首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen (N) availability is widely known as a determinant of plant growth and respiration rate. However, less attention has been paid to the effect of the type of N source (nitrate, nitrite or ammonium) on the respiratory system. This review summarizes the latest findings on this topic, with an emphasis on the effect of ammonium and nitric oxide (NO) on the respiratory system, and the physiological role of alternative oxidase (AOX). First, concentrated ammonium has been found to increase plant respiration rate (ammonium-dependent respiratory increase, ARI). We will introduce two hypotheses to explain ARI, futile ammonium cycling and excess reducing equivalents, and verify the validity of each hypothesis. We suggest that these two hypotheses are not necessarily mutually exclusive. Second, gene expression of AOX is suppressed when N is predominately available as nitrate instead of ammonium. We will discuss possible signaling pathways leading to this expression pattern. Third, while AOX expression is induced by NO, AOX activity itself is insensitive to NO. In contrast, activity of cytochrome c oxidase (COX) is sensitive to NO. We outline the NO production pathway, focusing on nitrite-dependent NO production, and discuss the physiological significance of the fact that AOX activity is insensitive to NO. Finally, this review aims to build an integrated scheme of the respiratory response to the type of N source, considering leaves in high light conditions or hypoxic roots.  相似文献   

2.
3.
The respiratory chain of plant mitochondria differs from that in mammalian mitochondria by containing several rotenone-insensitive NAD(P)H dehydrogenases. Two of these are located on the outer, cytosolic surface of the inner membrane. One is specific for NADH, the other for NADPH. Only the latter is inhibited by diphenyleneiodonium (DPI). Both of these enzymes are normally dependent upon Ca2+ for activity and this constitutes a potentially important mechanism by which the cell can regulate the oxidation of cytosolic NAD(P)H via the concentration of free Ca2+. This and other potential regulatory mechanisms such as the substrate concentration and polyamines are discussed.  相似文献   

4.
Mitochondria are a main providers of high levels of energy, but also a major source of reactive oxygen species (ROS) during normal oxidative metabolism. The involvement of Neurospora crassa alternative NAD(P)H dehydrogenases in mitochondrial ROS production was evaluated. The growth responses of a series of respiratory mutants to several stress conditions revealed that disrupting alternative dehydrogenases leads to an increased tolerance to the redox cycler paraquat, with a mutant devoid of the external NDE1 and NDE2 enzymes being significantly more resistant. The nde1nde2 mutant mitochondria show a significant decrease in ROS generation in the presence and absence of paraquat, regardless of the respiratory substrate used, and an intrinsic increase in catalase activity. Analysis of ROS production by a complex I mutant (nuo51) indicates that, as in other organisms, paraquat-derived ROS in Neurospora mitochondria occur mainly at the level of complex I. We propose that disruption of the external NAD(P)H dehydrogenases NDE1 and NDE2 leads to a synergistic effect diminishing ROS generation by the mitochondrial respiratory chain. This, in addition to a robust increase in scavenging capacity, provides the mutant strain with an improved ability to withstand paraquat treatment.  相似文献   

5.
We previously observed that hypoxia is an important component of host microenvironments during pulmonary fungal infections. However, mechanisms of fungal growth in these in vivo hypoxic conditions are poorly understood. Here, we report that mitochondrial respiration is active in hypoxia (1% oxygen) and critical for fungal pathogenesis. We generated Aspergillus fumigatus alternative oxidase (aoxA) and cytochrome C (cycA) null mutants and assessed their ability to tolerate hypoxia, macrophage killing and virulence. In contrast to ΔaoxA, ΔcycA was found to be significantly impaired in conidia germination, growth in normoxia and hypoxia, and displayed attenuated virulence. Intriguingly, loss of cycA results in increased levels of AoxA activity, which results in increased resistance to oxidative stress, macrophage killing and long-term persistence in murine lungs. Thus, our results demonstrate a previously unidentified role for fungal mitochondrial respiration in the pathogenesis of aspergillosis, and lay the foundation for future research into its role in hypoxia signalling and adaptation.  相似文献   

