首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The allometric relationship of stem length L with respect to mean stem diameter D was determined for 80 shoots of each of three columnar cactus species (Stenocereus thurberi, Lophocereus schottii, and S. gummosus) to determine whether this relationship accords with that predicted by each of three contending models purporting to describe the mechanical architecture of vertical shoots (i.e., geometric, stress, and elastic similitude, which predict L proportional to D(alpha), with alpha = 1/1, 1/2, and 2/3, respectively). In addition, anatomical, physical, and biomechanical stem properties were measured to determine how the stems of these three species maintain their elastic stability as they increase in size. Reduced major axis regression of L with respect to D showed that alpha = 2.82 ± 0.14 for S. thurberi, 2.32 ± 0.19 for L. schottii, and 4.21 ± 0.31 for S. gummosus. Thus, the scaling exponents for the allometry of L differed significantly from that predicted by each of the three biomechanical models. In contrast, these exponents were similar to that for the allometry previously reported for saguaro. Analyses of biomechanical data derived from bending tests performed on 30 stems selected from each of the three species indicated that the bulk stem tissue stiffness was roughly proportional to L2, while stem flexural rigidity (i.e., the ability to resist a bending force) scaled roughly as L3. Stem length was significantly and positively correlated with the volume fraction of wood, while regression analysis of the pooled data from the three species (i.e., 90 stems) indicated that bulk tissue stiffness scaled roughly as the 5/3-power of the volume fraction of wood in stems. These data were interpreted to indicate that wood served as the major stiffening agent in stems and that this tissue accumulates at a sufficient rate to afford unusually high scaling exponents tot stem length with respect to stem diameter (i.e., disproportionately large increments of stem length with respect to increments in stem diameter). Nevertheless, the safety factor against the elastic failure of stems (computed on the basis of the critical buckling height divided by actual stem length) decreased with increasing stem size tot each species, even though each species maintained an average safety factor equal to two. We speculate that the apparent upper limit to plant height calculated for each species may serve as a biomechanical mechanism for vegetative propagation and the establishment of dense plant colonies by means of extreme stem flexure and ultimate breakage, especially for S. gummosus.  相似文献   

2.
A mathematical method, based on polar coordinates that allow modelling of primary and secondary growth processes in stems of extant and fossil plants, is summarized and its potential is discussed in comparison with numerical methods using digitizing tablets or electronic image analysing systems. As an example, the modelling of tissue distribution in the internode of an extant sphenopsid (Equisetum hyemale) is presented. In the second half of the paper we present new data of a functional analysis of stem structure and biomechanics of the early lignophyte Tetraxylopteris schmidtii (Middle Devonian) using the polar coordinate method for modelling the tissue distribution in stems of different ontogenetic age. Calculations of the mechanical properties of the stems, based on the modelling of the tissue arrangement, indicate that there is no increase in structural bending modulus throughout the entire development of the plant. The oldest ontogenetic stage has a significantly smaller bending elastic modulus than the intermediate ontogenetic stage, a 'mechanical signal', which is not consistent with a self-supporting growth form. These results, and the ontogenetic variations of the contributions of different stem tissues to the flexural stiffness of the entire stem, are discussed in the evolutionary context of cambial secondary growth.  相似文献   

3.
A glasshouse experiment investigated the effect of bending stress on stem radial and height growth and stem taper ofEucalyptus regnans seedlings. Eighteen-week-old, potted seedlings were bent continuously for 8 weeks with a static bending stress. The bending treatment was then removed and the seedlings grown for another 12 weeks. Other seedlings were stayed vertically throughout the experiment whilst control seedlings were neither bent nor stayed. Seedlings were rotated every 2 days to prevent reaction wood developing asymmetrically in the stems of bent trees. Bent trees had higher radial growth rates, developed more tapered stems and had higher safety factors (the ratio of stem radius to the minimum radius required to prevent the tree toppling over) than unbent seedlings. They produced a band of tension wood in their stems and ceased height growth whilst bent. When bending ceased, they resumed normal radial and height growth. Unbent trees developed more cylindrical stems. There were no differences in growth behaviour between stayed and control trees. Bent and unbent trees all developed a butt swell, the taper of which was not affected by treatment. It was concluded that bending stress has substantial effects on both the size and taper of tree stems. However, the development of butt swell is independent of the bending stress applied. The results were considered in relation to biomechanical theories of tree stem development.  相似文献   

