首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Woody plant encroachment into open grasslands occurs worldwide and causes multiple ecological and management impacts. Prescribed fire could be used to conserve grassland habitat but often has limited efficacy because many woody plants resprout after fire and rapidly reestablish abundance. If fire‐induced mortality could be increased, prescribed fire would be a more effective management tool. In California's central coast, shrub encroachment, especially of Baccharis pilularis (coyote brush), is converting coastal prairie into shrub‐dominated communities, with a consequent loss of native herbaceous species and open grassland habitat. B. pilularis has not been successfully controlled with single prescribed fire events because the shrub resprouts and reestablishes cover within a few years. We investigated whether two consecutive annual burns would control B. pilularis by killing resprouting shrubs, without reducing native herbaceous species or encouraging invasive plants. As expected, resprouting did occur; however, 2 years after the second burn, B. pilularis cover on burned plots was only 41% of the cover on unburned plots. Mortality of B. pilularis more than doubled following the second burn, likely maintaining a reduction in B. pilularis cover for longer than a single burn would have. Three native coastal prairie perennial grasses did not appear to be adversely affected by the two burns, nor did the burns result in increased cover of invasive species. Managers wanting to restore coastal prairie following B. pilularis encroachment should consider two consecutive annual burns, especially if moderate fire intensity is achievable.  相似文献   

2.
Little is known about the relationship between fire regimes and plant diversity in Australia's temperate grassy woodlands. The effect of fire frequency on shrubs in grassy woodland remnants across Western Sydney's Cumberland Plain was examined. Shrub species richness and composition were compared in sites that had experienced a high, moderate or low frequency of fire over the previous 20 years. Nine sites were surveyed, three in each fire frequency category; most sites, including all low‐fire‐frequency sites, had burnt 9–36 months prior to sampling. Fire frequency had a profound effect on the composition and structure of the shrub layer. Per cent frequency and density of the prickly shrub Bursaria spinosa (Pittosporaceae) was considerably higher in low‐fire‐frequency sites than where fires had occurred at least once a decade. In sites where fire had been absent for decades prior to a recent fire, this species dominated the landscape, while elsewhere it occurred as clumps in a grassy matrix. Per cent frequency of other native shrubs, particularly obligate seeders, was greatest at moderate fire frequencies. Exotic shrubs were recorded most often where fire had been rare. While ordination clearly separated out the low‐fire‐frequency sites, complete separation between high‐ and moderate‐fire‐frequency blocks was not achieved. The increase in Bursaria in the absence of fire mirrors the encroachment of woody plants into a range of grassy ecosystems around the world. The sensitivity of obligate seeder species, many of them short‐lived legumes with fire‐cued seeds, to both very frequent and very infrequent fire shows the vulnerability of these species to extreme fire regimes, despite the safeguards conferred by hard‐seededness. Competition from Bursaria, as well as loss of viable seed in the soil, may have contributed to the low frequency of these species after a long inter‐fire interval.  相似文献   

3.
Keeley JE  Brennan TJ 《Oecologia》2012,169(4):1043-1052
Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels, and changes in carbon storage.  相似文献   

4.
Frequent fires reduce the abundance of woody plant species and favour herbaceous species. Plant species richness also tends to increase with decreasing vegetation biomass and cover due to reduced competition for light. We assessed the influence of variable fire histories and site biomass on the following diversity measures: woody and herbaceous species richness, overall species richness and evenness, and life form evenness (i.e. the relative abundance or dominance among six herbaceous and six woody plant life forms), across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands in south‐west Australia. Fire frequency was defined as the total number of fires over a 30‐year period. Overall species richness and species evenness did not vary with fire frequency or biomass. However, there were more herbaceous species (particularly rushes, geophytes and herbs) where there were fewer shrubs and low biomass, suggesting that more herbaceous species coexist where dominance by shrubs is low. Frequently burnt plots also had lower number and abundance of shrub species. Life form evenness was also higher at both high fire frequency and low biomass sites. These results suggest that the impact of fire frequency and biomass on vegetation composition is mediated by local interactions among different life forms rather than among individual species. Our results demonstrate that measuring the variation in the relative diversity of different woody and herbaceous life forms is crucial to understanding the compositional response of forests and other structurally complex vegetation communities to changes in disturbance regime such as increased fire frequency.  相似文献   

