首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A study of inflorescence and flower development in 12 species from four of the six subgenera of Gunnera (Gunneraceae) was carried out. In the species of subgenus Panke, initiation of floral apices along the partial inflorescences is acropetal but ends up in the late formation of a terminal flower, forming a cyme at maturity. The terminal flower is the largest and the most complete in terms of merosity and number of whorls and thus it is the most diagnostic in terms of species‐level taxonomy. The lateral flowers undergo a basipetal gradient of organ reduction along the inflorescence, ranging from bisexual flowers (towards the distal region) to functionally (i.e. with staminodia) and structurally female flowers (towards the proximal region). Our results show that the terminal structure in Gunnera is a flower rather than a pseudanthium. The terminal flower is disymmetric, dimerous and bisexual, representing the common bauplan for Gunnera flowers. It has a differentiated perianth with two sepals and two alternate petals, the latter opposite the stamens and carpels. Comparisons with other members of the core eudicots with labile floral construction are addressed. We propose vegetative and floral putative synapomorphies for the sister‐group relationship between Gunneraceae and Myrothamnaceae. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 262–283.  相似文献   

2.
Based on analyses of combined data sets of three genes (18S rDNA, rbcL, and atpB), phylogenetic relationships among the early-diverging eudicot lineages (Ranunculales, Proteales, Trochodendraceae, Sabiaceae, and Buxaceae) remain unclear, as are relationships within Ranunculales, especially the placement of Eupteleaceae. To clarify relationships among these early-diverging eudicot lineages, we added entire sequences of 26S rDNA to the existing three-gene data set. In the combined analyses of four genes based on parsimony, ML, and Bayesian analysis, Ranunculales are strongly supported as a clade and are sister to other eudicots. Proteales appear as sister to the remaining eudicots, which are weakly (59%) supported as a clade. Relationships among Trochodendraceae, Buxaceae (including Didymeles), Sabiaceae, and Proteales remain unclear. Within Ranunculales, Eupteleaceae are sister to all other Ranunculales, with bootstrap support of 70% in parsimony analysis and with posterior probability of 1.00 in Bayesian analysis. Our character reconstructions indicate that the woody habit is ancestral, not only for the basal angiosperms, but also for the eudicots. Furthermore, Ranunculales may not be ancestrally herbaceous, as long maintained. The woody habit appears to have been ancestral for several major clades of eudicots, including Caryophyllales, and asterids.  相似文献   

3.
A phylogenetic analysis of a combined data set for 560 angiosperms and seven outgroups based on three genes, 18S rDNA (1855 bp), rbcL (1428 bp), and atpB (1450 bp) representing a total of 4733 bp is presented. Parsimony analysis was expedited by use of a new computer program, the RATCHET. Parsimony jackknifing was performed to assess the support of clades. The combination of three data sets for numerous species has resulted in the most highly resolved and strongly supported topology yet obtained for angiosperms. In contrast to previous analyses based on single genes, much of the spine of the tree and most of the larger clades receive jackknife support 250%. Some of the noneudicots form a grade followed by a strongly supported eudicot clade. The early‐branching angiosperms are Amborellaceae, Nymphaeaceae, and a clade of Austrobaileyaceae, Illiciaceae, and Schi‐sandraceae. The remaining noneudicots, except Ceratophyllaceae, form a weakly supported core eumagnoliid clade comprising six well‐supported subclades: Chloranthaceae, monocots, WinteraceaeICanellaceae, Piperales, Laurales, and Magnoliales. Ceratophyllaceae are sister to the eudicots. Within the well‐supported eudicot clade, the early‐diverging eudicots (e.g. Proteales, Ranunculales, Trochodendraceae, Sabiaceae) form a grade, followed by the core eudicots, the monophyly of which is also strongly supported. The core eudicots comprise six well‐supported subclades: (1) Berberidopsidaceae/Aextoxicaceae; (2) Myrothamnaceae/ Gunneraceae; (3) Saxifragales, which are the sister to Vitaceae (including Leea) plus a strongly supported eurosid clade; (4) Santalales; (5) Caryophyllales, to which Dilleniaceae are sister; and (6) an asterid clade. The relationships among these six subclades of core eudicots do not receive strong support. This large data set has also helped place a number of enigmatic angiosperm families, including Podostemaceae, Aphloiaceae, and Ixerbaceae. This analysis further illustrates the tractability of large data sets and supports a recent, phylogenetically based, ordinal‐level reclassification of the angiosperms based largely, but not exclusively, on molecular (DNA sequence) data.  相似文献   