4.
The drag forces, bending moments and stresses acting on stems differing in size and location within the mechanical infrastructure of a large wild cherry (Prunus serotina Ehrh.) tree are estimated and used to calculate the factor of safety against wind-induced mechanical failure based on the mean breaking stress of intact stems and samples of wood drawn from this tree. The drag forces acting on stems are calculated based on stem projected areas and field measurements of wind speed taken within the canopy and along the length of the trunk. The bending moments and stresses resulting from these forces are shown to increase basipetally in a nearly log-log linear fashion toward the base of the tree. The factor of safety, however, varies in a sinusoidal manner such that the most distal stems have the highest factors of safety, whereas stems of intermediate location and portions of the trunk near ground level have equivalent and much lower factors of safety. This pattern of variation is interpreted to indicate that, as a course of normal growth and development, trees similar to the one examined in this study maintain a cadre of stems prone to wind-induced mechanical damage that can reduce the probability of catastrophic tree failure by reducing the drag forces acting on older portions of the tree. Comparisons among real and hypothetical stems with different taper experiencing different vertical wind speed profiles show that geometrically self-similar stems have larger factors of safety than stems tapering according to elastic or stress self-similarity, and that safety factors are less significantly influenced by the 'geometry' of the wind-profile.  相似文献   

5.
NIKLAS  KARL J. 《Annals of botany》1998,82(2):147-156
The herbaceous dicot speciesCapsella bursa-pastoris(Cruciferae)was used to determine the influence of chronic mechanical perturbationon the biomass allocation pattern (i.e. dry weight distributionamong roots, stems and reproductive structures) and the mechanicalproperties of roots and stems (i.e. tensile breaking stressand Young's modulus). It was hypothesized that mechanicallystimulated plants would allocate more of their total biomassto root systems and less to shoots compared to control plantsand that the breaking stress (a measure of strength) and Young'smodulus (a measure of material stiffness) would increase forroots and decrease for stems because these responses would adaptivelyreduce the bending moment at the base of shoots and increasethe anchorage strength of root systems. It was also hypothesizedthat mechanical perturbation would maladaptively reduce therelative fitness of individuals by reducing biomass allocationto their reproductive organs and the ability to broadcast seedsby means of elastic stem flexure. These hypotheses were testedby vibrating cultivated plants for 60 s every day during thecourse of growth to maturity and comparing their dry weightdistributions and the mechanical properties of their body parts(measured in tension) to those of undisturbed control plants.Based on a total of 51 experimentally manipulated and 44 controlplants for which mechanical properties were successfully tested,chronic organ flexure resulted in more massive root systemsand less massive vegetative shoots, increased the magnitudesof root breaking stress and Young's modulus and had the reverseeffect on stems, reduced the dry weight of reproductive structuresat maturity, delayed the formation of the first mature flowerand fruit, and accelerated the on-set of plant senescence comparedto control plants. These responses to chronic organ flexureare interpreted to be vegetatively adaptive, since they reducethe probability of stem and root failure as a consequence ofwind-pressure or foraging, and to be reproductively maladaptive,since they reduce reproductive effort and the ability to mechanicallydischarge seeds.Copyright 1998 Annals of Botany Company Adaptation, biomass allocation, biomechanics, elastic properties, roots, stems, thigmomorphogenesis.  相似文献   

6.
The mechanical properties of control and mechanically perturbed (MP) bean stems ( Phaseolus vulgaris L., ev. Cherokee wax) were compared. The rubbed plants were greatly hardened against mechanical rupture by previous MP. This hardening was due to a dramatic increase in the flexibility of the stems, but not in their stiffness. The MP-plants were able lo bend more than 90° without breaking, whereas the control plants broke after just slight bending. A comparison with other work reveals that different species utilize different tactics for achieving similar resistance to rupture due to mechanical stress.  相似文献   