5.
Abstract. In the mesic grasslands of the central United States, the shrub Cornus drummondii has undergone widespread expansion in the absence of recurrent fire. We quantified alterations in light, water and N caused by C. drummondii expansion in tall‐grass prairie and assessed the hypothesis that these alterations are consistent with models of resource enrichment by woody plants. Responses in graminoid species, particularly the dominant C4 grass Andropogon gerardii, were concurrently evaluated. We also removed established shrub islands to quantify their legacy effect on resource availability and assess the capability of this grassland to recover in sites formerly dominated by woody plants. The primary effect of shrub expansion on resource availability was an 87% reduction in light available to the herbaceous understorey. This reduced C uptake and N use efficiency in A. gerardii and lowered graminoid cover and ANPP at the grass‐shrub ecotone relative to undisturbed grassland. Shrub removal created a pulse in light and N availability, eliciting high C gain in A. gerardii in the first year after removal. By year two, light and N availability within shrub removal areas returned to levels typical of grassland, as had graminoid cover and ANPP were similar to those in open grassland. Recovery within central areas of shrub removal sites lagged behind that at the former grass‐shrub ecotone. These results indicate that the apparent alternative stable state of C. drummondii dominance in tall‐grass prairie is biotically maintained and driven by reductions in light, rather than resource enrichment. Within areas of shrub removal, the legacy effect of C. drummondii dominance is manifest primarily through the loss of rhizomes of the dominant grasses, rather than any long‐term changes in resource availability. C. drummondii removal facilitates grassland recovery, but the effort required to initiate this transition is a significant cost of woody plant expansion in mesic grasslands. Prevention of woody plant expansion in remnant tall‐grass prairies is, therefore, a preferred management option.  相似文献   

6.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

7.
Little is known about the specific role of exotic species on measures of grassland plant diversity, including how this may vary with climatic conditions or large mammal herbivory. This study examined vegetation responses to long-term livestock grazing, including plant richness and diversity, as well as the contribution of exotic species to these metrics, across a network of 107 northern temperate grasslands in Alberta, Canada, spanning a broad aridity gradient. Exposure to grazing modestly increased plant richness, but did not alter Shannon’s diversity, Simpson’s diversity, or evenness, suggesting stability in floral diversity relative to grazing. However, grazing did increase grass cover while reducing shrub cover, the latter of which was only apparent in mesic grasslands. Unlike total plant diversity, exotic species richness and cover, together with exotic plant contributions to diversity, varied jointly with grazing and aridity. While long-term grazing increased exotic species, this response was most apparent in wetter areas, and non-grazed grasslands remained more resistant to the presence of exotics. Several exotic species were positive indicators of grazing in wetter grasslands, and coincided with lower native species cover, indicating grazing may be facilitating a shift from native to exotic vegetation under these conditions. Overall, our results indicate that while long-term grazing has altered the composition and cover of certain functional groups, including favoring exotics and minimizing woody vegetation in mesic areas, overall changes to plant diversity were limited. Additionally, these findings suggest that semi-arid northern temperate grasslands remain relatively resistant to grazing effects, including their susceptibility to exotic plant encroachment. These results improve our understanding of how ongoing grazing exposure may impact grassland diversity, including efforts to conserve native vegetation, as well as the important role of climate in altering fundamental grassland responses to grazing.  相似文献   

