首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Coastal sandplain heathlands are a rare plant community in the northeastern United States. Salt spray and water availability are likely important factors determining heathland distribution. Field surveys and manipulative experiments were performed to examine heathland species' responses to salt spray and water availability. We surveyed field distributions of four typical heathland species: Solidago puberula, Solidago rugosa, Gaylussacia baccata, and Myrica pensylvanica. The distributions of two native tree species, Pinus rigida and Quercus ilicifolia, were also surveyed because they succeed into coastal heathlands with low disturbance frequency. We then manipulated salt spray and water in the field and measured species' water status, necrosis, and growth responses to the treatments. Predawn xylem pressure potential and necrosis were strongly affected by high salt spray and low water availability. Shoot elongation was also limited in S. puberula and S. rugosa grown in high salt, low water treatments. Gaylussacia baccata and Q. ilicifolia were particularly sensitive to high salt spray and low water, suggesting that they might excluded be from areas with those conditions. The interaction between salt spray and water availability could affect the landscape scale and should be incorporated into conservation management plans.  相似文献   

2.
North American coastal sandplain heathlands are unique in species composition and vegetation, but the extent to which edaphic factors influence the structure of these communities is currently debated. It was hypothesized that salt spray and edaphic factors maintain the dwarf stature and community composition of heathlands by limiting plant growth and excluding competitively dominant woody species close to the ocean. Field surveys were carried out to investigate the spatial patterns of salt spray accumulation, soil salt and soil moisture. High salt spray correlated significantly with increased leaf necrosis and water stress in Myrica pensylvanica and with decreased plant height. Plant community composition changed across a salt spray and soil gradient, as well. Distinctive sub-communities were identified that separated according to soil salt and soil moisture but salt spray was the main factor affecting sites occupied only by heathland vegetation. Results from this study suggest that salt spray suppresses the growth of heathland plants in close proximity to the ocean, and therefore maintains the low stature in these dwarf shrublands. This research also demonstrates that the physical environment influences the community structure in heathlands, particularly by limiting tree species from growing in high salt spray, low water availability sites.  相似文献   

3.
Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands   总被引:1,自引:1,他引:0  
1.  In England, the loss of lowland heathland, a habitat of global conservation importance, is primarily due to the invasion of birch and pine. This encroachment has been researched in depth from a plant perspective but little is known about the role of mycorrhizal fungi. In lowland heathlands the resident dwarf shrubs form ericoid mycorrhizas whereas invading trees form ectomycorrhizas. Therefore, tree encroachment into heathlands can be regarded as the replacement of a resident mycorrhizal community by an invading one.
2 . This study examined how fungi form mycorrhizas with Betula and Pinus in lowland heathlands. We addressed the question of whether there are mycorrhizal fungi that mediate invasion using a molecular ecology approach to compare the mycorrhizal inoculum potential of soil at three levels of invasion (uninvaded heathland, invaded heathland and woodland) and the fungi forming mycorrhizas on tree seedlings and trees across diverse sites.
3.  We show that in lowland heathlands: (i) seedlings have severely limited access to ectomycorrhizal fungi relative to woodlands, (ii) there are few keystone spore-dispersed ectomycorrhizal fungi that can mediate tree invasion, (iii) tree seedlings can remain non-mycorrhizal for at least one year when no inoculum is present, even near saplings, and (iv) mycorrhizal seedlings achieve greater biomass than non-mycorrhizal seedlings. Within uninvaded heathland we detected only Rhizopogon luteolus , Suillus variegatus , S. bovinus ( Pinus symbionts) and Laccaria proxima (primarily a Betula symbiont).
4. Synthesis . Overall, ectomycorrhizal inoculum in lowland heathlands is rare; most tree seedlings growing in heathland soil are not mycorrhizal due to limited spore dispersal, poorly developed spore banks and weak common mycorrhizal networks. These seedlings can persist awaiting mycorrhization to boost their growth.  相似文献   