7.
Klimeš  Adam  Klimešová  Lada  Bartušková  Alena  Klimešová  Jitka 《Plant Ecology》2020,221(11):1159-1166

Herbaceous climbers (vines) represent a growth strategy in which the stem lacks most of its supporting function. This has led to the hypothesis that herbaceous climbers are structural parasites that invest less into stems than self-supporting plants. So far, the support for this idea has been ambiguous, as woody and herbaceous plants have been discussed jointly and evidence is often based on young plants in pot experiments. We collected in wild fully grown temperate herbaceous climbers and self-supporting herbs to examine the idea. We made a phylogenetically informed comparison of biomass allocation into stems and leaves of 16 climber species and 74 self-supporting herbs. Furthermore, we compared our results with those published for woody climbers to gain insight into different biomass allocation between herbaceous and woody growth forms. We found that herbaceous climbers and self-supporting herbs do not differ in their proportion of stem biomass to leaf biomass. Herbaceous climbers reach much higher in the canopy thanks to their climbing habit and in average more than seven times longer stems, but contrary to the expectation and unlike their woody counterparts, they do not save on investment into the stem. Herbaceous climbers and self-supporting herbs represent a study system which provides insight into biomass scaling with versus without supporting function where both stems as well as leaves are seasonal.

  相似文献   

8.
A lettuce (Lactuca sativa L.) mutant that exhibits a procumbent growth habit was identified and characterized. In two wild type (WT) genetic backgrounds, segregation patterns revealed that the mutant phenotype was controlled by a recessive allele at a single locus, which was designated weary. Hypocotyls and inflorescence stems of plants homozygous for the weary allele exhibited reduced gravitropic responses compared with WT plants, but roots exhibited normal gravitropism. Microscopic analysis revealed differences in the radial distribution of amyloplasts in hypocotyl and inflorescence stem cells of weary and WT plants. Amyloplasts occurred in a single layer of endodermal cells in WT hypocotyls and inflorescence stems. By contrast, amyloplasts were observed in several layers of cortical cells in weary hypocotyls, and weary inflorescence stem cells lacked amyloplasts entirely. These results are consistent with the proposed role of sedimenting amyloplasts in shoot gravitropism of higher plants. The phenotype associated with the weary mutant is similar to that described for the Arabidopsis mutant sgr1/scr, which is defective in radial patterning and gravitropism.  相似文献   

9.
Studies on tree biomechanical design usually focus on stem stiffness, resistance to breakage or uprooting, and elastic stability. Here we consider another biomechanical constraint related to the interaction between growth and gravity. Because stems are slender structures and are never perfectly symmetric, the increase in tree mass always causes bending movements. Given the current mechanical design of trees, integration of these movements over time would ultimately lead to a weeping habit unless some gravitropic correction occurs. This correction is achieved by asymmetric internal forces induced during the maturation of new wood.The long-term stability of a growing stem therefore depends on how the gravitropic correction that is generated by diameter growth balances the disturbance due to increasing self weight. General mechanical formulations based on beam theory are proposed to model these phenomena. The rates of disturbance and correction associated with a growth increment are deduced and expressed as a function of elementary traits of stem morphology, cross-section anatomy and wood properties. Evaluation of these traits using previously published data shows that the balance between the correction and the disturbance strongly depends on the efficiency of the gravitropic correction, which depends on the asymmetry of wood maturation strain, eccentric growth, and gradients in wood stiffness. By combining disturbance and correction rates, the gravitropic performance indicates the dynamics of stem bending during growth. It depends on stem biomechanical traits and dimensions. By analyzing dimensional effects, we show that the necessity for gravitropic correction might constrain stem allometric growth in the long-term. This constraint is compared to the requirement for elastic stability, showing that gravitropic performance limits the increase in height of tilted stem and branches. The performance of this function may thus limit the slenderness and lean of stems, and therefore the ability of the tree to capture light in a heterogeneous environment.  相似文献   