6.
7.
Recent molecular genetics studies have revealed that cyclic electron transport around photosystem I is essential for normal photosynthesis and growth of plants. Chloroplastic NAD(P)H dehydorgenase (NDH) complex, a homologue of the complex I in respiratory electron transport, is involved in one of two cyclic pathways. Recent studies on the function and structure of the NDH complex are reviewed.  相似文献   

8.
We evaluated the mechanism of capsaicin-mediated ROS generation in pancreatic cancer cells. The generation of ROS was about 4-6 fold more as compared to control and as early as 1 h after capsaicin treatment in BxPC-3 and AsPC-1 cells but not in normal HPDE-6 cells. The generation of ROS was inhibited by catalase and EUK-134. To delineate the mechanism of ROS generation, enzymatic activities of mitochondrial complex-I and complex-III were determined in the pure mitochondria. Our results shows that capsaicin inhibits about 2.5-9% and 5-20% of complex-I activity and 8-75% of complex-III activity in BxPC-3 and AsPC-1 cells respectively, which was attenuable by SOD, catalase and EUK-134. On the other hand, capsaicin treatment failed to inhibit complex-I or complex-III activities in normal HPDE-6 cells. The ATP levels were drastically suppressed by capsaicin treatment in both BxPC-3 and AsPC-1 cells and attenuated by catalase or EUK-134. Oxidation of mitochondria-specific cardiolipin was substantially higher in capsaicin treated cells. BxPC-3 derived ρ(0) cells, which lack mitochondrial DNA, were completely resistant to capsaicin mediated ROS generation and apoptosis. Our results reveal that the release of cytochrome c and cleavage of both caspase-9 and caspase-3 due to disruption of mitochondrial membrane potential were significantly blocked by catalase and EUK-134 in BxPC-3 cells. Our results further demonstrate that capsaicin treatment not only inhibit the enzymatic activity and expression of SOD, catalase and glutathione peroxidase but also reduce glutathione level. Over-expression of catalase by transient transfection protected the cells from capsaicin-mediated ROS generation and apoptosis. Furthermore, tumors from mice orally fed with 2.5 mg/kg capsaicin show decreased SOD activity and an increase in GSSG/GSH levels as compared to controls. Taken together, our results suggest the involvement of mitochondrial complex-I and III in capsaicin-mediated ROS generation and decrease in antioxidant levels resulting in severe mitochondrial damage leading to apoptosis in pancreatic cancer cells.  相似文献   

9.
10.
An NADH dehydrogenase activity from red beet (Beta vulgaris L.) root mitochondria was purified to a 58-kD protein doublet. An immunologically related dehydrogenase was partially purified from maize (Zea mays L. B73) mitochondria to a 58-kD protein doublet, a 45-kD protein, and a few other less prevalent proteins. Polyclonal antibodies prepared against the 58-kD protein of red beet roots were found to immunoprecipitate the NAD(P)H dehydrogenase activity. The antibodies cross-reacted to similar proteins in mitochondria from a number of plant species but not to rat liver mitochondrial proteins. The polyclonal antibodies were used in conjunction with maize mitochondrial fractionation to show that the 58-kD protein was likely part of a protein complex loosely associated with the membrane fraction. A membrane-impermeable protein cross-linking agent was used to further show that the majority of the 58-kD protein was located on the outer surface of the inner mitochondrial membrane or in the intermembrane space. Analysis of the cross-linked 58-kD NAD(P)H dehydrogenase indicated that specific proteins of 64, 48, and 45 kD were cross-linked to the 58-kD protein doublet. The NAD(P)H dehydrogenase activity was not affected by ethyleneglycol-bis([beta]-aminoethyl ether)-N,N[prime] -tetraacetic acid or CaCl2, was stimulated somewhat (21%) by flavin mononucleotide, was inhibited by p-chloromercuribenzoic acid (49%) and mersalyl (40%), and was inhibited by a bud scale extract of Platanus occidentalis L. containing platanetin (61%).  相似文献   