4.
Merosity in flowers: Definition,origin, and taxonomic significance   总被引:2,自引:0,他引:2  
The term merosity stands for the number of parts within whorls of floral organs, leaves, or stems. Trimery is considered to be a basic condition that arose through the cyclisation of a spiral flower. Pentamery is mostly derived from trimery by the repetitive fusion of two different whorls. Dimery is either directly derived from trimery, or through pentamery as an intermediate stage. Tetramery is linked with pentamery and should not be confused with dimery. Possible causes for a change in merosity are the reduction of the number of carpels and zygomorphy in flowers. Derivations of different merosities have important consequences for the arrangement of the androecium (the insertion of stamen whorls, their identifications, and their number). It is concluded that two main groups can be identified within the angiosperms: magnolialean and monocotyledonean taxa are mostly trimerous or dimerous; non-magnolialean dicots are mostly pentamerous or tetramerous.  相似文献   

5.
The poorly known Haloragaceae R. Br. (Saxifragales) are highly diverse in habit (small trees to submerged aquatics) and labile in floral merosity (2-4), both uncommon among the core eudicots. This family has a cosmopolitan distribution, but taxonomic diversity is concentrated in Australia. An explicit phylogenetic approach has not previously been utilized to examine relationships or character evolution in this family. We used molecular evidence from nrDNA ITS and cpDNA trnK and matK regions under both Bayesian and parsimony analyses to address phylogenetic relationships. Combined molecular analyses defined a monophyletic Haloragaceae with the woody genera (Haloragodendron, Glischrocaryon) sister to the rest. Relationships among many genera were well resolved, with genera as currently delimited generally well supported, although there were notable exceptions; a new genus (Trihaloragis) is recognized, and the aquatic genus Meionectes is again distinct from Haloragis. Three new species combinations are also recognized. There are multiple (two or three) origins of the submerged aquatic habit in the family and potentially an intermediate reversal to the terrestrial habit, neither previously demonstrated in a core eudicot family using an explicit phylogenetic hypothesis. Ancestral character analyses suggest two origins of trimerous flowers and multiple reductions to dimerous flowers throughout Haloragaceae.  相似文献   

6.
In this paper we study merosity in the genus Urospatha within the framework of a resolved phylogeny of the Araceae. We analyse how a transition from dimerous or tetramerous merosity to pentamerous or hexamerous merosity can occur developmentally in the Lasioideae. In Urospatha, initiation of floral primordia along the inflorescence is acropetal, while development of flowers is basipetal. This indicates the presence of two distinct phases in the development of the Urospatha inflorescence. The first phase corresponds to initiation of flowers and establishment of the phyllotactic pattern, and the second phase to differentiation of floral organs. Urospatha is characterized by the presence of trimerous, tetramerous, pentamerous and rarely hexamerous flowers. In all types of flowers, the stamens are closely associated and opposite to the tepals. Pentamerous flowers are formed by addition of a sector comprising a stamen and tepal. Likewise, in the case of hexamerous flowers, two sectors are added. In the Lasioideae, the increase in the number of tepals and stamens is linked with two developmental processes that have appeared independently in the subfamily: (1) addition of one or two stamen?Cpetal sectors (Anaphyllopsis and Urospatha), and (2) independent increase in the number of tepals and stamens on whorls, more or less organized and inserted in alternate position (Dracontium). Tetramerous whorls as they occur in basal Lasioideae would be homologous to two dimerous whorls from an evolutionary point of view.  相似文献   