4.
Coastal barrens in Nova Scotia are heathlands characterised by short, predominantly ericaceous vegetation, sparse tree cover, exposed bedrock, pockets of Sphagnum bog, and stressful climatic conditions. Although coastal barrens are prominent in the physical and cultural landscape, they are largely unprotected. We selected six barrens along the Atlantic coast, and surveyed 20 1-m2 plots at each barren for vascular plants, macrolichens, mosses and environmental factors. We recorded 173 species (105 vascular, 41 macrolichen, 27 moss), including six provincially rare vascular species found predominantly in nearshore areas with high levels of substrate salt and nutrients, variable substrate depth, and short vegetation. Although vascular plant and moss richness were similarly correlated with vegetation height, substrate depth, organic matter content, and rock exposure, there were no clear correlations between vascular plant, macrolichen and moss richness across all sites. Vascular plant rarity and species richness were not correlated, but had inverse relationships with key environmental gradients. Tailoring conservation efforts to protect areas of high richness may thus mean that rare species are missed, and vice versa. Ordination and ANOSIM show that barrens vegetation differs widely among sites; therefore, protecting any singular coastal barren will not protect the entire range of vegetation communities and species in this heathland type. Conservation planning should emphasize protecting environmental gradients correlated with richness, rarity and plant community structure, including substrate depth and moisture, and vegetation height. Additionally, protected areas should include a coastal-inland gradient and a diversity of substrate types, including exposed rock and trees.  相似文献   

5.
In the last decade, several major dwarf-shrub dieback events have occurred in northern European coastal heathlands. These dieback events occur after extended periods with sub-zero temperatures under snow-free conditions and clear skies, suggesting that coastal heathlands have low resistance to winter drought. As climate projections forecast increased drought frequency, intensity, and duration, coastal heathlands are likely to experience more such diebacks in the future. There are, however, few empirical studies of drought impacts and responses on plant communities in humid oceanic ecosystems. We established a drought experiment with two distinct levels of intensified drought to identify responses and thresholds of drought resistance in coastal heathland vegetation. We repeated the experiment in two regions, separated by five degrees latitude, to represent different bioclimatic conditions within the coastal heathlands' wide latitudinal range in Europe. As coastal heathlands are semi-natural habitats managed by prescribed fire, and we repeated the experiment across three post-fire successional phases within each region. Plant community structure, annual primary production, and primary and secondary growth of the dominant dwarf-shrub Calluna vulgaris varied between climate regions. To our surprise, these wide-ranging vegetation- and plant-level response variables were largely unaffected by the drought treatments. Consequently, our results suggest that northern, coastal heathland vegetation is relatively resistant to substantial intensification in drought. This experiment represents the world's wettest (2200 mm year−1) and northernmost (65°8'N) drought experiment to date, thus filling important knowledge gaps on ecological drought responses in high-precipitation and high-latitude ecosystems across multiple phases of plant community succession.  相似文献   

6.
For the conservation of biodiversity, heathlands present important ecosystems throughout Europe. The formerly widespread habitats are nowadays restricted to small and isolated remnants. Without land use heathland vegetation undergoes succession and, in addition, the increasing amount of atmospheric nitrogen deposition has resulted in an encroachment of grasses. In the present study we analysed the effects of succession and grass encroachment on Orthoptera in a coastal heathland on the Baltic island of Hiddensee, Germany. Vegetation, microclimate, soil humidity and Orthoptera were sampled in the five main stages of heathland succession, namely grey dunes, dwarf-shrub heath, grassy heath, heath with shrubs, and birch forest. Vegetation and environmental parameters showed strong differences among the successional stages. Orthoptera species richness was highest in transitional stages. The high proportion of grasses offer favourable habitat conditions for graminivorous, chorto- and thamnobiont species. Orthoptera density was highest in grey dunes. Threatened and specialised species were restricted to the young stages grey dunes and dwarf-shrub heath. Hence, in order to maintain a high diversity of Orthoptera in heathlands, maintaining different successional stages is of critical importance and this should be integrated into heathland management practices.  相似文献   

7.
Heathlands are severely threatened by decreasing habitat quantity and quality. In these habitats, bryophytes form an important component of plant diversity. Therefore, the aims of this study were to investigate the effects of management and adjacent forest land use on the heathland bryophyte layer. Furthermore, effects of these factors on invasive bryophyte species were studied.

