, oligomycin partially inhibited the fluorescence response to Mg-ATP, but it also inhibited the fluorescence response to K valinomycin, suggesting that it had modified the permeability of the lysosomal membrane. Dicylohexylcarbodiimide behaved similarly to oligomycin. Mg-ATP also altered the lysosomal distribution of 86Rb+ (in the presence of valinomycin) and S[14C]CN-, consistent with an increase in the potential of the lysosomal interior of 40-50 mV. The results demonstrate that the lysosomal proton pump is electrogenic.  相似文献   

2.
Fluorescent amines, 9-aminoacridine, acridine orange and quinacrine, were used as probes for a pH gradient (deltapH) across gastric microsomal vesicles. Analysis of probe uptake data indicates that 9-aminoacridine distributes across the membrane as a weak base in accordance with the deltapH. On the other hand, acridine orange and quinacrine show characteristics of binding to membrane sites in addition to the accumulation in response to deltapH. A discussion of the advantages and limitations of the probes is presented. Application of these probes to pig gastric microsomal vesicles indicates that that K+-stimulated ATPase is responsible for the transport of H+ into the vesicles and thus develops a deltapH across the membrane. The deltapH generated by the K+-ATPase has a definite requirement for internal K+. The proton gradient can be discharged slowly after ATP depletion or rapidly either by detergent disruption of the vesicles or by increasing their leakiness using both H+ and K+ ionophores. On the other hand, the sole use of the K+ ionophore, valinomycin, stimulates the ATP-induced formation of deltapH by increasing the availability of K+ to internal sites. This stimulation by valinomycin requires the presence of permeable anions like Cl-. Analysis of the Cl- requirement indicates that in the presence of valinomycin the net effect is the accumulation of HCl inside the gastric vesicles. With an external pH of 7.0, the ATP-generated deltapH was calculated to be from 4 to 4.5 pH units. The results are consistent with the hypothesis that the K+-stimulated ATPase drives a K+/H+ exchange across the gastric vesicles. Since other lines of evidence suggest that these gastric microsomes are derived from the tubulovesicular system of the oxyntic cell, the participation of the ATP-driven transport processes in gastric HCl secretion is of interest.  相似文献   

3.
The electrochemical proton gradient in Escherichia coli membrane vesicles.   总被引:25,自引:0,他引:25  
S Ramos  H R Kaback 《Biochemistry》1977,16(5):848-854
Membrane vesicles isolated from Escherichia coli grown under various conditions generate a transmembrane pH gradient (delta pH) of about 2 pH units (interior alkaline) under appropriate conditions when assayed by flow dialysis. Using the distribution of weak acids to measure delta pH and the distribution of the lipophilic cation triphenylmethylphosphonium to measure the electrical potential (delta psi) across the membrane, the vesicles are demonstrated to develop an electrochemical proton gradient (delta-muH+) of almost - 200 mV (interior negative and alkaline) at pH 5.5 in the presence of reduced phenazine methosulfate or D-lactate, the major component of which is a deltapH of about - 120 mV. As external pH is increased, deltapH decreases, reaching 0 at about pH 7.5 and above, while delta psi remains at about - 75 mV and internal pH remains at pH 7.5-7.8. The variations in deltapH correlate with changes in the oxidation of reduced phenazine methosulfate or D-lactate, both of which vary with external pH in a manner similar to that described for deltapH. Finally, deltapH and delta psi can be varied reciprocally in the presence of valinomycin and nigericin with little change in delta-muH+ and no change in respiratory activity. These data and those presented in the following paper (Ramos and Kaback 1976) provide strong support for the role of chemiosmotic phenomena in active transport and extend certain aspects of the chemiosmotic hypothesis.  相似文献   

4.
Evidence is presented indicating that the carrier-mediated uptake of 3-deoxy-2-oxo-D-gluconate and D-glucuronate in Escherichia coli K12 is driven by the deltapH and deltapsi components of the protonmotive force. 1. Approximately two protons enter the cells with each sugar molecule, independent of the sugar and the strain used. 2. In respiring cells, the magnitude of the pH gradient alone, as measured by distribution of [3H]acetate, appears to be insufficient to account for the chemical gradient of 3-deoxy-2-oxo-D-gluconate that is developed between pH 6.0 and 8.0. 3. If the external pH is varied between 5.5 and 8.0, 3-deoxy-2-oxo-D-gluconate uptake is gradually inhibited by valinomycin plus K+ ions, whereas the inhibition caused by nigericin is concomitantly relieved, thus reflecting the relative contribution of deltapH and deltapsi to the total protonmotive force at each external pH. 4. 3-Deoxy-2-oxo-D-gluconate can be transiently accumulated into isolated membrane vesicles in response to an artificially induced pH gradient. The process is stimulated when the membrane potential is collapsed by valinomycin in the presence of K+ ions.  相似文献   