10.
Plants in light-limited tropical rainforest understories face an important carbon allocation trade-off: investment of available carbon into photosynthetic tissue should be advantageous, while risk of damage and mortality from falling debris favors investment into nonphotosynthetic structural tissue. We examined the modulus of rupture (σ(max)), Young's modulus of elasticity (E), and flexural stiffness (F) of stems and petioles in 14 monocot species from six families. These biomechanical properties were evaluated with respect to habitat, rates of leaf production, clonality, and growth form. Species with higher E and σ(max), indicating greater resistance per unit area to bending and breaking, respectively, tended to be shade-tolerant, slow growing, and nonclonal. This result is consistent with an increase in carbon allocation to structural tissue in shade-tolerant species at the expense of photosynthetic tissue and growth. Forest- edge species were weaker per unit area (had a lower E), but had higher flexural stiffness due to increases in stem and petiole diameter. While this is inefficient in requiring more carbon per unit of structural support, it may enable forest-edge species to support larger and heavier leaves. Our results emphasize the degree to which biomechanical traits vary with ecological niche and illustrate suites of characteristics associated with different carbon allocation strategies.  相似文献   

11.
Ethylene at 1.0 and 10.0 cubic centimeters per cubic meter decreased the rate of gravitropic bending in stems of cocklebur (Xanthium strumarium L.) and tomato (Lycopersicon esculentum Mill), but 0.1 cubic centimeter per cubic meter ethylene had little effect. Treating cocklebur plants with 1.0 millimolar aminoethoxyvinylglycine (AVG) (ethylene synthesis inhibitor) delayed stem bending compared with controls, but adding 0.1 cubic centimeter per cubic meter ethylene in the surrounding atmosphere (or applying 0.1% ethephon solution) partially restored the rate of bending of AVG-treated plants. Ethylene increases in bending stems, and AVG inhibits this. Virtually all newly synthesized ethylene appeared in bottom halves of horizontal stems, where ethylene concentrations were as much as 100 times those in upright stems or in top halves of horizontal stems. This was especially true when horizontal stems were physically restrained from bending. Ethylene might promote cell elongation in bottom tissues of a horizontal stem or indicate other factors there (e.g. a large amount of `functioning' auxin). Or top and bottom tissues may become differentially sensitive to ethylene. Auxin applied to one side of a vertical stem caused extreme bending away from that side; gibberellic acid, kinetin, and abscisic acid were without effect. Acidic ethephon solutions applied to one side of young seedlings of cocklebur, tomato, sunflower (Helianthus annuus L.), and soybean (Glycine max [L.] Merr.) caused bending away from that side, but neutral ethephon solutions did not cause bending. Buffered or unbuffered acid (HCl) caused similar bending. Neutral ethephon solutions produced typical ethylene symptoms (i.e. epinasty, inhibition of stem elongation). HCl or acidic ethephon applied to the top of horizontal stems caused downward bending, but these substances applied to the bottom of such stems inhibited growth and upward bending—an unexpected result.  相似文献   

12.
Growth stress controls negative gravitropism in woody plant stems   总被引:4,自引:0,他引:4  
Yamamoto H  Yoshida M  Okuyama T 《Planta》2002,216(2):280-292
In the shoots of woody plant species, reaction-wood fibers are formed on the upper or lower side of the secondary xylem of a leaning trunk or branch wherever large, internal growth stress is generated. Negative gravitropic movement in woody plant stems is proposed to be the result of growth stress generated in the reaction-wood tissue. This study examines the interaction between bending moment due to increasing self-weight and recovery moment resulting from asymmetric growth stress, and tests a hypothesis that describes the relationship based on the structural mechanics "beam theory". Simulations of observed tree branch morphology of Magnolia kobus DC., Juniperus chinensis L., Abies saccharinensis Fr. Schum., and Prunus spachiana Kitamura f. spachiana cv. Plenarosea showed that (i) the growth stress generated in the reaction wood is sufficient to counteract the gravitropic response to increasing self-weight, and (ii) the specific directional angle of the shoot apex or preferred angle of the elongation zone plays an important role in controlling the spatial shape of the branch stem that is peculiar to plant species with large growth stress generated in the reaction-wood tissue.  相似文献   