11.
The two main approaches presently used for cytochrome P-450scc modelling are as follows: i) the use of chemical compounds carrying activated oxygen species, e. g., peracids, organic hydroperoxides, iodosobenzene, etc., ii) the use of electrochemical reduction in the presence of redox-active compounds. In the present work, a new model system for simulation of steroidogenic electron transfer is proposed, which reduces cytochrome P-450 scc by NADPH in the absence of adrenodoxin reductase and adrenodoxin. Phenazine methosulfate is used as an electron carrier. More than 95% of cytochrome P-450scc is reduced in a model system. The reduction kinetics is characterized by a lag phase, thus indicating complex formation between cytochrome P-450scc and phenazine methosulfate or formation of intermediate reducing equivalents. NADH may also serve as an electron donor for cytochrome P-450scc. Phenazine methosulfate can reduce microsomal cytochrome P-450 LM2 and b5, but not cytochrome P-450 LM4. Superoxide dismutase does not affect the reduction, thus indicating that O9.- is not involved in the reduction process. The mechanism of hemoprotein reduction and the nature of intermediates which can be formed in the model system is proposed.  相似文献   

12.
Wang D  Portis AR 《Plant physiology》2007,144(4):1742-1752
A transient rise in chlorophyll fluorescence after turning off actinic light reflects nonphotochemical reduction of the plastoquinone (PQ) pool. This process is dependent on the activity of the chloroplast NAD(P)H dehydrogenase (NDH) complex, which mediates electron flow from stromal reductants to the PQ pool. In this study, we characterized an Arabidopsis (Arabidopsis thaliana) T-DNA insertion mutant pifi (for postillumination chlorophyll fluorescence increase), which possesses an intact NDH complex, but lacks the NDH-dependent chlorophyll fluorescence increase after turning off actinic light. The nuclear gene PIFI (At3g15840) containing the T-DNA insertion encodes a chloroplast-targeted protein localized in the stroma and is annotated as a protein of unknown function. The pifi mutant exhibited a lower capacity for nonphotochemical quenching, but similar CO(2) assimilation rates, photosystem II (PSII) quantum efficiencies (PhiPSII), and reduction levels of the primary electron acceptor of PSII (1 - qL) as compared with the wild type. The pifi mutant grows normally under optimal conditions, but exhibits greater sensitivity to photoinhibition and long-term mild heat stress than wild-type plants, which is consistent with lower capacity of nonphotochemical quenching. We conclude that PIFI is a novel component essential for NDH-mediated nonphotochemical reduction of the PQ pool in chlororespiratory electron transport.  相似文献   

13.
The environmental temperature is one of the mainfactors affecting plant growth and development. Insummer, plants are frequently influenced by hightemperature. In recent years, global temperature wasremarkably elevated accompanied with the climaticchanges,…  相似文献   

14.
After incubation at 42°C for more than 48 h, brown damages occurred on the stems of tobacco (Nicotiana tabacum L.) ndhC-ndhK-ndhJ deletion mutant (ΔndhCKJ), followed by wilt of the leaves, while less the phenotype was found in its wild type (WT). Analysis of the kinetics of post-illumination rise in chlorophyll fluorescence indicated that the PSI cyclic electron flow and the chlororespiration mediated by NAD(P)H dehydrogenase (NDH) was significantly enhanced in WT under the high temperature. After leaf disks were treated with methyl viologen (MV), photosynthetic apparatus of ΔndhCKJ exhibited more severe photo-oxidative damage, even bleaching of chlorophyll. Analysis of P700 oxidation and reduction showed that the NDH mediated cyclic electron flow probably functioned as an electron competitor with Mehler reaction, to reduce the accumulation of reactive oxygen species (ROS). When leaf disks were heat stressed at 42°C for 6 h, the photochemical activity declined more markedly in ΔndhCKJ than in WT, accompanied with more evident decrease in the amount of soluble Rubisco activase. In addition, the slow phase of millisecond-delayed light emission (ms-DLE) of chlorophyll fluorescence indicated that NDH was involved in the building-up of transthylakoid proton gradient (ΔpH), while the consumption of ΔpH was highly inhibited in ΔndhCKJ after heat stress. Based on the results, we supposed that the cyclic electron flow mediated by NDH could be stimulated under the heat stressed conditions, to divert excess electrons via chlororespiration pathway, and sustain CO2 assimilation by providing extra ΔpH, thus reducing the photooxidative damage.  相似文献   