5.
S Ramos  H R Kaback 《Biochemistry》1977,16(5):854-859
In the previous paper [ramos, S., and Kaback, H.R. (1977), Biochemistry 16 (preceding paper in this issue)], it was demonstrated that Escherichia coli membrane vesicles generate a large electrochemical proton gradient (delta-muH+) under appropriate conditions, and some of the properties of delta-muH+ and its component forces [i.e., the membrane potential (delta psi) and the chemical gradient of protons (deltapH)] were described. In this paper, the relationship between delta-muH+, delta psi, and deltapH and the active transport of specific solutes is examined. Addition of lactose or glucose 6-phosphate to membrane vesicles containing the appropriate transport systems results in partial collapse of deltapH, providing direct evidence for the suggestion that respiratory energy can drive active transport via the pH gradient across the membrane. Titration studies with valinomycin and nigericin lead to the conclusion that, at pH 5.5, there are two general classes of transport systems: those that are driven primarily by delta-muH+ (lactose, proline, serine, glycine, tyrosine, glutamate, leucine, lysine, cysteine, and succinate) and those that are driven primarily by deltapH (glucose 6-phosphate, D-lactate, glucuronate, and gluconate). Importantly, however, it is also demonstrated that at pH 7.5, all of these transport systems are driven by delta psi which comprises the only component of delta-muH+ at this external pH. In addition, the effect of external pH on the steady-state levels of accumulation of different solutes is examined, and it is shown that none of the pH profiles correspond to those observed for delta-muH+, delta psi, or deltapH. Moreover, at external pH values above 6.0-6.5, delta-muH+ is insufficient to account for the concentration gradients established for each substrate unless the stoichiometry between protons and accumulated solutes is greater than unity. The results confirm many facets of the chemiosmotic hypothesis, but they also extend the concept in certain important respects and allow explanations for some earlier observations which seemed to preclude the involvement of chemiosmotic phenomena in active transport.  相似文献   

6.
Abstract

Cytochrome c oxidase-containing proteoliposomes (COV) prepared by cosonication show random orientation (45:55 in:out) of incorporated oxidase molecules; dialysed COV show 30:70 (in:out). Prepared COV show a pH gradient with an internal pH typically more acid than the medium. Such passive pH gradients probably reflect a Donnan distribution of anions such as chloride. The fluorescent pH probe 4-heptadecyl-7-hydroxycoumarin (HDHC) distributes between the two lipid leaflets at a ratio of between 30:70 and 33:67 (in:out) in cosonicated COV as measured by acid/base responses and quenching by p-xylene-b/s-pyridinium bromide. The HDHC pK was 8.25 in lauryl maltoside micelles, but membrane-bound HDHC showed a continuum of values ranging from 8.25 to 10.5. Maximum fluorescence in alkali was greater in lauryl maltoside than in COV. Active ΔpH gradients (alkaline inside) were generated by reductant and cytochrome c with aerobic oxidase-containing proteoliposomes ± valinomycin and nigericin. The gradients exceed 1.0 pH unit at low fluxes, higher than with water-soluble probes. ΔpH maintained between the bulk phases far from the membrane may be less than that at the lipid/water interface. With valinomycin (ΔΨ = 0), which accelerates ΔpH formation, ΔpH saturates at 1.0–1.2 units. Almost all the ΔΨ across the membrane can be converted into ΔpH by slow cation movement in the absence of ionophores. A gradient of either -90 mV (ΔΨ) or 1.0 pH unit (ΔpH) diminishes oxidase turnover by 80–90%. Control exerted by thermodynamically equivalent gradients is more effective with ΔpH than with ΔΨ. Differences between COV and mitochondria may be due to different rate-limiting electron transfer steps in the two systems.  相似文献   

