首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the recovery and fractionation of whey proteins from a whey protein concentrate (80%, w/w) by hydrophobic interaction chromatography is proposed. Standard proteins and WPC 80 dissolved in phosphate buffer with ammonium sulfate 1 M were loaded in a HiPrep Octyl Sepharose FF column coupled to a fast protein liquid chromatography (FPLC) system and eluted by decreasing the ionic strength of the buffer using a salt gradient. The results showed that the most hydrophobic protein from whey is α-lactalbumin and the less hydrophobic is lactoferrin. It was possible to recover 45.2% of β-lactoglobulin using the HiPrep Octyl Sepharose FF column from the whey protein concentrate mixture with 99.6% purity on total protein basis.  相似文献   

2.
DEAE Affi-Gel Blue (Bio-Rad) provides an efficient and rapid fractionation of human serum proteins by a single chromatographic step. When goat serum is applied to the matrix and chromatography is performed following the procedure utilized for the human serum proteins, the elution pattern changes and the Ig purification is not satisfactory. We achieved a better Ig purification from goat serum by the following improved procedure. We performed first an AS-40 fractionation followed by extensive dialysis in 50 mM Na-citrate pH 5.7. The sample was then loaded onto a P11 column equilibrated in the same buffer. The fraction eluted at Vo contained total IgG and the other serum proteins, except beta-globulins which were eluted with 0.24 M phosphate. Peak 1 concentrated and dialyzed in 20 mM phosphate buffer pH 8 was then applied to a DEAE Affi-Gel Blue column, equilibrated in the same buffer. Two protein peaks were eluted from this column and electrophoretically characterized as: peak 1, containing a pure Ig fraction (70% yield), peak 2 with albumin and other contaminating serum proteins. When goat antiserum is obtained against a specific protein, our technique may be suitably employed to purify polyclonal antibodies for immunoprecipitation studies.  相似文献   

3.
Crude immunoglobulin G (IgG) fractions of antisera directed against soybean lipoxygenase-1 and -2 were purified by being passed through an immunoadsorbent column containing lipoxygenase coupled to CNBr-activated Sepharose 4B. Bound immunoglobulin was desorbed with pulses of 2 M or 3 M ammonium thiocyanate or 0.1 M glycine-HCl buffer (pH 2.5). The total column recoveries of anti-lipoxygenase-1 IgG and anti-lipoxygenase-2 IgG were 45% and 58%, respectively. The affinity for lipoxygenase of immunospecific antibodies was determined in an enzyme-linked immunosorbent assay (ELISA). In a reaction with lipoxygenase-1, anti-lipoxygenase-1 IgG, which was eluted with glycine-HCl buffer (pH 2.5) with recovery of 24%, had a 6.5-times higher affinity than the whole IgG fraction of antiserum. The affinity of anti-lipoxygenase-2 IgG for lipoxygenase-2 increased 2.2-times after chromatography of IgG over an immunoadsorbent column using 2 M ammonium thiocyanate as eluent (recovery 21%).  相似文献   

4.
Human alpha 2-macroglobulin (alpha 2M) was eluted as a single nondispersed peak from a TSK-G4000SW size exclusion chromatography column equilibrated in 20 mM-sodium phosphate/100 mM-NaCl, pH 7.2 (PBS). The void volume and total accessible volume of the column were 6.08 ml and 14.42 ml. The elution volume (Ve) of native alpha 2M was 9.20 +/- 0.04 ml. The Ve was altered minimally by changing the ionic strength or adding ethanol to the equilibration buffer. Ternary alpha 2M-trypsin, containing 2 mol of proteinase/mol of inhibitor, and alpha 2M-methylamine failed to be eluted in well-defined peaks when the column was equilibrated in PBS. The majority of either preparation was recovered slowly at Ve values greater than 14.5 ml, reflecting significant nonideal interactions with the support structure. Addition of 10% ethanol or increased ionic strength in the equilibration buffer independently caused either form of reacted alpha 2M to be eluted in a distinct peak at decreased Ve, suggesting that the nonideal interactions included hydrophobic and electrostatic adsorption. When the equilibration buffer was 80 mM-sodium phosphate/320 mM-NaCl, pH 7.2, partial resolution of ternary alpha 2M-trypsin and alpha 2M-methylamine was obtained with a single column run. The Ve values of ternary alpha 2M-trypsin and alpha 2M-methylamine in this buffer were 13.15 +/- 0.08 ml and 11.94 +/- 0.14 ml, respectively. The Ve of native alpha 2M was 8.84 +/- 0.03 ml. The resolving capacity of TSK-G4000SW was exploited to purify native alpha 2M rapidly and efficiently from solutions that contained significant amounts of either ternary alpha 2M-trypsin or binary alpha 2M-trypsin (1 mol of proteinase/mol of inhibitor). This purification was complete within the limits of sensitivity of denaturing and nondenaturing polyacrylamide-gel electrophoresis. alpha 2M-plasmin was well resolved from native alpha 2M. The Ve of alpha 2M-plasmin was 12.88 +/- 0.32 ml in 80 mM-sodium phosphate/320 mM-NaCl, pH 7.2. A number of procedures were used to prepare solutions with up to 90% binary alpha 2M-trypsin. The Ve of binary alpha 2M-trypsin in these various solutions was intermediate between the values of native alpha 2M and ternary alpha 2M-trypsin. The conformations of binary and ternary complex, as reflected by mobility in nondenaturing electrophoresis, were identical, confirming previous results. Finally, in the binary alpha 2M-trypsin complex, the single trypsin cleaved more than two, and as many as all four alpha 2M subunits.  相似文献   

