首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternative hypotheses were tested to explain a previously reported anomaly in the response of leaf photosynthetic capacity at light saturation (A(max)) in Miconia ciliata to dry-season irrigation. The anomaly is characterized by an abrupt increase in leaf A(max) for nonirrigated plants at the onset of the rainy season to values that significantly exceeded corresponding measurements for plants that were irrigated during the previous dry season. Hypothesis 1 posits that a pulse in leaf nitrogen increases CO(2) assimilation in nonirrigated plants at the onset of the wet season and is dampened for irrigated plants; this hypothesis was rejected because, although a wet-season nitrogen pulse did occur, it was identical for both irrigated and nonirrigated plants and was preceded by the increase in assimilation by nonirrigated plants. Hypothesis 2 posits that a reproduction-related, compensatory photosynthetic response occurs in nonirrigated plants following the onset of the wet season and is dampened in irrigated plants; consistent with hypothesis 2, high maximum assimilation rates for control plants in the wet season were significantly correlated with fruiting and flowering, whereas irrigation caused flowering and fruiting in the dry season, spreading M. ciliata reproductive activity in irrigated plants across the entire year.  相似文献   

2.
Summary Mechanisms of dry-season drought resistance were evaluated for five evergreen shrubs (Psychotria, Rubiaceae) which occur syntopically in tropical moist forest in central Panama. Rooting depths, leaf conductance, tissue osmotic potentials and elasticity, and the timing of leaf production were evaluated. From wet to dry season, tissue osmotic potentials declined and moduli of elasticity increased in four and five species, respectively. Irrigation only affected osmotic adjustment by P. furcata. The other seasonal changes in leaf tissue properties represented ontogenetic change. Nevertheless, they made an important contribution to dry-season turgor maintenance. Small between-year differences in dry season rainfall had large effects on plant water status. In 1986, 51 mm of rain fell between 1 January and 31 March, and pre-dawn turgor potentials averaged <0.1 MPa for all five Psychotria species in March (Wright 1991). In 1989, 111 mm of rain fell in the same period, pre-dawn turgor potentials averaged from 0.75 to 1.0 MPa for three of the species in April, and only P. chagrensis lost turgor. The relation between leaf production and drought differed among species. P. limonensis was buffered against drought by the lowest dry-season conductances and the deepest roots (averaging 244% deeper than its congeners) and was the only species to produce large numbers of leaves in the dry season. P. chagrensis was most susceptible to drought, and leaf production ceased as turgor loss developed. For the other species, water stress during severe dry seasons may select against dry-season leaf production.  相似文献   

3.
Summary Factors affecting seedling Virola surinamensis (Myristicaceae) survival and growth were investigated on Barro Colorado Island, Panama. Seedlings planted 3 months after germination were monitored in treefall gaps and understory using 2.25 ha irrigated and control plots through the first dry season. During the dry season, irrigated plants in gaps increased total leaf area significantly more than did irrigated plants in the shaded understory. Over the same dry season, control plants in gaps and in the shaded understory lost similar amounts of leaf area. Seedlings in understory were suppressed in stem height and biomass in both irrigated and control plots; these measures were greater in gaps and greatest in irrigated gaps (height). Roots were similar in length in all treatments, but greater in biomass in gaps than understory due to greater proliferation of secondary roots in control and irrigated gaps than in control and irrigated understory. This experiment demonstrates both water and light limitation during the first dry season after germination. V. surinamensis seedlings are capable of survival and modest growth of leaf area in the deep shade of the understory in moist locations; they are severely disadvantaged in shaded understory subject to drought, where most seeds fall and most seedlings establish. The broken canopy of a gap allows shoot and consequently root growth that permits seedlings to survive seasonal drought.  相似文献   