7.
An angiosperm phylogeny was reconstructed in a maximum likelihood analysis of sequences of four mitochondrial genes, atpl, matR, had5, and rps3, from 380 species that represent 376 genera and 296 families of seed plants. It is largely congruent with the phylogeny of angiosperms reconstructed from chloroplast genes atpB, matK, and rbcL, and nuclear 18S rDNA. The basalmost lineage consists of Amborella and Nymphaeales (including Hydatellaceae). Austrobaileyales follow this clade and are sister to the mesangiosperms, which include Chloranthaceae, Ceratophyllum, magnoliids, monocots, and eudicots. With the exception of Chloranthaceae being sister to Ceratophyllum, relationships among these five lineages are not well supported. In eudicots, Ranunculales, Sabiales, Proteales, Trochodendrales, Buxales, Gunnerales, Saxifragales, Vitales, Berberidopsidales, and Dilleniales form a basal grade of lines that diverged before the diversification of rosids and asterids. Within rosids, the COM (Celastrales-Oxalidales-Malpighiales) clade is sister to malvids (or rosid Ⅱ), instead of to the nitrogen-fixing clade as found in all previous large-scale molecular analyses of angiosperms. Santalales and Caryophyllales are members of an expanded asterid clade. This study shows that the mitochondrial genes are informative markers for resolving relationships among genera, families, or higher rank taxa across angiosperms. The low substitution rates and low homoplasy levels of the mitochondrial genes relative to the chloroplast genes, as found in this study, make them particularly useful for reconstructing ancient phylogenetic relationships. A mitochondrial gene-based angiosperm phylogeny provides an independent and essential reference for comparison with hypotheses of angiosperm phylogeny based on chloroplast genes, nuclear genes, and non-molecular data to reconstruct the underlying organismal phylogeny.  相似文献   

8.
An Early Cretaceous angiosperm, Sinocarpus decussatus gen. et sp. nov., is described from the Yixian Formation in Liaoning, China, based on an infructescence fragment. It is probably ebracteate, consisting of one terminal fruit and two pairs of pedicellate lateral fruits arranged decussately. Carpels are probably borne on a small convex receptacle. There are no distinct remnants of a perianth although fragments observed at the base of immature fruits may represent perianth parts. No remnants of androecial parts have been observed, and it is unknown whether the flowers were unisexual or bisexual. The basally syncarpous ovary is superior and composed of 3 or 4 carpels. Each carpel contains about 10 anatropous ovules/seeds borne along the linear placentae. Seeds are flattened and embedded in a thick amorphous material. The character combination of Sinocarpus indicates a systematic position among the basal grade of eudicots or the basal core eudicots, and particularly shows similarities to extant Ranunculaceae, Buxaceae, and Myrothamnaceae, but based on the available data the fossil cannot unambiguously be placed in any modern family.  相似文献   

9.
Agreement among recent morphological and molecular phylogenetic analyses has strengthened estimates of the relationships among the earliest lineages of the holometabolan order Lepidoptera. For a few major groups, evidence for monophyly and basal relationships remains relatively weak or contradictory — chiefly within the clades of basal Glossata and Heteroneura. Here we assess the support for these controversial areas of lepidopteran classification through molecular systematic investigation of 18S rDNA sequence variation. Parsimony and maximum likelihood analyses are presented for 1379 alignable sites of 18S. These data are then combined with 61 morphological features scored for major lineages of basal Glossata and Heteroneura. Our 18S rDNA data support recent hypotheses for the placement of Micropterigidae and Agathiphagidae as the basal-most lineages of Lepidoptera, and support the monophyly of the groups Neolepidoptera and Exoporia. 18S data alone are shown to be insufficient for resolving the monophyly and relationships of the Glossata, and for specifying relationships above the Neolepidoptera. Combination of the 18S data with published morphological ground-plan scorings improves overall support for the morphology-based hypothesis for basal glossatans, but phylogenetic resolution among published alternatives for the basal Heteroneura remains a major question for lepidopteran systematics.  相似文献   