7.
The proton gradient (delta pH) and electrical potential (delta psi) across the neurosecretory vesicles were measured using the optical probes 9-aminoacridine and Oxanol VI, respectively. The addition of neurosecretory vesicles to 9-aminoacridine resulted in a rapid quenching of the dye fluorescence which was reversed when the delta pH was collapsed with ammonium chloride or K+ in the presence of nigericin. From fluorescence quenching data and the intravesicular volume, delta pH across the membrane was calculated. Mg2+ ATP caused a marked carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive change in the membrane potential measured using Oxanol VI (plus 100 mV inside positive), presumably due to H+ translocation across the neurosecretory vesicle membrane. Imposition of this membrane potential was responsible for the lysis of vesicles in the presence of permeant anions. The effectiveness of these anions to support lysis reflected the relative permeability of the anion which followed the order acetate greater than I- greater than Cl greater than F- greater than SO4- = isethionate = methyl sulfate. These data showed that the neurosecretory vesicles possess a membrane H+-translocating system and prompted the study of Mg2+-dependent ATPase activities in the vesicle fractions. In intact vesicles a Mg2+ ATPase appeared to be coupled to electrogenic proton translocation, since the enzyme activity was enhanced by uncoupling the electrical potential, using proton ionophores. Inhibition of this enzyme with dicyclohexylcarbodiimide also inhibited the carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive delta psi across the vesicle membrane caused by H+ translocation. A second Mg2+ ATPase was also found on the vesicle membranes which is sensitive to vanadate. Complete inhibition of this enzyme with vanadate had little effect on the proton ionophore-uncoupled ATPase activity or on the Mg2+ ATP-induced membrane potential change.  相似文献   

8.
Addition of valinomycin, nonactin, or monactin plus KCl in the dark to preilluminated chromatophores induced the synthesis of a large amount of ATP. This stimulation of postillumination ATP synthesis by a dark-imposed K+ diffusion potential was different from the stimulation caused by addition of permeant anions or cations in the light, since it increases when the pH of the light stage decreased from 8.0 to 6.0. It was thus most pronounced when the chromatophores were preloaded with protons but the light-induced proton concentration gradient (deltapH) was low. Imposition of a Kplus diffusion potential resulted however in stimulation of ATP synthesis even when the light-induced deltapH was already above the threshold value required to initiate postillumination ATP synthesis. This situation was realized when valinomycin plus KCl were added in the dark to chromatophores preilluminated above pH 6.7 with thiocyanate as the permeant anion, and the amount of ATP formed was the sum of the yields obtained with each of these affectors by itself. On the other hand addition of thiocyanate together with valinomycin plus KCl in the dark led to inhibition of ATP synthesis. In this case the permeant anion could not affect the light-induced deltapH but it did eliminate the diffusion potential by decreasing the difference between the permeabilities of Kplus and the anion present in the reaction mixture.  相似文献   

9.
The Mg2+-dependent, K+-stimulated ATPase of microsomes from pig gastric mucosa has been studied in relation to observed active H+ transport into vesicular space. Uptake of fluorescent dyes (acridine orange and 9-aminoacridine) was used to monitor the generated pH gradient. Freeze-fracture electron microscopy showed that the vesicular gastric microsomes have an asymmetric distribution of intramembraneous particles (P-face was particulate; E-face was relatively smooth. Valinomycin stimulated both dye uptake and K+-ATPase (valinomycin-stimulated K+-ATPase); stimulation by valinomycin was due to increased K+ entry to some intravesicular activating site, which in turn depends upon the accompanying anion. Using the valinomycin-stimulated K+-ATPase and H+ accumulation as an index, the sequence for anion permeation was NO-3 greater than Br- greater than Cl- greater than I- greater than acetate approximately isethionate. When permeability to both K+ and H+ was increased (e.g using valinomycin plus a protonophore or nigericin), stimulation of K+-ATPase was much less dependent on the anion and the observed dissipation of the vesicular pH gradient was consistent with an 'uncoupling' of ATP hydrolysis from H+ accumulation. Thiocyanate interacts with valinomycin inhibiting the typical action of the K+ ionophore. But stimulation of ATPase activity was seen by adding 10 mM SCN- to membranes preincubated with valinomycin. From the relative activation of the valinomycin-stimulated K+-ATPase, it appears that SCN- is a very permeant anion which can be placed before NO-3 in the sequence of permeation. Valinomycin-stimulated ATPase and H+ uptake showed similar dependent correlations, including: dependence on [ATP] and [K+], pH optima, temperature activation, and selective inhibition by SH- or NH2-group reagents. These results are consistent with a pump-leak model for the gastric microsomal K+-ATPase which was simulated using Nernst-Planck conditions for passive pathways and simple kinetics for the pump. The pump is a K+/H+ exchange pump requiring K+ at an internal site. Rate of K+ entry would depend on permeability to K+ as well as the counterion, either (1) the anion to accompany K+ or (2) the H+ efflux path as an exchange ion. The former leads to net accumulation of H+ and anion, while the latter results in non-productive stimulation of ATP hydrolysis.  相似文献   