4.
Global change factors affect plant carbon uptake in concert. In order to investigate the response directions and potential interactive effects, and to understand the underlying mechanisms, multifactor experiments are needed. The focus of this study was on the photosynthetic response to elevated CO(2) [CO2; free air CO(2) enrichment (FACE)], drought (D; water-excluding curtains), and night-time warming (T; infrared-reflective curtains) in a temperate heath. A/C(i) curves were measured, allowing analysis of light-saturated net photosynthesis (P(n)), light- and CO(2)-saturated net photosynthesis (P(max)), stomatal conductance (g(s)), the maximal rate of Rubisco carboxylation (V(cmax)), and the maximal rate of ribulose bisphosphate (RuBP) regeneration (J(max)) along with leaf δ(13)C, and carbon and nitrogen concentration on a monthly basis in the grass Deschampsia flexuosa. Seasonal drought reduced P(n) via g(s), but severe (experimental) drought decreased P(n) via a reduction in photosynthetic capacity (P(max), J(max), and V(cmax)). The effects were completely reversed by rewetting and stimulated P(n) via photosynthetic capacity stimulation. Warming increased early and late season P(n) via higher P(max) and J(max). Elevated CO(2) did not decrease g(s), but stimulated P(n) via increased C(i). The T×CO2 synergistically increased plant carbon uptake via photosynthetic capacity up-regulation in early season and by better access to water after rewetting. The effects of the combination of drought and elevated CO(2) depended on soil water availability, with additive effects when the soil water content was low and D×CO2 synergistic stimulation of P(n) after rewetting. The photosynthetic responses appeared to be highly influenced by growth pattern. The grass has opportunistic water consumption, and a biphasic growth pattern allowing for leaf dieback at low soil water availability followed by rapid re-growth of active leaves when rewetted and possibly a large resource allocation capability mediated by the rhizome. This growth characteristic allowed for the photosynthetic capacity up-regulations that mediated the T×CO2 and D×CO2 synergistic effects on photosynthesis. These are clearly advantageous characteristics when exposed to climate changes. In conclusion, after 1 year of experimentation, the limitations by low soil water availability and stimulation in early and late season by warming clearly structure and interact with the photosynthetic response to elevated CO(2) in this grassland species.  相似文献   

5.
The seasonality of pan-tropical wet forests has been highlighted by recent remote sensing and eddy flux measurements that have recorded both increased and sustained dry-season gross primary productivity (GPP). These observations suggest that wet tropical forests are primarily light limited and that the mechanisms for resilience to drought and projected climate change must be considered in ecosystem model development. Here we investigate two proposed mechanisms for drought resilience of tropical forests, deep soil water access and the seasonality of phenology, using the LPJmL Dynamic Global Vegetation Model. We parameterize a new seasonal phenology module for tropical evergreen trees using remotely sensed leaf area index (LAI) and incoming solar radiation data from the Terra Earth Observing System. Simulations are evaluated along a gradient of dry-season length (DSL) in South America against MODIS GPP estimates. We show that deep soil water access is critical for maintaining dry-season GPP, whereas implementing a seasonal LAI did not enhance simulated dry-season GPP. The Farquhar-Collatz photosynthesis scheme used in LPJmL optimizes leaf nitrogen allocation according to light conditions, causing maximum photosynthetic capacity in the dry season. High LAI, characteristic of tropical forests, also dampens the seasonal amplitude of the fraction of photosynthetically active radiation (FPAR). Given the relatively high uncertainty in tropical phenology observations and their corresponding proximate drivers, we recommend that ecosystem model development focus on belowground processes. An improved representation of soil depths and rooting distributions is necessary for modeling the dynamics of dry-season tropical forest functioning and may have important impacts for modeling tropical forest vulnerability to climate change. Author Contributions  BP conceived of the study, analyzed data, and wrote the paper. UH designed study and contributed new methods. WC designed study and contributed to paper.  相似文献   

6.
The rising atmospheric CO2 concentration resulting from industrial development may enhance photosynthesis and plant growth. However, there is a lack of research concerning the effect of combined factors such as CO2, temperature and water availability on plant regrowth following cutting or grazing, which represent the usual methods of managing forage legumes like alfalfa. Elevated CO2, temperature and drought can interact with cutting factors (e.g. cutting frequency or height), and source-sink balance differences before and after defoliation can modify photosynthetic behaviour and dry matter accumulation, as well as dry matter partitioning between above- and belowground organs. The aim of our study was to determine the interactive effect of CO2 (ambient, around 350 μmol mol−1 versus 700 μmol mol−1), temperature (ambient versus ambient + 4 °C) and water availability (well-irrigated versus partially irrigated) on dry matter partitioning and photosynthesis in nodulated alfalfa after vegetative normal growth and during regrowth. At the end of vegetative normal growth, CO2 enhanced dry matter accumulation despite photosynthesis being down-regulated at the end of this period. Photosynthesis was stimulated by elevated CO2 and resulted in greater dry matter accumulation during the regrowth period. Aboveground organs were affected more by drought than belowground organs during the entire experiment, particularly during vegetative normal growth. The higher drought tolerance (greater growth) observed during the regrowth period may be related to higher mass and greater reserves accumulated in the roots of plants.  相似文献   