13.
Patterns of spring development of lateral buds of mulberry (Morus alba L. cv. Shin-ichinose) coppice shoots on 11-year-old low-pruned stumps varied in response to girdling, pruning and arching. The erect controls showed a weak acrotonic (apex-favoring) growth habit, in which the majority of the buds, including the basal ones, sprouted and elongated in mid- and late April, and hence there was a prolonged imposition of dominance on the upper laterals in mid- and late May. In contrast, early spring girdling or pruning enhanced the activity of the upper buds of the proximal (lower) halves of the girdled stems or of the pruned stems, resulting in considerable dominance of the laterals from such buds in late April. Arching markedly inhibited buds on the under side of the arched stems, leading to poor shoots. By late April, the buds on the adaxial (upper) side readily grew into new vertical shoots, which dominated over the lateral ones. When studied by a multiple-node-cutting test, increased length of segments of post-dormant mulberry stems was accompanied by decreased bud activity of the segments and by decreased breaking ability of the lower buds within the segments, suggesting the importance of roots in the weak acrotonic habit of the erect stem in spring. By contrast, the acropetal influences of the attached stems can in part affect dominance relationships, perhaps mediated through competition for factors translocated from the roots. Continuous basal applications of abscisic acid inhibited bud break and shoot growth of the postdormant stem segments, but these inhibitory effects could be reversed by applied gibberellic acid A3 (GA3). Two phases of lateral bud dormancy in erect mulberry coppice shoots were identified. The first was characterized by a smaller breaking capacity in the upper buds than in the lower ones and hence by a basitonic (base-favoring) gradient in bud growth potential. The second phase corresponded to a restoration of these capabilities in the upper buds and to a change towards a linear gradient in bud growth potential, with disappearance of the dormant condition, in February and March. This gradient change during dormancy release may represent the physiological basis for the weak acrotonic habit of erect mulberry stems in spring.  相似文献   

14.

Background and Aims

Most tropical lianas have specialized organs of attachment such as twining stems, hooks or tendrils but some do not. Many climbers also have an early self-supporting phase of growth and in some species this can produce treelet-sized individuals. This study focuses on how a liana can climb without specialized attachment organs and how biomechanical properties of the stem are modulated between self-supporting treelets and canopy-climbing lianas.

Methods

Biomechanics and stem development were investigated in self-supporting to climbing individuals of Manihot aff. quinquepartita (Euphorbiaceae) from tropical rain forest at Saül, central French Guiana. Bending tests were carried out close to the site of growth. Mechanical properties, including Young''s elastic modulus, were observed with reference to habit type and changes in stem anatomy during development.

Key Results

This liana species can show a remarkably long phase of self-supporting growth as treelets with stiff, juvenile wood characterizing the branches and main stem. During the early phase of climbing, stiff but unstable stem segments are loosely held in a vertical position to host plants via petiole bases. The stiffest stems – those having the highest values of Young''s modulus measured in bending – belonged to young, leaning and climbing stems. Only when climbing stems are securely anchored into the surrounding vegetation by a system of wide-angled branches, does the plant develop highly flexible stem properties. As in many specialized lianas, the change in stiffness is linked to the development of wood with numerous large vessels and thin-walled fibres.

Conclusions

Some angiosperms can develop highly effective climbing behaviour and specialized flexible stems without highly specialized organs of attachment. This is linked to a high degree of developmental plasticity in early stages of growth. Young individuals in either open or closed marginal forest conditions can grow as substantial treelets or as leaning/climbing plants, depending on the availability of host supports. The species of liana studied differs both in terms of development and biomechanics from many other lianas that climb via twining, tendrils or other specialized attachment organs.Key words: Biomechanics, bending, developmental plasticity, French Guiana, liana, Manihot aff. quinquepartita (Euphorbiaceae), treelet, branch angle climber, Young''s modulus  相似文献   