5.
Immunoreactive apo-low density lipoprotein (LDL), soluble in mildly alkaline buffers of low ionic strength, was prepared by attaching LDL to a DEAE-Sepharose column and eluting the lipids with a 0--2% (w/v) gradient of nonionic detergents. Brij-36T, Nonidet P-40, and Triton X-100 gave similar results. After washing the detergent from the column, the bound apoLDL was eluted with 1 M NaCl, pH 7.4, with recoveries up to 85%. This apoLDL could be dialyzed extensively against low ionic strength solutions, and remained soluble as long as the pH was above 7. Spectrophotometric analysis showed that less than 0.1% %w/v) of cholesterol or phospholipids and less than 1% (w/v) of detergent remained associated with the protein. The apoLDL cross-reacted with LDL against antisera prepared vs. intact LDL. Pore-gradient polyacrylamide gel electrophoresis, with SDS and urea, showed that this preparation was less aggregated than organic solvent extracted apolLDL and appeared to be made of oligomers of two monomeric subunits, one with molecular weight around 22,700 and a smaller one of approximately 8000. Isoelectric focusing showed that there also was charge heterogeneity in the soluble apoLDL.  相似文献   

6.
1. Different forms of the rat small-intestinal ;acid' beta-galactosidase were separated by using the isoelectric-focusing technique. The isoelectric points of the different forms were at pH4.2, 4.6, 5.4, 6.1 and approx. 8. 2. The two forms of ;acid' beta-galactosidase isoelectric at pH4.2 and 4.6 were completely excluded from the Sephadex G-200 gel, whereas the form isoelectric at pH8 had K(av.) 0.4. The concentration and pH of the elution buffer influenced the distribution of enzyme activity between different forms. Thus, under certain conditions of ionic strength and pH, the enzyme seems to form high-molecular-weight aggregates with low isoelectric points. These may be homopolymeric aggregates or the result of binding of enzyme to, for example, membrane fragments. The forms isoelectric at pH5.4 and 6.1 are probably aggregates of intermediate size. 3. During ion-exchange chromatography at pH6.0 one fraction of ;acid' beta-galactosidase was not retained on the column and was isoelectric at pH8 and another fraction was eluted when the buffer concentration in the eluate had increased to about 50mm. The main part of enzyme eluted in this second fraction was also isoelectric at pH8, indicating that the elution of this fraction is not a simple ion-exchange procedure but probably also involves a splitting of high-molecular-weight aggregates, originally retained because of their low isoelectric points. The enzyme subunits have a higher isoelectric point, and are therefore no longer bound to the ion-exchange resin.  相似文献   