7.
Drake PL  Franks PJ 《Oecologia》2003,137(3):321-329
This study investigated seasonal variation in the origin of water used by plants in a riparian tropical rainforest community and explored linkages between plant water source, plant xylem hydraulic conductivity and response to the onset of dry conditions. The study focused on five co-dominant canopy species, comprising three tree species (Doryphora aromatica, Argyrodendron trifoliolatum, Castanospora alphandii) and two climbing palms (Calamus australis and Calamus caryotoides). Stable isotope ratios of oxygen in water (18O) from soil, groundwater, stream water and plant xylem measured in the wet season and the subsequent dry season revealed water resource partitioning between species in the dry season. Measurement of stem-area-specific hydraulic conductivity (KS) in the wet season and subsequent dry season showed a significant dry-season loss of KS in three of the five species (Castanospora alphandii, Calamus australis and C. caryotoides) and a decrease in mean KS for all species. This loss of hydraulic conductivity was positively correlated with the difference between wet-season and dry-season midday leaf water potentials and with leaf carbon isotope discrimination, indicating that plants that were less susceptible to loss of conductivity had greater control over transpiration rate and were more water-use efficient.  相似文献   

8.
To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO(2) to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g (s)), mesophyll conductance (g (m)), electron transport capacity (J (max)), and Rubisco carboxylation capacity (V (cmax)). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g (s) and g (m). One previously mapped major QTL of photosynthesis was associated with variation in g (s) and g (m), but also in J (max) and V (cmax) at flowering. Thus, g (s) and g (m), which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background.  相似文献   

9.
Unlike the well-understood cold limit of trees, the causes of the dry trailing edge of trees await explanation. Here we aimed at explaining the drought limit of an evergreen oak species (Quercus pannosa s.l.) in a typical dry valley of the upper Yangtze region, SE Himalaya, where rains (ca. 250 mm/a) are largely confined to the typical monsoon season (July–August) with drought during the remaining 9–10 months. We capitalized on an unintentional year-round irrigation treatment with trees growing along the overflow of a water reservoir serving as moist controls. We measured shoot water potential (Ψ), leaf conductance (g), flushing phenology, leaf mass per area (LMA), foliar and stem δ13C, leaf nutrients, and non-structural carbohydrates across the transition from non-monsoon to monsoon season, from April to August 2018. At the dry site, Ψ and g were high during the monsoon but declined to <−3 MPa as drought proceeded in the non-monsoon season. Irrigated oaks retained high values year-round. Oaks experiencing the natural drought flushed at the full strength onset of the monsoon only, that is, 80 days later than irrigated oaks. The annual shoot increment in oaks under natural drought was ca. 10% of that in irrigated oaks. However, mature foliage showed no difference in LMA and δ13C between dry and moist sites. We conclude that these oaks drastically reduce their activity in response to drought, with growth strictly confined to the monsoon season, the minimum duration of which, presumably is setting the range limit.  相似文献   

10.
Physiological responses to seasonal drought were explored for Psychotria limonensis (Rubiaceae), an abundant understory shrub in a seasonally dry tropical forest in Panama. Control and irrigated plants were compared at the beginning and again at the end of the 4-mo dry season. Stomatal conductance remained high throughout for irrigated plants, but fell to very low levels for control plants late in the dry season. Net assimilation rates under both saturating and ambient light were unaffected by irrigation. As a consequence, instantaneous water-use efficiency (assimilation ÷ evapotranspiration), derived from gas exchange measures, and long-term water-use efficiency, estimated from stable carbon isotope ratios of leaf tissue, were similar for both treatments. The maintenance of high assimilation rates despite drought may be related to osmotic adjustment. Control plants had more negative osmotic potentials at full turgor and higher moduli of elasticity in the late dry season.  相似文献   