10.
BACKGROUND AND AIMS: On the basis of molecular evidence Berberidopsidaceae have been linked with Aextoxicaceae in an order Berberidopsidales at the base of the core Eudicots. The floral development of Berberidopsis is central to the understanding of the evolution of floral configurations at the transition of the basal Eudicots to the core Eudicots. It lies at the transition of trimerous or dimerous, simplified apetalous forms into pentamerous, petaliferous flowers. METHODS: The floral ontogeny of Berberidopsis was studied with a scanning electron microscope. KEY RESULTS: Flowers are grouped in terminal racemes with variable development. The relationship between the number of tepals, stamens and carpels is more or less fixed and floral initiation follows a strict 2/5 phyllotaxis. Two bracteoles, 12 tepals, eight stamens and three carpels are initiated in a regular sequence. The number of stamens can be increased by a doubling of stamen positions. CONCLUSIONS: The floral ontogeny of Berberidopsis provides support for the shift in floral bauplan from the basal Eudicots to the core Eudicots as a transition of a spiral flower with a 2/5 phyllotaxis to pentamerous flowers with two perianth whorls, two stamen whorls and a single carpel whorl. The differentiation of sepals and petals from bracteotepals is discussed and a comparison is made with other Eudicots with a similar configuration and development. Depending on the resolution of the relationships among the basalmost core Eudicots it is suggested that Berberidopsis either represents a critical stage in the evolution of pentamerous flowers of major clades of Eudicots, or has a floral prototype that may be at the base of evolution of flowers of other core Eudicots. The distribution of a floral Bauplan in other clades of Eudicots similar to Berberidopsidales is discussed.  相似文献   

11.
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.  相似文献   

12.
Floral ontogenetical data from all four genera of the Didiereaceae (s.str.) are presented for the first time. All Didiereaceae s.str. are dioecious, having unisexual flowers with organ rudiments of the opposite sex. Two median bracts followed by a tetramerous perianth (two alternating dimerous ``whorls'), a slightly complex androecium with 6–12 stamens in a single row (on a common ring primordium), four of which mostly alternating with the perianth members, and one basal ovule connecting three free septa at their very base are flower characters in Didiereaceae, supporting phylogenetic analyses based on nucleotide sequence data. Closest relatives are the (formerly) portulacaceous genera Portulacaria (5 stamens alternating with the perianth), Ceraria (5 stamens alternating with the perianth), and Calyptrotheca (many stamens), all with pentamerous perianths, from which the tetramerous perianth in Didiereaceae can be derived. Applequist and Wallace (2003) included these three genera in an expanded family Didiereaceae (with three subfamilies).  相似文献   

13.
Recent phylogenetic analyses of molecular data have supported different hypotheses of relationships among Cornales,Ericales,and core asterids.Such hypotheses have implications for the evolution of important morphological and embryological features of asterids.In this study we generated plastid genome-scale data of Davidia (Cornales) and Franklinia (Ericales) and combined them with published sequence data of eudicots.Our maximum parsimony,maximum likelihood,and Bayesian analyses generated strongly supported and congruent phylogenetic relationships among the three major lineages of the asterids.Cornales diverges first in asterids; Ericales is sister to the core asterids.Adding two more taxa helps mitigate long branch attraction in parsimony analyses.Sampling 26-28 plastid protein-coding genes may provide satisfactory resolution and support for relationships of eudicots including basal lineages of asterids.  相似文献   

14.
Endoapertures, the inner openings of compound apertures in pollen grains, are common in eudicots, but occur infrequently in early-divergent eudicot lineages, in which they are restricted to three families: Menispermaceae, Sabiaceae and Buxaceae. Pollen of Sabiaceae was examined using light, scanning and transmission electron microscopy. The endoapertures are large and lalongate, and intine onci are associated with their development. Optimisation of endoapertures onto an existing angiosperm phylogeny indicates that endoapertures have evolved at least three times independently: in Menispermaceae, in Sabiaceae plus Buxaceae (or possibly separately in these two families), and in the core eudicot clade. Sabiaceae are unusual among early-divergent eudicots in that they possess some characters that are more common in core eudicots, including pollen with endoapertures and pentamerous flowers. This indicates either that they are more closely related to core eudicots than is indicated by current molecular evidence, or that these characters are homoplastic. The latter would suggest a high degree of experimentation prior to evolutionary canalisation of some key morphological features in eudicots. The evolution of endoapertures in early-divergent eudicots is probably associated with possession of endexine sculpture (endosculpture) such as endocracks; endoapertures may have been retained in eudicots as a harmomegathic mechanism.  相似文献   