7.
Lecithin-cholesterol acyltransferase was purified from rat plasma and the properties of this enzyme during the purification procedures and those of the purified enzyme were investigated in comparison with the human enzyme. The rat enzyme was not adsorbed on hydroxyapatite, which was employed for the purification of the human enzyme. When purified human enzyme was incubated at 37 degrees C in 0.1 mM phosphate buffer (pH 7.4; ionic strength, 0.00025), no alteration of enzyme activity was observed for up to 6 h. In the case of the rat enzyme, however, approximately 40% of the enzyme activity was lost under the same conditions. The human enzyme and rat enzyme were both retained on a Sepharose 4B column to which HDL3 was covalently linked, in 39 mM phosphate buffer, pH 7.4. Although the human enzyme was eluted from the column in 1 mM phosphate buffer, the rat enzyme was dissociated from the column at a lower buffer concentration (0.1 mM phosphate buffer). These findings indicate that the rat enzyme effectively associated with HDL3 in 39 mM phosphate buffer, pH 7.4, but the association was more sensitive to increase of ionic strength compared with that of the human enzyme.  相似文献   

8.
1. All the porcine pancreas enzymes tested, regardless of their pI's were adsorbed on Amberlite CG-50 (a weakly acidic cation exchange resin) at pH 4, where the ion-exchange group (carboxyl group) is not dissociated. The adsorption is hardly influenced by ionic strength. 2. At pH 4, the adsorbed enzymes were partially eluted by organic solvents such as 50% propanol. 3. The adsorbed enzymes were effectively eluted by increasing the pH from 4 to 6. Trypsin (pI 10.5) was eluted before carboxypeptidase A (pI 4.5 AND 5.3) WITH 0.5 M acetate buffer, whereas the former enzyme was eluted after the latter enzyme with 0.2 M 3,3-dimethyl glutarate buffer. However, with either buffer, the elution order of enzymes was not always the same as the order of the pI's. 4. By a single Amberlite CG-50 column chromatography of porcine pancreas extracts, kallikrein, carboxypeptidase B, deoxyribonuclease, carboxypeptidase A, and trypsin were purified 100-fold, 16-fmately 13%. The purification procedures included treatment with protamine, ammonium sulfate fractionation, treatment with acid, DE-32 cellulose column chromatography, gel filtration on Sephadex G-100, preparative polyacrylamide gel electrophoresis, and affinity chromatography on 5' AMP-Sepharose 4B. The last procedure, affinity chromatography on 5' AMP-Sepharose 4B, was useful for the removal of other dehydrogenases. The enzyme which was homogeneous, as shown by polyacrylamide gel electrophoresis, had a molecular weight of about 92,000. The optimum pH was at 10.0 and isoelectric point at 5.2. The enzyme accepted both L-fucose and D-arabinose as substrate, but was specific for NAD+ as coenzyme. Km values were 0.15 mM, 1.4 mM, and 0.07 mM for L-fucose, D-arabinose, and NAD+, respectively. A single enzyme catalyzed the oxidation of L-fucose and D-arabinose, which had the same configurations of hydroxyl groups from C-2 to C-4. The reaction products obtained with L-fucose as substrate were L-fucono-lactone and L-fuconic acid. The L-fucono-lactone was an immediate product of oxidation and was hydrolyzed to L-fuconic acid spontaneously. This reaction was irreversible. Therefore, it is likely that L-fucose dehydrogenase is involved in the initial step of the catabolic pathway of L-fucose in rabbit liver.  相似文献   

9.
An arabinoxylan mixture was extracted with saturated barium hydroxide from a water unextractable residue of rye bran. The mixture was fractionated on an anion exchange column which was eluted with water, 0.0025 M sodium borate, 0.025 M sodium borate and 0.4 M sodium hydroxide. It was possible to fractionate the arabinoxylan mixture into fractions with different structural features. The fractionation was repeated with prior protease treatment of the arabinoxylan mixture, but most of the arabinoxylan did not bind to the column by any mechanism that the protease treatment affected, As the largest fraction was still eluted with 0.4 M sodium hydroxide. Protease treatment affected the proportion of disubstituted xylose residues (dXyl) in the water, 0.0025 M sodium borate and 0.025 M sodium borate fractions, indicating that protein associated with arabinoxylans with a high dXyl content is more liable to the protease treatment or that protein is mainly associated with these structures. This study gives indications that protein is involved in the separation mechanism of rye arabinoxylan on a DEAE–cellulose column.  相似文献   

10.
Conformational properties of the Fc- and pFc'-fragments of human myeloma immunoglobulins G of the first and third subclasses were studied by 1H-NMR method (270 and 400 MHz). It was found that the globular structures (domains) of the Fc-fragments of IgG1 and IgG3 in solution are characterized by high segmental mobility, and have no significant differences in their spatial arrangement. Comparative analysis of the spectra obtained at different temperatures (30-70 degrees C) revealed that the Fc-fragment of IgG3 has a more heat-stable conformation than the Fc of IgG1. The intramolecular mobility of the Fc-fragment increased upon lowering the pH. The partial assignment of the signals in the NMR spectra of the Fc-fragments of immunoglobulins G1 and G3 was carried out, and the pKa values for histidines of the pFc'-fragment of IgG1 were determined.  相似文献   