11.
Summary The relation between daily maximal rates of net photosynthesis and plant water status was studied during a dry season on irrigated and non-irrigated, naturally growing, perennial wild plants.Species were examined which differ in phenology, leaf anatomy and morphology: Hammada scoparia, Artemisia herba-alba, Zygophyllum dumosum, and Reaumuria negevensis. Prumus armeniaca which was growing in the run-off farm at Avdat and which has mosomorphic leaves was included in the comparison. All plants differed in their seasonal change in plant water status, and in their seasonal change in daily maximal net photosynthesis. Rates of CO2 uptake were not uniquely related to simultanously measured leaf water potentials. Daily maximal rates of net photosynthesis of non-irrigated plants, and the difference between maximal CO2 uptake of irrigated and non-irrigated plants were examined in relation to pre-dawn water potential. Maximal net photosynthesis rates decreased very rapidly with decrease in pre-dawn water potential or, for Hammada scoparia, they decreased even with a constant level of pre-dawn water potential. Consequently, it was considered necessary to include both time and water potential in a parameter bar day describing the accumulated drought stress of the plants. All species showed the same relation between relative maximal net photosynthesis and drought experience as determined by cumulative daily addition of pre-dawn water potentials for the non-irrigated plants since the last rain.  相似文献   

12.
We examined structural and physiological traits relevant to the phenology of the tropical dry forest (TDF) pioneer tree Cochlospermum vitifolium . Despite marked seasonality in rainfall, meristem activity occurred throughout the year. Leaves were produced almost continuously during the rainy season, while leaf shedding started early during drought, before changes in soil water content were observed. Phenological activity under drought included flowering and fruiting of leafless trees; bud break and shoot extension took place before the end of the dry season. Low wood density of C. vitifolium stems (0.17 g/cm3) and lignotubers (0.14 g/cm3) provided water and starch storage needed to support phenological events such as branch extension, leaf flushing, and reproduction during the dry season, and probably also contributed to survival following mechanical damage and fire, typical of early TDF successional stages. Lignotuber water and starch contents showed substantial seasonal variation, declining from the beginning of the dry season to their lowest levels at the time of reproduction and dry-season flushing. Stems progressively replaced lignotubers as main storage organs as tree size increased. Evidence for a role of water stores in buffering daily water deficits was weak. Leaf water potentials remained above −1.2 MPa and stomatal conductance below 350 mmol/m2/s, suggesting that gas exchange during the rainy season was limited to prevent xylem cavitation. Leaf shedding occurred when early-morning and mid-day ΨL converged at the rainy–dry season transition, without changes in lignotuber or soil water content, suggesting that leaves of C. vitifolium are closely tuned to atmospheric drought.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp .  相似文献   

13.
Long term water stress inactivates Rubisco in subterranean clover   总被引:11,自引:0,他引:11  
In long-term field experiments, during consecutive years, microswards of subterranean clover were irrigated to minimise water deficits or subjected to progressively increasing drought over 30 days. Both leaf water potential and relative water content steadily decreased during the experiments. Plants affected by drought grew more slowly and photosynthesis was decreased. Photosynthetic rate (A) and Rubisco were analysed in relation to midday water potentials and relative water contents. The difference in A between draughted and irrigated plants increased progressively, in part as a result of decreased stomatal conductance and CO2 concentration within leaf (Ci). However, A-Ci curves suggest that the photosynthetic capacity in plants experiencing long-term stress was reduced by 50% when compared with irrigated plants. Drought decreased both the initial and the total Rubisco activity per unit area in a similar way but did not reduce the amount of Rubisco protein per unit leaf area. Thus, the specific activity of Rubisco, rather than its activation state, decreased suggesting that under water stress the active sites were blocked by inhibitors.  相似文献   

14.
To investigate the relationship between the altitudinal distribution of Quercus laceyi and Q. sideroxyla and their physiological responses to drought, we measured relative water content (RWC), water potentials (Ψ(predawn) and Ψ(midday)), photosynthesis (A(max)), stomatal conductance (g), chlorophyll fluorescence (F(v)/F(m)), and spectral reflectance (400-1100 nm) five times during a 7 wk acute drought. Quercus laceyi was drought tolerant, while Q. sideroxyla was a drought avoider; Q. laceyi tolerated lower RWC (Q. sideroxyla = 54%, Q. laceyi = 44%), Ψ(pd) (Q. sideroxyla = -2.6 MPa, Q. laceyi = -3.3 MPa), and Ψ(md) (Q. sideroxyla = -4.5 MPa, Q. laceyi = -6.6 MPa). The F(v)/F(m) also declined first in Q. sideroxyla in wk 6, whereas F(v)/F(m) did not decline in Q. laceyi until wk 7. A(max) and g fell in wk 4, 6, and 7 in drought seedlings of both species, suggesting a decline in CO(2) assimilation during the drought. Leaf spectral reflectance increased with time in response to decreases in leaf photosynthetic pigment concentrations in latter weeks of the drought. The results suggest a close association between the altitudinal distributions of these species and their adaptation to water stress.  相似文献   