15.
【目的】了解酿酒酵母线粒体NAD(H)激酶Pos5p对呼吸链活性的维持是否与其抗氧化功能有关。【方法】比较在不同类型的氧化胁迫试剂作用下,野生菌BY4742、POS5基因缺失体pos5Δ及其回补体pos5Δ/POS5-YEp的呼吸链各个酶复合体的活性变化及细胞内活性氧水平变化。【结果】在非胁迫条件下,pos5Δ的各个复合体活性明显低于BY4742,而pos5Δ/POS5-YEp的活性有所恢复,这与它们的胞内活性氧水平相一致。在甲萘醌胁迫下,BY4742和pos5Δ的各个复合体活性都发生不同程度的下降,但pos5Δ/POS5-YEp的活性都升高。在H2O2、马来酸二乙酯胁迫下,除个别复合体外,BY4742、pos5Δ和pos5Δ/POS5-YEp的呼吸链复合体活性都降低,尤以pos5Δ的活性降低最为严重,BY4742的活性降低则较少,而pos5Δ/POS5-YEp在H2O2胁迫下的活性降低得到了缓解。说明甲萘醌、H2O2和马来酸二乙酯胁迫会造成酿酒酵母呼吸链各个复合体发生损伤,而过表达Pos5p则有助于缓解甲萘醌和H2O2引起的损伤。【结论】Pos5p对呼吸链的作用与其抗氧化功能有相关性。  相似文献   

16.
To examine the relationship between mitochondrial NADH (NADH(m)) and cardiac work output, NADH(m) and the amplitude and frequency of the contractile response of electrically paced rat heart cells were measured at 25 degrees C. With 5.4 mM glucose plus 2 mM beta-hydroxybutyrate, NADH(m) was reversibly decreased by 23%, and the amplitude of contraction was reversibly decreased by 27% during 4-Hz pacing. With glucose plus 2 mM pyruvate or with 10 mM 2-deoxy-D-glucose, NADH(m) was maintained during rapid pacing, and the contractile amplitude remained high. Phosphocreatine levels decreased with 2-deoxy-D-glucose administration but not with rapid pacing. Respiration increased to meet the increased ATP demand at 30 degrees C. The data suggest that 1) when NADH(m) is decreased during rapid pacing with defined substrates, the amplitude of contraction is decreased; 2) the amplitude of contraction during electrical pacing does not change with rate of pacing when both the ATP and NADH(m) levels are continuously replenished; and 3) the replenishment of NADH(m) during pacing with physiological substrates may be rate-limited by substrate supply to mitochondrial dehydrogenases. During activation of mitochondrial dehydrogenases, or a significant increase in free ADP induced by 2-deoxy-D-glucose, this rate limitation is bypassed or overcome.  相似文献   