8.
The idea that invasive species have higher recruitment and tolerate a wider range of conditions than native species requires more rigorous examination across a range of community types. We aimed to compare the recruitment and distribution patterns of adults and seedlings of an exotic invasive plant, glossy buckthorn (Frangula alnus), with four co-occurring native shrub species within a heterogeneous Wisconsin wetland. Detailed vegetation survey data were analyzed for spatial and compositional patterns of shrub distributions. In adult plant frequency and cover, buckthorn was not significantly different from the native winterberry. However, the number of glossy buckthorn seedlings exceeded by more than seven times the combined number of seedlings of the four native species. Sample units containing buckthorn adults were also much more likely to contain seedlings than for native shrubs. However, native seedlings were not more likely to occur at sites lacking adults, suggesting no greater dependence on recruitment away from adults in native species. Buckthorn, winterberry, poison sumac, and dogwood all showed preference for sites with higher tree densities and lower predominance of obligate wetland species in an ordination of 114 species. Glossy buckthorn adults and seedlings and winterberry seedlings were more widely distributed across seven community types than adults and seedlings of the other native species, suggesting broad tolerance to the conditions in different community types. High recruitment is the key factor that may allow glossy buckthorn to overcome community resistance and spread.  相似文献   

9.
Aim  Evidence is accumulating of a general increase in woody cover of many savanna regions of the world. Little is known about the consequences of this widespread and fundamental ecosystem structural shift on biodiversity.
Location  South Africa.
Methods  We assessed the potential response of bird species to shrub encroachment in a South African savanna by censusing bird species in five habitats along a gradient of increasing shrub cover, from grassland/open woodland to shrubland dominated by various shrub species. We also explored historical bird species population trends across southern Africa during the second half of the 20th century to determine if any quantifiable shifts had occurred that support an ongoing impact of shrub encroachment at the regional scale.
Results  At the local scale, species richness peaked at intermediate levels of shrub cover. Bird species composition showed high turnover along the gradient, suggesting that widespread shrub encroachment is likely to lead to the loss of certain species with a concomitant decline in bird species richness at the landscape scale. Finally, savanna bird species responded to changes in vegetation structure rather than vegetation species composition: bird assemblages were very similar in shrublands dominated by Acacia mellifera and those dominated by Tarchonanthus camphoratus .
Main conclusions  Shrub encroachment might have a bigger impact on bird diversity in grassland than in open woodland, regardless of the shrub species. Species recorded in our study area were associated with historical population changes at the scale of southern Africa suggesting that shrub encroachment could be one of the main drivers of bird population dynamics in southern African savannas. If current trends continue, the persistence of several southern African bird species associated with open savanna might be jeopardized regionally.  相似文献   

10.
Abstract. An emerging body of literature suggests that the richness of native and naturalized plant species are often positively correlated. It is unclear, however, whether this relationship is robust across spatial scales, and how a disturbance regime may affect it. Here, I examine the relationships of both richness and abundance between native and naturalized species of plants in two mediterranean scrub communities: coastal sage scrub (CSS) in California and xeric-sloped matorral (XSM) in Chile. In each vegetation type I surveyed multiple sites, where I identified vascular plant species and estimated their relative cover. Herbaceous species richness was higher in XSM, while cover of woody species was higher in CSS, where woody species have a strong impact upon herbaceous species. As there were few naturalized species with a woody growth form, the analyses performed here relate primarily to herbaceous species. Relationships between the herbaceous cover of native and naturalized species were not significant in CSS, but were nearly significant in XSM. The herbaceous species richness of native and naturalized plants were not significantly correlated on sites that had burned less than one year prior to sampling in CSS, and too few sites were available to examine this relationship in XSM. In post 1-year burn sites, however, herbaceous richness of native and naturalized species were positively correlated in both CSS and XSM. This relationship occurred at all spatial scales, from 400 m2 to 1 m2 plots. The consistency of this relationship in this study, together with its reported occurrence in the literature, suggests that this relationship may be general. Finally, the residuals from the correlations between native and naturalized species richness and cover, when plotted against site age (i.e. time since the last fire), show that richness and cover of naturalized species are strongly favoured on recently burned sites in XSM; this suggests that herbaceous species native to Chile are relatively poorly adapted to fire.  相似文献   