10.
Vacuolar membrane vesicles of Saccharomyces cerevisiae accumulate Ca2+ ion in the presence of ATP, not in the presence of ADP or adenyl-5'-yl imidodiphosphate. Calcium transport showed saturation kinetics with a Km value of 0.1 mM and optimal pH of 6.4. Ca2+ ion incorporated in the vesicles was exchangeable and released completely by a protonophore uncoupler, 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile (SF6847), or calcium-specific ionophore, A23187. The transport required Mg2+ ion but was inhibited by Cu2+ or Zn2+ ions, inhibitors of H+-ATPase of the vacuolar membrane. The transport activity was sensitive to the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to oligomycin or sodium vanadate. SF6847 or nigericin blocked Ca2+ uptake completely, but valinomycin stimulated it 1.35-fold. These results indicate that an electrochemical potential difference of protons is a driving force for this Ca2+ transport. The ATP-dependent formation of the deltapH in the vesicles and its partial dissipation by CaCl2 were demonstrated by fluorescence quenching of quinacrine. This Ca2+ uptake by vacuolar membrane vesicles is suggested to be catalyzed by a Ca2+/H+ antiport system.  相似文献   

11.
'Ghosts' of bovine chromaffin granules, in which the complex mixture of proteins and solutes normally found in the granule matrix is replaced by buffered sucrose are osmotically sensitive. They shrink when the osmotic pressure of the suspension medium is increased, and swell if solute entry is facilitated by the addition of ionophores. Swelling in the presence of ionophores has been used to investigate the passive ion permeability of these membranes. They have a very low permeability to K+ ions (of the order of 10(-10) cm/s); their permeability to protons, Na+ and choline ions is too low to be detected by these methods. Their passive permeability to anions decreases in the order: CNS- greater than I- greater than CCl3CO2- greater than Br- greater than Cl- greater than SO4(2)- greater than CH3CO2-, HCO3-, F-, PO4(3)- the permeability to hiocyanate being of the order of 10(-7) cm/s. Coupled proton and anion entry is extremely slow, except for weak acids. Fluoride, unexpectedly, also appears to enter rapidly when proton/K+ exchange is facilitated by nigericin. In the presence of K+ salts, nigericin, like valinomycin, induces lysis of intact granules, an effect that is not dependent on the presence of a permeant anion, but is dependent on the pH gradient across the membrane.  相似文献   

12.
Ruban AV  Horton P 《Plant physiology》1995,108(2):721-726
The slowly reversible component of nonphotochemical quenching of Chl fluorescence, ql, has been investigated in intact leaves and chloroplasts of spinach (Spinacia oleracea). In leaves, between 50 and 100% of ql (defined as the quenching that remained after at least 10 min of dark adaptation of a previously illuminated leaf) is instantly reversible when leaves were infiltrated with nigericin. Chloroplasts isolated from leaves in which ql had been induced by prior illumination retained the same level of quenching. No pH gradient, as measured by quenching of 9-aminoacridine fluorescence, was present. However, addition of nigericin caused a partial removal of ql, as observed in whole leaves. It is concluded that ql is not related to a persistence of a bulk phase pH gradient in darkness but to a structural change in the thylakoid that can be reversed by addition of nigericin. The relationship between these observations and the hypothesis that nonphotochemical quenching of chlorophyll fluorescence results from protonation of light-harvesting complex of photosystem II components is discussed.  相似文献   