15.
The uniform stress hypothesis of stem formation was evaluated by comparing stem taper of Abies balsamea, Abies lasiocarpa, Picea rubens, Pinus contorta, Pinus elliottii, Pinus palustris, Pinus ponderosa, Pinus taeda, and Pseudotsuga menziesii to the taper expected if stems develop to uniformly distribute bending stress. The comparison was conducted by regressing stem diameter at height h (Dh) against bending moment at h (Mh) using the model Dh=J (Mh)' where J and ' are fitted coefficients, and testing for '=0.333, the hypothesized value. Twelve curves were fitted with the model. Seven of the fitted values of ' were significantly different from 0.333, but eight of the values were within ᆞ% of 0.333 and eleven values were within ᆣ% of 0.333. Where the fitted value of ' was >15% of 0.333, residuals were biased with height. Fit by relative height, values of ' were within ᆞ% of 0.333 for large portions of these stems. While most of the fitted values of ' support the uniform-stress hypothesis, the values of ' for Pseudotsuga menziesii trees clearly did not. Many of the fitted values of J were inversely related to the modulus of elasticity (E) of green wood reported for these species. With the exception of Pseudotsuga menziesii, growing conditions appeared to account for extraordinary values of J. Increases in J with stem height corresponded with reported decreases in E with height. The covariance between J and E suggests some regulation of bending curvature by adjustments in cross-sectional area. These results suggest that stems taper to maintain a uniform bending curvature and that when E is relatively constant within and among stems, diameter along the stem or across stems can be predicted from bending moment using a simple power function.  相似文献   

16.
Species of Opuntia exhibit a wide range of morphologies. Understanding these morphologies may require knowledge of the mechanical stresses on joints of stem segments and as well as the internal components in joints that withstand joint failure (separation of the terminal cladode from the sub-terminal cladode after weights were applied perpendicularly to the long axis). Results of stress testing terminal cladodes of Opuntia laevis provided the following conclusions: (1) amounts of applied stress for joint failure were not related to the amounts of stress on joints before stress testing; (2) breaking strength (failure stress) was accurately determined for joints from linear plots of M (bending moment) versus I/c (section modulus) [breaking stress for O. laevis was 2.77 kPa]; (3) bending moments at failure were twice as high for tensile portions than for compressive portions of joints; and (4) bending moments at failure were positively correlated with amounts of lignified xylem cells in joints [for each mm2 of lignified xylem cells in joints there was an increase of 0.06 N m of bending moment]. These data support the overall hypothesis that bending stresses are the main stresses at joints of Opuntia laevis and that lignified xylem cells are the main components that resist joint failure. Moreover, since tensile portions have more lignified xylem cells than other stem portions, tensile portions can resist more applied stress.  相似文献   

17.
We investigated the hypothesis that the epidermis is a tension-stressed "skin' whose contribution to stem stiffness depends on the turgor pressure exerted on it by an hydrostatically inflated inner "core' of tissues. This hypothesis was tested by relying on the intensities of bending stresses due to stem flexure, which must reach their maximum levels at the outer surface of epidermis such that damage to the surface of the stem should produce the most significant decrease in overall flexural stiffness. We discerned whether the principal tension supporting members at the stem surface (cellulosic microfibrils) were oriented parallel or normal to stem length by comparing the bending stiffness of stems before and after their surface cells first received three parallel longitudinal incisions followed by one helical incision, and by comparing the bending stiffness of stems for which the sequence of cuts was reversed. The same protocol was also applied to stems with various water potentials to determine the effect of hydrostatic pressure on stem stiffness contributed by the surface. Based on the behavior of 82 turgid Tulipa stems, parallel cuts reduced, on average, stem stiffness by 8%, whereas a subsequent helical incision further reduced stiffness by 42%. In contrast, an initial helical incision reduced stem stiffness by 50%, while three subsequent parallel cuts through the same stems did not significantly further reduce stiffness. These results suggested that the net orientation of cellulose microfibrils in the outer epidermal walls was parallel to stem length. This was confirmed by microscopic observations of cells with dichroic staining and polarized light. The responses to surgical damage were directly proportional to stem water potential. We thus conclude that the epidermis, probably in conjunction with a single layer of subepidermal collenchyma cells, acts as a tension-stiffening agent that can contribute as much as 50% to overall stem stiffness We present a simple mechanical model that can account for all our observations.  相似文献   