11.
Semi-natural grasslands are key habitats for biodiversity conservation in Central Europe. Shrub encroachment is one of the most threatening drivers of grassland degradation and affects soil properties, microclimate, and vegetation with possible impacts on higher trophic levels. We aimed to analyse the impact of shrub encroachment with broom (Cytisus scoparius) on carabid beetle diversity, species composition, and functional traits. In a field study on dry grasslands on the island of Hiddensee (Germany) we studied 15 sites along a gradient of increasing broom encroachment and classified them into three dry grassland types with low, medium, and high shrub cover. Our results provide evidence that shrub encroachment initially has positive effects on species richness and activity densities of dry grassland carabids. Carabid species composition differed among differently shrub-covered dry grassland types, and sites with low and high shrub cover were each characterised by unique carabid assemblages. The species composition of sites with a medium shrub biomass had a transitional character and contained species which are typical for open dry grassland, but also shared species with sites with a high shrub cover. Among functional trait parameters investigated, especially the body size of carabid beetles was related to environmental parameters associated with shrub encroachment. Body size was positively correlated to shrub biomass and soil humidity, but negatively to temperature. Eurytopy values of carabids were related to high litter cover, i.e. habitat generalist (eurytopic) species mainly occurred in densely shrub-encroached sites. In order to preserve unique carabid assemblages of open dry grasslands with stenotopic and smaller species, it is most important to prevent a shrub encroachment higher than about 60% cover. For management we suggest extensive grazing (by cattle, sheep or horses) to prevent shrub encroachment on dry grasslands. In areas with high shrub cover additionally the use of goats or mechanical removal of shrubs might be necessary.  相似文献   

12.
Introduced grass species have invaded extensive areas of Hawaii Volcanoes National Park and increased the size and frequency of fire. Following fire, grass cover is enhanced while native shrub cover is reduced; the reduction in most shrubs persists for at least 20 years even in the absence of fire. Shrub seedlings were planted in burned and unburned plots with and without grass cover. Biomass of 14 month old shrub seedlings was generally highest in recently burned/grass removed plots, intermediate in old burn/grass removed plots, and lowest in unburned/grass removed plots. In contrast, shrub biomass in plots with grass cover was low and did not differ significantly among burn treatments. Light competition is likely to be responsible for differences in shrub growth rates; grass cover reduced light to 1–10% of background levels. In addition, pool sizes of available soil N were highest in recently burned, intermediate in old burn, and lowest in unburned areas.  相似文献   

13.
Changes in land management and reductions in fire frequency have contributed to increased cover of woody species in grasslands worldwide. These shifts in plant community composition have the potential to alter ecosystem function, particularly through changes in soil processes and properties. In semi-arid grasslands, the invasion of shrubs and trees is often accompanied by increases in soil resources and more rapid N and C cycling. We assessed the effects of shrub encroachment in a mesic grassland in Kansas (USA) on soil CO2 flux, extractable inorganic N, and N mineralization beneath shrub communities (Cornus drummondii) and surrounding undisturbed grassland sites. In this study, a shift in plant community composition from grassland to shrubland resulted in a 16% decrease in annual soil CO2 flux(4.78 kg CO2 m–2 year–1 for shrub dominated sites versus 5.84 kg CO2 m–2 year–1 for grassland sites) with no differences in total soil C or N or inorganic N. There was considerable variability in N mineralization rates within sites, which resulted in no overall difference in cumulative N mineralized during this study (4.09 g N m–2 for grassland sites and 3.03 g N m–2 for shrub islands). These results indicate that shrub encroachment into mesic grasslands does not significantly alter N availability (at least initially), but does alter C cycling by decreasing soil CO2 flux.  相似文献   