Bryophyte communities of 11 dry heathland patches bordering forest were surveyed. In these heathlands, management turned out to be an important factor explaining community composition of bryophytes. Furthermore, significant effects of adjacent land use on bryophyte community composition and species richness were found. However, these effects were rather limited in extent, occurring only close to habitat borders, i.e., up to maximum 5 m into the heathland patch. Also for individual bryophyte species, effects of adjacent forest could only be observed within maximum 5 m from the edge. One remarkable edge effect was the increased dominance of the invasive species Campylopus introflexus near the forest edge, especially at grazed sites. Effects of adjacent land use seemed to predominate management effects. Consequently, management cannot serve as a tool to mitigate edge effects on bryophyte species in heathland patches.  相似文献   


8.
Invasion by non-native conifers may pose a threat to local biodiversity, but knowledge about introduced conifer effects on Northern Hemisphere ecosystems is scarce. The coastal heathlands of north-west Europe are threatened by invasion of native and introduced tree species. We assess how spread of the introduced conifer Sitka spruce (Picea sitchensis (Bong.) Carr.) into European coastal heathlands affect two major functional groups; vascular plants and bryophytes, and how these effects relate to the environmental changes imposed by the developing tree canopies. We compared the impact of introduced Sitka spruce and native Scots pine (Pinus sylvestris L.) by analysing effects on species richness and turnover of vascular plants and bryophytes along fine-scale transects from individual tree stems into open heathland vegetation. Environmental impacts were assessed by measured environmental variables, and the responses of the two species groups were assessed by calculating changes in their respective mean Ellenberg indicator values. Species richness decreased beneath both conifers, related to decreased light and increased nitrogen and pH. Whereas vascular plants responded negatively to poor light conditions beneath dense and low Sitka spruce canopies, bryophytes were more negatively affected by the warmer and drier microclimates beneath Scots pine. Introduced Sitka spruce impacts the sub-canopy environment differently from the native Scots pine, and the two functional plant groups responded differently to these impacts. This suggests that future forests are likely to differ in species richness and composition, depending on whether succession is based on native or introduced coniferous trees.  相似文献   

9.
Over the last two centuries wet heathlands and associated habitats, such as poor fens and bogs, have suffered extensive fragmentation. Recently, large-scale projects aim to restore these rare habitats throughout Europe. To evaluate post-restoration trajectories of wet heathlands, suitable monitoring tools are urgently needed. Here, we investigated whether spider communities are useful tools for evaluating the restoration success of wet heathlands. Ordination revealed that dissimilarity in spider communities between patches of different age classes resulted mainly from vegetation cover and soil moisture. By using a functional trait-approach, we tested if the time since restoration affects trait distribution of spiders in wet heathlands. Typical wet heathland spider species were less common with increasing vegetation encroachment and lower water content. New patches were inhabited by summer active, eurytopic (non-heathland) spiders, while more typical heathland species were found in middle-aged and old patches. Our results suggest that time-related changes in vegetation structure and moistness of restored wet heathlands are clearly reflected by spider communities. Although mobile spiders quickly recolonize the restored heathlands, it takes time for typical heathland spiders to settle. Restoration measures should prevent the negative effects of a vegetation encroachment and a high density of forested edges and should rehabilitate the hydrological cycle in order to preserve rare heathland spiders. We discuss that accounting for responses of spiders provides additional information to guide wet heathlands restoration.  相似文献   

10.
At the beginning of the 20th century, many montane heathlands were abandoned and became subject to natural succession or afforestation by humans. Thus, the formerly large montane heathlands slowly degraded into small and isolated patches. In this study, we evaluate the influence of restoration measures on leafhopper (Auchenorrhyncha) assemblages of montane heathland ecosystems in Central Europe. Our analyses comprised three different site types that were adjacent to each other: (1) montane heathlands, (2) restoration sites, and (3) control sites. Leafhoppers showed a clear response to montane heathland restoration. Thus, after 4–5 years since implementation of restoration measurements restoration sites were characterized by the highest species richness. However, detailed analyses of leafhopper diversity, species composition, and environmental parameters on the three site types revealed that restoration sites were rather similar to control sites and significantly differing from montane heathlands. We conclude that leafhoppers are excellent bioindicators for restoration measurements because they reflected environmental differences between the three site types. Restoration measurements might only be a useful instrument to promote typical montane heathland leafhopper communities in the long run. Colonization by leafhoppers is, however, dependent on many different factors such as leafhopper mobility, vegetation structure, microclimate, and the establishment of ericaceous dwarf shrubs. Practitioners should establish a management regime (grazing and sod‐cutting) that creates a mosaic of different habitat structures and increases typical heathland vegetation, thus, favoring the colonization of typical heathland leafhoppers.  相似文献   