18.
A large permineralized calamitean stem, Arthropitys yunnanensis Tian et Gu from the Upper Permian of southwest China is reinvestigated and interpreted. The stem has a broad pith and well developed and large carinal canals. Secondary xylem is thick and characterized by wide parenchymatous interfascicular zones that remain constant in width throughout the wood. Striking features of the stem include the abundant leaf traces arranged in two whorls in the cortex with this arrangement previously unrecognized within calamitean stems, and the presence of growth rings in secondary xylem that suggest frequent fluctuations in environmental stress presumably due to variations in water availability. Features of A. yunnanensis infer the stem to be in the epidogenetical phase of calamitean development, and suggest it to be the basal part of a large trunk. Comparisons with biomechanical models for calamitean stems suggest this species had a semi-self supporting habit.  相似文献   

19.
The neotropical liana Croton nuntians (Euphorbiaceae) can occur in a variety of different growth habits. Juvenile freestanding plants are mechanically stable without support and resemble morphologically young trees or shrubs, whereas adult plants are climbers. Ontogenetic variation of bending and torsion properties of different growth phases are analyzed by measurements of flexural stiffness, structural bending modulus, torsional stiffness and structural torsional modulus. Mechanical and anatomical data show two fundamentally different patterns for juvenile freestanding and adult climbing plants. In freestanding plants, mechanical properties and the contribution of cortex, wood, and pith to the stem cross-section vary only little during ontogeny as is typical for semi-self-supporting plants. In contrast, climbing plants become significantly more flexible during ontogeny, as is characteristic for lianas. This is accompanied by a transition to the formation of a less dense wood type with large diameter vessels and an increasing contribution of flexible tissues (less dense wood and cortex) to the cross-sectional area and the axial second moment of area of the stems. Depending on the environmental conditions, freestanding plants can differ considerably in their appearance due to differences in branching system or stem taper. Therefore the influence of light quantity, measured as percentage of canopy opening, on the mechanical properties and the stem anatomy was tested. Freestanding plants grown with strong shade are significantly more stiff in bending compared with plants grown with a moderate light environment.  相似文献   

20.
We calculated the wind-induced bending moments and stresses generated in the stems of five Prunus serotina conspecifics differing in height and canopy shape and size (based on detailed measurements of stem projected area and location with respect to ground level) to test the hypothesis that wind-loads generate uniform and constant stress levels along the lengths of tree twigs, branches, and trunks. These calculations were performed using five different wind speed profiles to evaluate the relative importance of the shape of wind speed profiles versus the ’geometry’ of tree shape on stem stress distributions and magnitudes. Additionally, we evaluated the effect of absolute tree size and stem taper on wind- induced stresses by scaling the size of smaller conspecifics to the absolute height of the largest of the five trees yet retaining the original stem proportions (i.e., diameter relative to stem length) for each plant. Finally, we also determined how the factor of safety for wind-loading (i.e., the quotient of stem yield stress and wind-load stress) changed as a function of tree size (and, presumably, age). Our results indicate that wind-load stress levels (1) vary along stem length even for the same wind speed profile and the same maximum wind speed; (2) would increase to dangerous levels with increasing tree height if it were not for ontogenetic changes in stem taper and canopy shape that reduce stress intensities to manageable levels; (3) tend to be more dependent on stem taper and canopy shape and size than on the shape of the wind speed profile; and (4) the factor of safety against wind-induced mechanical failure decreases as trees get larger, but varies along the length of large trees such that preferential stem failure is likely and functionally adaptive. We thus (1) reject the hypothesis of constant wind-induced stress levels; (2) support the view that size-dependent changes in stem taper are required to maintain wind-load mechanical reliability; and (3) suggest that certain portions of mature trees are ’designed’ to fail under high winds speeds, thereby reducing drag and the bending moments and stresses experienced by trunks. Received: 24 May 1999 / Accepted: 8 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号