14.
15.
Abstract. Shrub encroachment, i.e. the increase in woody plant cover, is a major concern for livestock farming in southern Kalahari savannas. We developed a grid‐based computer model simulating the population dynamics of Grewia flava, a common, fleshy‐fruited encroaching shrub. In the absence of large herbivores, seeds of Grewia are largely deposited in the sub‐canopy of Acacia erioloba. Cattle negate this dispersal limitation by browsing on the foliage of Grewia and dispersing seeds into the grassland matrix. In this study we first show that model predictions of Grewia cover dynamics are realistic by comparing model output with shrub cover estimates obtained from a time series of aerial photographs. Subsequently, we apply a realistic range of intensity of cattle‐induced seed dispersal combined with potential precipitation and fire scenarios. Based on the simulation results we suggest that cattle may facilitate shrub encroachment of Grewia. The results show that the severity of shrub encroachment is governed by the intensity of seed dispersal. For a high seed dispersal intensity without fire (equivalent to a high stocking rate) the model predicts 56% shrub cover and 85% cell cover after 100 yr. With fire both recruitment and shrub cover are reduced, which may, under moderate intensities, prevent shrub encroachment. Climate change scenarios with two‐fold higher frequencies of drought and wet years intensified shrub encroachment rates, although long‐term mean of precipitation remained constant. As a management recommendation we suggest that shrub encroachment on rangelands may be counteracted by frequent fires and controlling cattle movements to areas with a high proportion of fruiting Grewia shrubs.  相似文献   

16.
Creating native‐species‐rich grasslands to replace agricultural grasslands can be an important strategy for supplementing the area of grasslands, which are in decline in many regions. In the northeastern United States, sandplain grasslands support a diverse plant community and rare plant and animal species that are declining because of reductions in historical disturbances such as fire and grazing. We designed an experiment on Martha's Vineyard, Massachusetts, to test methods of establishing native‐species‐rich coastal sandplain grassland on former agricultural land. We tested the efficacy of: (1) tilling, herbicide, hot foam, and plastic cover in removing initial nonnative vegetation, and (2) combinations of tilling and seeding for establishing native species. We measured native and nonnative species richness and percent cover before and for 5 years after treatment. Herbicide, plastic cover, and spring, summer, and fall tilling were about equally effective in reducing nonnative species cover and promoting native species cover. Tilling and seeding each increased native species richness and percent cover, and seeding and tilling together increased native species richness and cover more than either treatment alone. Combined seeding and disturbance also reduced the cover of nonnative species, but nonnative species cover remained higher than in adjacent reference sandplain grassland. Results indicated that native species establishment was enhanced by the availability of seeds and by reduction of initial nonnative plant cover. The most efficient method of converting coastal agricultural grasslands to sandplain grassland with a higher number and proportion of native species is a single season of plant removal and seeding.  相似文献   

17.
Question: What are the effects of fire in native shrubland communities and in pine plantations established in these shrublands? Location: Northern Patagonia, Argentina. Methods: We surveyed four sites in Chall‐Huaco valley, located in northwest Patagonia. Each site was a vegetation mosaic composed of an unburned Pinus ponderosa plantation, a plantation burned in 1996, and an unburned matorral and a matorral burned by the same fire. We recorded the cover of all vascular plant species. We also analysed species richness, total cover, proportion of exotic species, abundance of woody species and herb species, cover of exotic species, abundance of woody and herb species and differences in composition of species. For both shrubs and tree species we recorded the main strategy of regeneration (by resprouting or by seed). Results: We found that fire had different effects on native matorral and pine plantations. Five years after fire, plantations came to be dominated by herbs and exotic species, showing differences in floristic composition. In contrast, matorral communities remained very similar to unburned matorral in terms of species richness, proportion of woody species, and herb species and proportion of exotics. Also, pine plantations were primarily colonized by seedlings, while matorrals were primarily colonized by resprouting. Conclusions: Matorrals are highly fire resilient communities, and the practice of establishing plantations on matorrals produces a strong reduction in the capacity of matorral to return to its original state. The elimination of shrubs owing to the effect of plantations can hinder regeneration of native ecosystems. Burned plantations may slowly develop into ecosystems similar to the native ones, or they may produce a new ecosystem dominated by exotic herbs. This study shows that plantations of exotic conifers affect native vegetation even after they have been removed, as in this case by fire.  相似文献   