11.
L Polgár  A Patthy 《Biochemistry》1992,31(44):10769-10773
Prolyl oligopeptidase, a representative of a new family of serine proteases, is remarkably sensitive to ionic strength and has two catalytically active forms, which interconvert with changing pH [Polgár, L. (1991) Eur. J. Biochem. 197, 441-447]. To reveal whether conformational changes are associated with these effects, prolyl oligopeptidase was digested with trypsin. SDS gel electrophoresis studies demonstrated that tryptic digestion of the 75-kDa native protein generated two fragments, one having a molecular mass of 51 kDa and the other of 26 kDa. The digestion was markedly dependent on the ionic strength. Specifically, the digestion proceeded more rapidly in 0.05 M Hepes buffer than in 0.05 M Hepes buffer containing 0.5 M NaCl. Moreover, the nicked enzyme formed at low ionic strength was not stable but degraded and inactivated during an extended incubation. The digestion experiments suggested that alteration in the ionic strength elicits conformational changes in native prolyl oligopeptidase, and this may account for the enhanced catalytic activity observed at higher ionic strength. The two fragments of the nicked prolyl oligopeptidase did not separate during size-exclusion chromatography under nondenaturing conditions on a Superose 12 column and eluted in place of the native enzyme, indicating that they were strongly associated. The reactive serine residues of the nicked enzyme was labeled with tritiated diisopropyl phosphofluoridate, and the fragments were separated by size-exclusion chromatography in urea.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Foam fractionation of globular proteins   总被引:2,自引:0,他引:2  
Foam fractionation of bovine serum albumin (BSA) was studied as a model system for potato wastewater. The effects of feed concentration, superficial gas velocity, feed flow rate, bubble size, pH, and ionic strength on the enrichment and recovery of BSA were investigated in a single-stage continuous foam fractionation column. Enrichments ranged from 1.5 to 6.0 and recoveries from 5 to 85%. The feed concentrations were varied from 0.01 to 0.2 wt %, and enrichments were found to increase with lower feed concentrations. Enrichments also increased with lower superficial gas velocities and larger bubble sizes. At sufficiently low feed flow rates, enrichment was found to increase with an increase in the flow rate, eventually becoming insensitive to the feed flow rate at higher values. The pH was varied from 3.5 to 7.0 and ionic strength from 0.001M to 0.2M. The effects of pH and ionic strength were found to be coupled with bubble size. A minimum bubble size was found at pH 4.8, the isoelectric point of BSA, resulting in a minimum in the enrichment. Bubble size, and thus enrichment, was found to increase as the ionic strength decreased from 0.2M to 0.01M. Previous models(1,2) for the hydrodynamics of foam column were extended for a singlestage continuous foam fractionation column for the prediction of enrichment and recovery. The model assumed adsorption equilibrium, infinite surface viscosity, and bubbles of the same size. Though coalescence was formally accounted for in the model by considering bubble size as a function of foam height, calculations for the experimental runs were performed only for the case of no coalescence. Quantitative predictions of enrichment and recovery could not be made with a single representative bubble size because of the broad inlet bubble size distribution as well as broadening of the distribution as a result of coalescence. The experimental enrichments were higher and recoveries were lower than the model predictions, the discrepancy being more pronounced at lower feed concentrations because of increased coalescence. The higher enrichments are due to the predominant effect of internal reflux as a result of coalescence whereas the lower recoveries are a result of detrimental effects of broadening bubble size distributions.  相似文献   