13.
Leucine transport into membrane vesicles obtained from Chang liver cells was stimulated by an inward H+ gradient. The stimulatory effect of the proton gradient on the rate of leucine uptake (1 min) was inhibited by the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. When the vesicles had been preloaded with a high concentration of KCl, addition of valinomycin stimulated leucine uptake by the vesicles, showing that the leucine transport is dependent on potential gradient. Leucine-coupled H+ accumulation inside the vesicles was confirmed by measuring leucine dependent quenching of the fluorescence of 9-aminoacridine added to medium. These results imply that electrochemical gradient of proton can serve as a driving force for leucine transport across the cell membrane and proton movement is coupled to leucine transport.  相似文献   

14.
The effect of ionophore antibiotics, valinomycin and nigericin, on the generation of the membrane potential, the pH gradient and the efficacy of phage infection in tetracycline-resistant staphylococci has been studied. Valinomycin at a concentration of 0.5 microM induces the dissipation of the membrane potential, and nigericin at a concentration of 12.0 microM decreases the value of the pH gradient on the membrane of staphylococci. The separate use of antibiotics has no essential influence on the efficacy of phage infection. The combined use of valinomycin and nigerimycin produces the maximum inhibition of phage infection (64.5%) at the stage of the introduction of DNA into the bacterial cell, which is indicative of a definite role played by the membrane potential and the pH gradient in the transport of phage DNA into staphylococcal cells.  相似文献   

15.
Vacuoles of yeast grown in peptone medium possessed high ATPase activity (up to 1 mumol X mg protein-1 X min-1). Membrane-bound and solubilized ATPase activities were insensitive to vanadate and azide, but were inhibited by NO-3 . K+ and cyclic AMP stimulated both membrane-bound and solubilized ATPase activities. Dio-9 activated the membrane form of vacuolar ATPase 1.5-2-fold and did not affect the solubilized enzyme. Solubilized and partially purified vacuolar ATPase was reconstituted with soy-bean phospholipids by a freeze-thaw procedure. ATPase activities in native vacuoles and proteoliposomes were stimulated effectively by Dio-9, the protonophore FCCP and ionophores valinomycin and nigericin. ATP-dependent H+ transport into proteoliposomes was also shown by quenching of ACMA fluorescence. Vacuolar and partially purified ATPase preparations possessed also GTPase activity. Unlike ATPase, however, GTPase was not incorporated as a proton pump into liposomes.  相似文献   

16.
E M Barnes  Jr 《Journal of bacteriology》1980,143(2):1086-1089
Addition of ionophores to resting aerobic cultures of Azotobacter vinelandii OP resulted in 45Ca2+ uptake (Km = 60 microM Ca2+; Vmax 1.1 nmol/min per mg of cell protein) which was inhibited by cations (La3+ greater than Mn2+ greater than Sr2+ greater Ba2+). The rate of Ca2+ entry correlated with the magnitude of a transmembrane proton gradient (inside acid) which developed in the respective order: valinomycin less than tetrachlorosalicylanilide less than nigericin less than gramicidin D less than tetrachlorosalicylanilide plus valinomycin. A process of calcium-proton exchange (antiport) is responsible for calcium accumulation under these conditions.  相似文献   

17.
A highly purified membrane fraction was derived from hog gastric mucosa by a combination of differential and density gradient centrifugation and free flow electrophoresis. This final fraction was 35-fold enriched with respect to cation activated ouabain-insensitive ATPase. Antibody against this fraction was shown to be bound to the luminal surface of the gastric glands. The addition of ATP to this fraction or the density gradient fraction resulted in H+ uptake into an osmotically sensitive space. The apparent Km for ATP was 1.7-10(-4) M in the absence of a K+ gradient similar to that found for ATPase activity. The reaction is specific for ATP and requires cation in the sequence K+ greater than Rb+ greater than Cs+ greater than Na+ greater than Li+ and inhibited by ATPase inhibitors such as N,N'-dicylclohexyl-carbodiimide. Maximal H+ uptake occurs with an outward K+ gradient but the minimal apparent KA is found in the absence of a K+ gradient. The pH optimum for H+ uptake is between 5.8 and 6.2 which corresponds to the pH range for phosphroylation of the enzyme, but is considerably less than the pH maximum of the K+ dependent dephosphorylation. In the presence of an inward K+ gradient, protonophores such as tetrachlorsalicylanilide only partially abolish the H+ gradient but valinomycin dissipates 75% of the gradient, and nigericin abolishes the gradient. The vesicles therefore have a low K+ conductance but a measurable H+ conductance, hence a K+ gradient can produce an H+ gradient in the presence of valinomycin. The uptake and spontaneous leak of H+ are temperature sensitive with a similar transition temperature. Ultraviolet irradiation inactivates ATPase and proton transport at the same rate, approximately at twice the rate of p-nitrophenylphosphatase inactivation. It is concluded that H+ uptake by these vesicles is probably due to a dimeric (H+ + K+)-ATPase and is probably non-electrogenic.  相似文献   