15.
BACKGROUND: The aim of this paper is to discuss the controversial origins of petals from tepals or stamens and the links between the morphological expression of petals and floral organ identity genes in the core eudicots. SCOPE: I challenge the widely held classical view that petals are morphologically derived from stamens in the core eudicots, and sepals from tepals or bracts. Morphological data suggest that tepal-derived petals have evolved independently in the major lineages of the core eudicots (i.e. asterids, Santalales and rosids) from Berberidopsis-like prototypes, and that staminodial petals have arisen only in few isolated cases where petals had been previously lost (Caryophyllales, Rosales). The clear correlation between continuous changes in petal morphology, and a scenario that indicates numerous duplications to have taken place in genes controlling floral organ development, can only be fully understood within a phylogenetic context. B-gene expression plays a fundamental role in the evolution of the petals by controlling petaloidy, but it does not clarify petal homology. CONCLUSIONS: An increased synorganization of the flower in the core eudicots linked with the establishment of floral whorls restricts the petaloid gene expression to the second whorl, reducing the similarities of petals with tepals from which they were originally derived. An increased flower size linked with secondary polyandry or polycarpelly may lead to a breakdown of the restricted gene expression and a reversal to ancestral characteristics of perianth development. An altered 'sliding boundary' hypothesis is proposed for the core eudicots to explain shifts in petaloidy of the perianth and the event of staminodial petals. The repetitive changes of function in the perianth of the core eudicots are linked with shifts in petaloidy to the outer perianth whorl, or losses of petal or sepal whorls that can be secondarily compensated for by the inclusion of bracts in the flower. The origin and evolution of petals appears to be as complex on a molecular basis as it is from a morphological point of view.  相似文献   

16.
The angiosperms, one of five groups of extant seed plants, are the largest group of land plants. Despite their relatively recent origin, this clade is extremely diverse morphologically and ecologically. However, angiosperms are clearly united by several synapomorphies. During the past 10 years, higher-level relationships of the angiosperms have been resolved. For example, most analyses are consistent in identifying Amborella, Nymphaeaceae, and Austrobaileyales as the basalmost branches of the angiosperm tree. Other basal lineages include Chloranthaceae, magnoliids, and monocots. Approximately three quarters of all angiosperm species belong to the eudicot clade, which is strongly supported by molecular data but united morphologically by a single synapomorphy-triaperturate pollen. Major clades of eudicots include Ranunculales, which are sister to all other eudicots, and a clade of core eudicots, the largest members of which are Saxifragales, Caryophyllales, rosids, and asterids. Despite rapid progress in resolving angiosperm relationships, several significant problems remain: (1) relationships among the monocots, Chloranthaceae, magnoliids, and eudicots, (2) branching order among basal eudicots, (3) relationships among the major clades of core eudicots, (4) relationships within rosids, (5) relationships of the many lineages of parasitic plants, and (6) integration of fossils with extant taxa into a comprehensive tree of angiosperm phylogeny.  相似文献   

17.
Flower developmental studies are a complement to molecular phylogenetics and a tool to understand the evolution of the angiosperm flower. Buds and mature flowers of Meliosma veitchiorum, M. cuneifolia, and M. dilleniifolia (Sabiaceae) were investigated using scanning electron microscopy to clarify flower developmental patterns and morphology, to understand the origin of the perianth merism, and to discuss the two taxonomic positions proposed for Sabiaceae, among rosids or in the basal grade of eudicots. Flowers in Meliosma appear pentamerous with two of the five sepals and petals strongly reduced, three staminodes alternating with two fertile stamens opposite the small petals, and a two-carpellate gynoecium. The flower development in Meliosma is spiral without distinction between bracteoles and sepals. Because of this development, sepals, petals, and stamens are almost opposite and not alternating as expected in cyclical pentamerous flowers. In four-sepal flowers the direction of petal initiation is reversed. The symmetry of the flower appears to be transversally zygomorphic, although this is hidden by the almost equal size of the larger petals. Evidence points to a unique pentamerous origin of flowers in Meliosma, and not to a trimerous origin, as earlier suggested, and adds support to multiple origins of pentamery in the eudicots.  相似文献   