13.
As a preliminary study for the explanation of pathobiology of Neodiplostomum seoulense infection, a 54 kDa protease was purified from the crude extract of adult worms by sequential chromatographic methods. The crude extract was subjected to DEAE-Sepharose Fast Flow column, and protein was eluted using 25 mM Tris-HCl (pH 7.4) containing 0.05, 0.1, 0.2 and 0.4 M NaCl in stepwise elution. The 0.2 M NaCl fraction was further purified by Q-Sepharose chromatography and protein was eluted using 20 mM sodium acetate (pH 6.4) containing 0.05, 0.1, 0.2 and 0.3 M NaCl, respectively. The 0.1M NaCl fraction showed a single protein band on SDS-PAGE carried out on a 7.5-15% gradient gel. The proteolytic activities of the purified enzyme were specifically inhibited by L-trans-epoxy-succinylleucylamide (4-guanidino) butane (E-64) and iodoacetic acid. The enzyme, cysteine protease, showed the maximum proteolytic activity at pH 6.0 in 0.1 M buffer, and degraded extracellular matrix proteins such as collagen and fibronectin with different activities. It is suggested that the cysteine protease may play a role in the nutrient uptake of N. seoulense from the host intestine.  相似文献   

14.
Buffers of different pH and ionic strength were employed as coating buffers for antigen adsorption to microtitre plates. Their efficiency for coating plates with rinderpest virus (RPV) and foot-and-mouth disease virus (FMDV) antigens was studied by ELISA with polyclonal and monoclonal antibody preparations. While the adsorption and detection of RPV antigen with polyclonal antiserum was highly dependent on the ionic strength and pH of coating buffer, adsorption of antigenically active FMDV antigen was relatively unaffected by the buffering conditions. Both antigens were adsorbed optimally in 0.01 M phosphate buffer, pH 8.0. When monoclonal antibodies were used to detect antigen, there was a greater degree of dependence on the coating buffer than that found with polyclonal antisera. Moreover, when they were used to detect antigen adsorbed under several buffering conditions, monoclonal antibodies showed a variety of preferred buffers. The usefulness of this differential reactivity in distinguishing epitope specificity is demonstrated.  相似文献   

15.
Gliclazide(hypoglycemic drug having sulfonylurea structure)-degrading activity was found in fraction M(macroglobulin, Fr. M) obtained from pooled human serum by gel filtration using a Sephadex G-150 column. The main degrading activity was in the fraction eluted from the Fr. M-subjected DEAE-cellulose column with 0.4 M phosphate buffer (pH 5.2), and the gliclazide-degrading protein localized around alpha 2 to beta-globulin on an electrophoretic pattern using a cellulose acetate membrane. The degrading activity was enhanced about two-fold by lyophilizing Fr. M solution containing a higher sodium phosphate (Na2HPO4-NaH2PO4), over 0.27 M. This indicates that the appearance and enhancement of the degrading activity required the combination of the lyophilization of the sample solution and a certain initial concentration of sodium phosphate prior to lyophilization.  相似文献   

16.
Wang HX  Ng TB 《Life sciences》2000,67(21):2631-2638
The seeds of Lagenaria siceraria (Family Cucurbitaceae) were extracted with water and the extract was lyophilized. The lyophilized extract was chromatographed on a DEAE-cellulose column in 10 mM Tris-HCl buffer (pH 7.2). The unadsorbed fraction was applied to an Affi-gel Blue gel column previously equilibrated with the same buffer. After removal of unadsorbed materials, the adsorbed proteins were eluted with 1.5 M NaCl in the Tris-HCl buffer. After dialysis the adsorbed fraction was loaded on a CM-Sepharose CL-6B column which had been equilibrated with and was eluted with the same buffer. After elution of unadsorbed proteins, the column was eluted with a gradient of 0-1 M NaCl in 10 mM Tris-HCl buffer (pH 7.2). The fraction eluting at about 0.55 M NaCl, which represented pure ribosome inactivating protein (RIP), inhibited cell-free translation in a rabbit reticulocyte system with an IC50 of 0.21 nM and exerted ribonuclease activity on yeast tRNA with an activity of 45 U/mg. The RIP was designated lagenin. It possessed a molecular weight of 20 kDa, smaller than the range of 26-32 kDa reported for other RIPs. The N-terminal sequence of lagenin exhibited a lesser extent of similarity to those of other Cucurbitaceae RIPs, characterized by a deletion of the first three amino acid residues and a replacement of the 4th (Phe), 17th (Phe), 18th (Ile) and 22nd (Arg) residues which are invariant in other RIPs.  相似文献   

17.
A rapid procedure for the isolation of 3,4-dihydroxyphenylalanine-containing proteins has been developed in which the protein is selectively bound to a m-phenylboronate agarose column, and eluted with 1.0 M ammonium acetate, pH 3.0. The method is based on the affinity of boronates for diols including catechol. The chromatography is carried out in the absence of oxygen to prevent oxidation of the catechol. Other proteins are eluted beforehand with 0.25 M ammonium acetate, pH 8.5, or for glycoproteins with a Tris buffer containing 0.2 M sorbitol, pH 8.5.  相似文献   