17.
In this study, the function of the NAD(P)H dehydrogenase (NDH)-dependent pathway in suppressing the accumulation of reactive oxygen species in chloroplasts was investigated. Hydrogen peroxide accumulated in the leaves of tobacco (Nicotiana tabacum) defective in ndhC-ndhK-ndhJ (DeltandhCKJ) at 42 degrees C and 4 degrees C, and in that of wild-type leaves at 4 degrees C. The maximum quantum efficiency of PSII decreased to a similar extent in both strains at 42 degrees C, while it decreased more evidently in DeltandhCKJ at 4 degrees C. The parameters linked to CO(2) assimilation, such as the photochemical efficiency of PSII, the decrease of nonphotochemical quenching following the initial rise, and the photosynthetic O(2) evolution, were inhibited more significantly in DeltandhCKJ than in wild type at 42 degrees C and were seriously inhibited in both strains at 4 degrees C. While cyclic electron flow around PSI mediated by NDH was remarkably enhanced at 42 degrees C and suppressed at 4 degrees C. The proton gradient across the thylakoid membranes and light-dependent ATP synthesis were higher in wild type than in DeltandhCKJ at either 25 degrees C or 42 degrees C, but were barely formed at 4 degrees C. Based on these results, we suggest that cyclic photophosphorylation via the NDH pathway might play an important role in regulation of CO(2) assimilation under heat-stressed condition but is less important under chilling-stressed condition, thus optimizing the photosynthetic electron transport and reducing the generation of reactive oxygen species.  相似文献   

18.
It is well established that oxidative stress is enhanced in diabetes. However, the major in vivo source of oxidative stress is not clear. Here we show that vascular NAD(P)H oxidase may be a major source of oxidative stress in diabetic and obese models. In vivo electron spin resonance (ESR)/spin probe was used to evaluate systemic oxidative stress in vivo. The signal decay rate of the spin probe (spin clearance rate; SpCR) significantly increased in streptozotocin-induced diabetic rats 2 weeks after the onset of diabetes. This increase was completely normalized by treatment with the antioxidants alpha-tocopherol (40 mg/kg) and superoxide dismutase (5000 units/kg), and was significantly inhibited by treatment with a PKC-specific inhibitor, CGP41251 (50 mg/kg), and a NAD(P)H oxidase inhibitor, apocynin (5 mg/kg). Both obese ob/ob mice (10 weeks old) with mild hyperglycemia and Zucker fatty rats (11 weeks old) with normoglycemia exhibited significantly increased SpCR as compared with controls. Again, this increase was inhibited by treatment with both CGP41251 and apocynin. Oral administration of insulin sensitizer, pioglitazone (10 mg/kg), for 7 days also completely normalized SpCR values. These results suggest that vascular NAD(P)H oxidase may be a major source of increased oxidative stress in diabetes and obesity.  相似文献   

19.
The reduction of plastoquinone by NADPH was detected as an increasein the dark level of Chi fluorescence in osmotically rupturedchloroplasts of spinach. This activity was observed only whenthe chloroplasts were ruptured in a medium containing a highconcentration of MgCl2. The activity was suppressed by inhibitorsof the respiratory NADH dehydrogenase (NDH) complex in mitochondria,capsaicin and amobarbital, suggesting that the activity wasmediated by chloroplastic NDH complex. Antimycin A, an inhibitorof ferredoxin-quinone reductase (FQR), and the protonophorenigericin also inhibited the increase in Chi fluorescence byNADPH. By contrast, JV-ethylmaleimide (NEM), an inhibitor offerredoxin-NADP+ reductase (FNR), did not suppress the fluorescenceincrease, showing that FNR is not involved in this reaction.When the osmotically ruptured chloroplasts were washed by centrifugation,a further addition of ferredoxin as well as NADPH was requiredfor an increase in fluorescence. This ferredoxin-de-pendentactivity also was suppressed by antimycin A, but only partlyinhibited by capsaicin or amobarbital, suggesting that thisis mediated mainly by FQR. These findings suggest that the NADPH-bindingsubunit of NDH complex is easily dissociated from the thylakoidmembranes during the process of the washing the thylakoids bycentrifugation. 3Present address: Shanghai Institute of Plant Physiology, AcademiaSinica, 300 Fenglin Road, Shanghai 200032, China 5Present address: Department of Biotechnology, Faculty of Engineering,Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima, 729-02Japan  相似文献   

20.
Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号