15.
Sugar beet were grown for short periods with different amounts of moisture in the soil and air. Growing plants in wet soil (23 % moisture on dry weight) compared with dry soil (15% moisture) increased growth of the shoots and roots and plant dry weights by 15% in young plants and 10% in mature plants. Growing plants in wet air containing 10.9 g m-3 of water (equivalent to a saturation deficit of 2.5 mb) compared with dry air containing 6.4 g m-3 of water (saturation deficit = 8.5 mb) increased the dry weights of both young and mature plants by 8%, mostly by increasing the sizes of their storage roots. Wet air and wet soil increased the net assimilation rates of both young and mature plants. Wet soil, but not wet air, increased leaf areas of young plants by accelerating leaf expansion, and both increased the leaf area of mature plants by slowing senescence of the older leaves. Wet soil increased the water potential of the leaves of both young and mature plants and, by doing so, increased their stomatal conductances and rates of photosynthesis. Wet air also increased stomatal conductances and rates of photosynthesis of leaves of plants of both ages, but without changing their water potentials. Stomatal conductances and photosynthetic rates were greater for young leaves than mature on the same plant and at the same water potential. It is suggested that at certain stages in the crops growth photosynthetic efficiency could be increased by applying additional water as a mist to increase the moisture content of the air around the crop.  相似文献   

16.
Climate modelling studies predict that the rain forests of the Eastern Amazon basin are likely to experience reductions in rainfall of up to 50% over the next 50-100 years. Efforts to predict the effects of changing climate, especially drought stress, on forest gas exchange are currently limited by uncertainty about the mechanism that controls stomatal closure in response to low soil moisture. At a through-fall exclusion experiment in Eastern Amazonia where water was experimentally excluded from the soil, we tested the hypothesis that plants are isohydric, that is, when water is scarce, the stomata act to prevent leaf water potential from dropping below a critical threshold level. We made diurnal measurements of leaf water potential (psi 1), stomatal conductance (g(s)), sap flow and stem water potential (psi stem) in the wet and dry seasons. We compared the data with the predictions of the soil-plant-atmosphere (SPA) model, which embeds the isohydric hypothesis within its stomatal conductance algorithm. The model inputs for meteorology, leaf area index (LAI), soil water potential and soil-to-leaf hydraulic resistance (R) were altered between seasons in accordance with measured values. No optimization parameters were used to adjust the model. This 'mechanistic' model of stomatal function was able to explain the individual tree-level seasonal changes in water relations (r2 = 0.85, 0.90 and 0.58 for psi 1, sap flow and g(s), respectively). The model indicated that the measured increase in R was the dominant cause of restricted water use during the dry season, resulting in a modelled restriction of sap flow four times greater than that caused by reduced soil water potential. Higher resistance during the dry season resulted from an increase in below-ground resistance (including root and soil-to-root resistance) to water flow.  相似文献   

17.
Although tree growth in southern African savannas is correlated with rainfall in the wet season, some studies have shown that tree growth is controlled more by rainfall in the dry season. If more rainfall occurred in the dry season in future climates, it would affect the growth of savanna trees, especially saplings that have shallower roots which limit access to subsoil water during the dry season when leaf flush and shoot extension occur. Recent paleobotanical evidence has revealed that there was relatively more precipitation in the dry season in eastern Africa in the Eocene than under the current climate. Saplings therefore can be expected to respond more to water addition during the dry season than mature trees that have more stored water and deeper roots that access subsoil water. Accordingly, I hypothesized that irrigation in the dry season should (i) advance the onset of the growing season, (ii) increase growth rates and (iii) alter the growth responses of saplings to climate factors. To test these hypotheses saplings of five savanna woody species were irrigated during the hot‐dry season at a site in central Zambia and their monthly and annual growth rates compared to those of conspecifics growing under control conditions. Although the responses among the species were variable, all irrigated saplings had significantly higher monthly and annual growth rates than control plants. In addition, dry season watering significantly altered the climatic determinants of sapling growth by either strengthening the role of the same climatic factors that were important under control conditions or displacing them altogether. In conclusion, more precipitation during the hot‐dry season is likely to have significant positive effects on sapling growth and consequently reduce the sapling‐tree transition periods and promote future tree population recruitment in some southern African savanna tree species.  相似文献   