18.
We have previously reported that, although a fully de-N-acetylated chitosan does not bind to hen egg white lysozyme, chitosans with a low fraction of N-acetylated units (FA) bind biospecifically to lysozyme with an affinity strongly dependent upon pH and ionic strength and without concomitant cleavage of glycosidic linkages. In this study, we report on the fractionation of a low FA chitosan with low molecular weight by biospecific adsorption of the chitosan molecules containing N-acetyl groups to immobilized lysozyme. Hen egg white lysozyme was immobilized to CNBr-activated Sepharose 4B, and a chitosan with a fraction of N-acetylated units of 0.045 and a weight average degree of polymerization (DPw) of 22 was applied to the column at suitable conditions for biospecific binding (pH 5.7, 0.15 M NaCl). The chitosan could be separated into two fractions, one that was not adsorbed to the lysozyme-column and one that was adsorbed and could be eluted by decreasing the pH and the ionic strength (0.08 M acetic acid of pH 3.0). The fractions were analyzed and the fraction that was not adsorbed was found to be fully de-N-acetylated chitosan with a DPw of 18, whereas the fraction that was adsorbed was a chitosan with FA of 0.080 and DPw of 24. Experimental data were compared with data from theoretical calculations, which was used to calculate the fraction of chitosan molecules with and without acetyl groups, showing good correlation between experimental and theoretical results.  相似文献   

19.
ω-Aminohexyl-Sepharose 4B served as an excellent biospecific adsorbent for affinity chromatography of amine oxidase (monoamine:O2 oxidoreductase (deaminating), EC 1.4.3.4) from Aspergillus niger. The enzyme was completely adsorbed on this affinity resin when applied to a column in 0.1 M potassium phosphate buffer (pH 7.2). Although a small part of the enzyme was retained on the column through ionic interaction and eluted with 1.0 M potassium phosphate buffer (pH 7.2), most of the enzyme adsorbed was eluted with 0.5 M potassium phosphate buffer (pH 7.2) containing 10 mM butylamine. Essentially no retention of the enzyme on a column of ε-aminopentyl-Sepharose or δ-aminobutyl-Sepharose occurred under the same conditions, indicating that an appropriate length (more than approx. 12 Å) of a hydrocarbon extension between the agarose matrix and the terminal amino group would be necessary for efficient adsorption of amine oxidase. The modification of the enzyme with 3-methyl-2-benzothiazolinone hydrazone (carbonyl inhibitor) or dithionite (reducing agent) resulted in loss of the ability to bind to ω-aminohexyl-Sepharose. I was also demonstrated that the affinity chromatography on ω-aminohexyl-Sepharose can be used as a powerful means of purifying this enzyme from crude extracts of Aspergillus niger. All of the three adsorbents were effective as a substrate in the amine oxidase reaction, but their substrate activities were as low as the corresponding free diamines.  相似文献   

20.
T T Allgyer  M A Wells 《Biochemistry》1979,18(24):5348-5353
Phospholipase D has been purified 680-fold from an acetone powder of savoy cabbage in an overall yield of 30%. The purification involves solubilization of the acetone powder in a Ca2+-containing buffer and subsequent ammonium sulfate fractionation. Gel filtration on Sephadex G-200 and hydrophobic affinity chromatography using a gamma-aminopropane-agarose gel complete the purification. The two chromatographic steps were conducted in buffers containing 50% ethylene glycol, which was necessary in order to maintain stability of the enzyme. Purity was established on the basis of gel electrophoresis and ultracentrifugation. A preliminary kinetic characterization of the enzyme was carried out by using lecithins with short-chain fatty acids below the critical micelle concentration. A complex series of results were obtained which demonstrated the following. (1) The enzyme is quite sensitive to ionic strength, being inhibited at high ionic strength. (2) The pH optimum depends on the concentration of Ca2+ used in the assay. At 0.5 mM Ca2+ the pH optimum is 7.25, but it is 6.0 at 50 mM Ca2+. (3) The effect of substrate concentration at a given pH and ionic strength did not show simple hyperbolic kinetics but rather regions of parabolic and hyperbolic kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号