18.
Members of the AP1/SQUA subfamily of plant MADS-box genes play broad roles in the regulation of reproductive meristems, the specification of sepal and petal identities, and the development of leaves and fruits. It has been shown that AP1/SQUA-like genes are angiosperm-specific, and have experienced several major duplication events. However, the evolutionary history of this subfamily is still uncertain. Here, we report the isolation of 14 new AP1/SQUA-like genes from seven early-diverging eudicots and the identification of 11 previously uncharacterized ESTs and genomic sequences from public databases. Sequence comparisons of these and other published sequences reveal a conserved C-terminal region, the FUL motif, in addition to the known euAP1/paleoAP1 motif, in AP1/SQUA-like proteins. Phylogenetic analyses further suggest that there are three major lineages (euAP1, euFUL, and AGL79) in core eudicots, likely resulting from two close duplication events that predated the divergence of core eudicots. Among the three lineages, euFUL is structurally very similar to FUL-like genes from early-diverging eudicots and basal angiosperms, whereas euAP1 might have originally been generated through a 1-bp deletion in the exon 8 of an ancestral euFUL- or FUL-like gene. Because euFUL- and FUL-like genes usually have broad expression patterns, we speculate that AP1/SQUA-like genes initially had broad functions. Based on these observations, the evolutionary fates of duplicate genes and the contributions of the frameshift mutation and alternative splicing to functional diversity are discussed.  相似文献   

19.
Simultaneous analysis of morphological and molecular characters from the 16S rDNA, 28S rDNA and cytochrome oxidase 1 genes was employed to resolve phylogenetic relationships among the apocritan (Insecta: Hymenoptera: Apocrita) wasps. Parsimony analyses, employing a broad range of models, consistently recovered the Proctotrupomorpha as a natural group, the Megalyridae and Trigonalidae as sister groups, a clade comprising the Monomachidae, Diapriidae, and Maamingidae, the Vanhorniidae and Proctotrupidae as sister groups, the Procto-trupoidea as polyphyletic, and the Evaniomorpha as a grade (but including the Ichneumonoidea, Aculeata, and Stephanidae). The Proctotrupomorpha, containing virtually all of the wholly endoparasitic lineages, was consistently recovered as an apical clade, with the remaining groups forming a parapbyletic grade below them. Although the relative placement of the groups forming this basal grade varied among analyses, the most commonly recovered arrangement is consistent with the ancestral biology being ectoparasitism of coleopteran, wood-boring larvae. Furthermore, the recovery of the ectoparasitic-containing proctotrupomorphs (Chalcidoidea and, in some analyses, Ceraphronoidea) as apical lineages argues that these biologies are reversals.  相似文献   

20.
Phylogenetic relationships among the five key angiosperm lineages,Ceratophyllum,Chloranthaceae,eudicots,magnoliids,and monocots,have resisted resolution despite several large-scale analyses sampling taxa and characters extensively and using various analytical methods.Meanwhile,compatibility methods,which were explored together with parsimony and likelihood methods during the early development stage of phylogenetics.have been greatly under-appreciated and not been used to analyze the massive amount of sequence data to reconstruct thye basal angiosperm phylogeny.In this study,we used a compatibility method on a data set of eight genes (mitochondrial atp1,matR,and nad5,plastid atpB,marK,rbcL,and rpoC2,and nuclear 18S rDNA)gathered in an earlier study.We selected two sets of characters that are compatible with more of the other characters than a random character would be with at probabilities of pM<0.1 and p<0.5 respectively.The resulting data matrices were subjected to parsimony and likelihood bootstrap analyses.Our unrooted parsimony analyses showed that Ceratophyllum was immediately related to eudicots,this larger lineage was immediately related to magnoliids,and monocots were closely related to Chloranthaceae.All these relationships received 76%-96% bootstrap support.A likelihood analysis of the 8 gene pM<0.5 compatible site matrix recovered the same topology but with low support.Likelihood analyses of other compatible site matrices produced different topologies that were all weakly supported.The topology reconstructed in the parsimony analyses agrees with the one recovered in the previous study using both parsimony and likelihood methods when no character was eliminated.Parts of this topology have also been recovered in several earlier studies.Hence,this topology plausibly reflects the true relationships among the five key angiosperm lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号