18.
《植物生态学报》2021,44(12):1215
Aims Due to fast-growing and high drought stress tolerance, Leucaena leucocephala has been widely used for afforestation in degraded tropical forests worldwide, but it is also a global invasive exotic species. Studies have shown that fast-growing can help L. leucocephala successfully invade subtropical forests. In this study, we aimed to investigate whether fast-growing and high drought stress tolerance can help L. leucocephala invade tropical rain forests.Methods The pioneer community of tropical rain forest which had been invaded by L. leucocephala in the Baopoling Mountain, Sanya, China was the research object. Through the t-test, we compared the differences in key functional traits that were related to growth rate (photosynthesis rate, stomatal conductance and transpiration rate) and drought stress tolerance (leaf turgor loss point) in both wet and dry seasons between L. leucocephala and eight dominant native species of pioneer community of tropical rain forest. And the principal component analysis (PCA) was used to investigate whether these functional traits can best discriminate between Leucaena leucocephala and the eight dominant native species.Important findings Leucaena leucocephala could be invariably growing fast (photosynthesis rate, stomatal conductance and transpiration rate much higher than native species) from wet to dry seasons and had higher drought stress tolerance (leaf turgor loss point much lower than native species) in the dry season. The results of PCA showed that these functional traits could significantly discriminate between L. leucocephala and the eight dominant native species. Therefore, invariable fast-growing from wet to dry season and high drought stress tolerance in the dry season make L. leucocephala successfully invade pioneer communities of tropical rain forests. In the future, these functional traits can be used to select many native species to perform biological control of L. leucocephala in other tropical forests.  相似文献   

19.
Almond plants (Amygdalus communis L.) of the Garrigues variety were grown in the field drip irrigated and rainfed. Leaf water potential (Ψ) and leaf conductance (g1) were determined throughout one growing season. Pre-dawn measurement for Ψ in the irrigated treatment was consistent through the growing season, whereas in the rainfed treatment it decreased gradually. Ψ values at midday (Ψ minimum) was closely dependent on atmospheric evaporative demand, and their recovery was quicker in the wet treatment than in the dry. The g1 values were higher in the wet than dry treatments, decreasing in both cases by leaf ageing. Maximum values for g1 were reached when evaporative demand was highest in the day. The relationship between Ψ and g1 revealed a decrease in the hysteresis throughout the growing season, being most marked in the dry treatment. The results highlight the close dependence of Ψ and g1 on evaporative demand, leaf ageing and irrigtion treatment during the growing season.  相似文献   

20.
Leaf phenology dictates the time available for carbon assimilation, transpiration and nutrient uptake in plants. Understanding the environmental cues that control phenology is therefore vital for predicting climate‐related changes to plant and ecosystem function. In contrast to temperate systems, and to a lesser degree, tropical forest systems, the cues initiating leaf drop in tropical savannas are poorly studied. We investigated the cues for leaf fall in a tropical monodominant arid savanna species, Colophospermum mopane, using an irrigation experiment. We tracked soil moisture, solar radiation, air temperature, leaf water status, leaf health and leaf carbon balance through the dry season in both irrigated and control plants. Water was the primary cue driving leaf loss of C. mopane rather than temperature or light. Trees watered throughout the dry season retained their canopies. These leaves remained functional and continued photosynthesis throughout the dry season. Leaf carbon acquisition rates did not decline with leaf age but were affected by soil moisture availability and temperature. Leaf loss did not occur when leaf carbon gain was zero, or when a particular leaf carbon threshold was reached. Colophospermum mopane is facultatively deciduous as water availability determines leaf drop in this widespread arid savanna species. Obligate deciduosity is not the only successful strategy in climates with a long dry season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号