18.
In recent years, invasion of native grasslands by exotic woody plants has been recognized as a global problem with multiple adverse ecological and socio-economic consequences. Reasons for such expansions are numerous, including fire suppression. An important example of this problem is the native montane grassland in the Nilgiris of the Western Ghats in India, a biodiversity hotspot threatened by invasion of multiple woody species. In this study, the impacts of the highly invasive, nitrogen fixing exotic shrub Cytisus scoparius (Scotch broom) on the grassland community and ecosystem function have been quantified and the role of fire as a potential management tool evaluated. I established paired plots in uninvaded and broom-invaded grasslands that were either unburned or burned by an unplanned wildfire event. Invasion negatively impacted the grassland community structure and composition, favoring shade tolerant and weedy native plants, but did not greatly alter ecosystem function. Burning broom patches to eliminate the stands resulted in lower soil moisture and nitrogen levels 18 months after the fire. Yet, there were no notable fire effects on the grassland communities or ecosystem properties. Taken together, the results suggest that fire might be an effective tool for broom control. At the end of the study period burned-broom communities did not become more similar to uninvaded-grasslands; presumably the recovery process may be slow without additional management intervention.  相似文献   

19.
Luca Borghesio 《Plant Ecology》2009,201(2):723-731
This study focuses on the effect of fire on lowland heathlands at the extreme southern edge of their European distribution (Vauda Nature Reserve, NW Italy). Forty-nine plots (50 m radius) were surveyed between 1999 and 2006. Each year, fire occurrences were recorded and per cent cover of four vegetation types (grassland, heath, low shrubland, and tall shrubland) was estimated in each plot. Vascular plant species richness was also recorded in 255, 1 m2 quadrats. After a fire, grassland vegetation expanded, but then declined rapidly as heath and shrubland recovered: 7 years after a fire, tall shrubland encroached on to more than 40% of the plots, and grassland declined from 50% to 20% cover. Between 1999 and 2006, Betula pendula shrubland greatly expanded, while grassland decreased over most of the Reserve, even where fire frequency was high. Tall shrubland had low plant diversity and was dominated by widespread species of lower conservation value. By contrast, early successional vegetation (grassland and low shrubland) had higher richness and more narrowly distributed species, indication that the development of tall shrubland causes significant species loss in the heathland. Italian lowland heathlands are characterized by high rates of shrubland encroachment that threatens both habitat and species diversity. Burning frequencies of once in 3–6 years seem appropriate in this habitat, but burning alone might not suffice without actions to increase herbivore grazing.  相似文献   

20.
Abstract: Positive interactions between species are known to play an important role in the dynamics of plant communities, including the enhancement of invasions by exotics. We studied the influence of the invasive shrub Pyracantha angustifolia (Rosaceae) on the recruitment of native and exotic woody species in a secondary shrubland in central Argentina mountains. We recorded woody sapling recruitment and micro‐environmental conditions under the canopies of Pyracantha and the dominant native shrub Condalia montana (Rhamnaceae), and in the absence of shrub cover, considering these situations as three treatments. We found that native and exotic species richness were higher under Pyracantha than under the other treatments. Ligustrum lucidum (Oleaceae), an exotic bird‐dispersed shade‐tolerant tree, was the most abundant species recruiting in the area, and its density was four times higher under the canopy of Pyracantha. This positive interaction may be related to Pyracantha's denser shading, to the mechanical protection of its canopy against ungulates, and/or to the simultaneous fruit ripening of both woody invaders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号