18.
The effects of malate, succinate, and glutamate on the kinetics of changes in the pH gradient (delta pH) and membrane potential (delta psi) on the peribacteroid membrane (PBM) of the symbiosomes of bean root nodules varying in age were recorded spectrophotometrically. Addition of all the tested metabolites to potassium-free incubation medium stimulated a passive acidification of the peribacteroid space (PBS) and dissipation of delta psi in PBM of young developing nodules in the presence of the K+/H+ antiporter nigericin in the medium. However, in mature nodules with a high nitrogen-fixing activity, only malate and succinate (but not glutamate) increased delta pH during both passive and ATP-dependent PBS acidification. Dicarboxylates also caused dissipation of both delta pH in the presence of nigericin in the medium and delta psi generated on PBM by H+-ATPase. A decrease in the effects of metabolites on delta pH and the absent activity of the PBM H+ pump were observed in the aging nodules. The obtained data on the changes in deltapH and dlta psi caused by the metabolites in question suggest that PBM is permeable for all these metabolites only in young nodules. Only malate and succinate (but not glutamate) are transported through PBM in mature nodules; and the rate of metabolite translocation through PBM in aging nodules is decreased.  相似文献   

19.
The incorporation of cholesterol into unilamellar liposomes greatly increased the transmembranous movement of hydrophobic ionophores such as nigericin. In reconstituted liposomes containing rhodopsin as the only protein, the presence of cholesterol lowers by 10-fold or more the amount of negericin required to eliminate the light-driven proton gradient. These effects are seen both above and below the transition temperature of the phospholipid used for reconstitution. Cholesterol similarly increases the ability of A-23187, 1799, or NH4SCN to collapse the proton gradient of bacteriorhodopsin vesicles. Cholesterol also lowers the concentration of nigericin or valinomycin required for a rapid translocation of Rb+ into protein-free liposomes. It also lowers the concentration of A-23187 required for the release of Ca45 trapped in protein-free liposomes. In contrast to these observations and in confirmation of previous findings, we observed that cholesterol decreased the permeability of liposomes for glucose. Thus the effects of cholesterol on the permeability of the membrane vary with the chemical nature of the permeating compounds. We have also confirmed that in multilamellar liposomes cholesterol decreases the permeability of Rb+ in the presence of valinomycin. It therefore appears that the effect of cholesterol changes with the size and structural features of the model membranes.  相似文献   

20.
1. Live Stentor coeruleus exhibits a substantially red-shifted fluorescence maximum, corresponding to the anionic species of the photoreceptor chromophore. No change was observed in either the absorption or fluorescence excitation spectrum, indicating an efficient deprotonation of the photoreceptor pigment upon excitation by light. 2 Changes in external pH exhibit a dramatic effect on the pulmonary response of Stentor. Phototaxis is specifically inhibited at pH less than 6, with loss of photosensory perception which is restored when the pH is returned to pH greater than 6. 3. Fluorescence changes of 9-aminoacridine in suspensions of live Stentor indicate the generation of a pH gradient upon irradiation with light. Both pH gradient and phototaxis were inhibited by the addition of nigericin and p-tri-fluoromethoxy carbonyl cyanide phenylhydrazone (FCCP). 4. Incorporation of the Stentor photoreceptor protein in to artificial liposomes demonstrates the ability of the system to generate pH gradients across model membranes as monitored by the quenching of 9-aminoacridine fluorescence. The effect of external pH on net proton movement in the model system is strikingly similar to the pH dependent of the liver Stentor, thus lending support for transient proton flux being an important mode of light signal processing for photosensory transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号