11.
Fire severity is thought to be an important determinant of landscape patterns of post‐fire regeneration, yet there have been few studies of the effects of variation in fire severity at landscape scales on floristic diversity and composition, and none within alpine vegetation. Understanding how fire severity affects alpine vegetation is important because fire is relatively infrequent in alpine environments. Globally, alpine ecosystems are at risk from climate change, which, in addition to warming, is likely to increase the severity and frequency of fire in south‐eastern Australia. Here we examine the effects of variation in fire severity on plant diversity and vegetation composition, 5 years after the widespread fires of 2003. We used floristic data from two wide‐spread vegetation types on the Bogong High Plains: open heathland and closed heathland. Three alternative models were tested relating variation in plant community attributes (e.g. diversity, ground cover of dominant species, amount of bare ground) to variation in fire severity. The models were (i) ‘linear’, attributes vary linearly with fire severity; (ii) ‘intermediate disturbance’, attributes are highest at intermediate fire severity and lowest at both low‐ and high‐severity; and (iii) ‘null’, attributes are unaffected by fire severity. In both heathlands, there were few differences in floristic diversity, cover of dominant species and community composition, across the strong fire severity gradient. The null model was most supported in the vast majority of cases, with only limited support for either the linear and intermediate disturbance models. Our data indicate that in both heathlands, vegetation attributes in burnt vegetation were converging towards that of the unburnt state. We conclude that fire severity had little impact on post‐fire regeneration, and that both closed and open alpine heathlands are resilient to variation in fire severity during landscape scale fires.  相似文献   

12.
Low water and nutrient availability and significant sand movement, salt spray, and soil salinity are typical of coastal dunes. These conditions are generally unfavorable for the various life stages of plants and especially for seedlings. However, the intensity of these stresses decreases landward, even over short distances, with significant effects on community composition. On coastal dunes in subarctic Québec, Canada, Honckenya peploides (Caryophyllaceae) colonizes the upper beach where it forms small mounds called embryo dunes. Leymus mollis (Poaceae) is mostly restricted to the foredune; however, a few individuals successfully establish on the upper beach, particularly on embryo dunes. We hypothesized that this differential distribution is associated with differences in the tolerance of the two species' seedlings to physical stresses. Honckenya peploides and L. mollis seedling tolerance to sand burial, salt spray, soil salinity, and nutrient and water availability was assessed in greenhouse experiments. Unexpectedly, our results showed that tolerance to sand burial, salt spray, and soil salinity was lower for H. peploides than for L. mollis. If seeds are available and seedlings tolerate the conditions prevailing on the upper beach well, why are mature L. mollis individuals rare in this habitat? We suggest that massive abrasion events (e.g., violent storm waves and ice thrust) restrict the presence of the species on the upper beach.  相似文献   

13.
Succession has a strong influence on species diversity and composition of semi-natural open terrestrial ecosystems. While several studies examined the effects of succession on butterflies in grassland and forest ecosystems, the response of heathland butterflies to succession had not been investigated so far. To address this issue we sampled butterfly abundance and environmental parameters on the Baltic island of Hiddensee (NE Germany) along a gradient of coastal heathland succession from grey dunes to birch forest. Our results provide evidence that succession of coastal heathland has a strong influence on butterfly diversity, abundance, and species composition. Thereby grass and tree encroachment present the main threats for heathland butterflies. Diversity and abundance of butterflies were highest in shrub-encroached heath directly followed by early stages of coastal heathland succession (dwarf-shrub heath, grey dune). Both observed threatened species (Hipparchia semele, Plebeius argus) were negatively affected by succession: abundance decreased with increasing vegetation density (both species) and grass cover (P. argus); consequently, the two later successional stages (shrub, birch forest) were not occupied. Our findings highlight the importance of the preservation of early stages of coastal heathland succession for endangered butterfly species. For coastal heathland management we therefore suggest to maintain early successional stages by sheep grazing, mowing or, in case of high nutrient contents, intensive techniques such as sod-cutting or choppering. To a lower extend shrub-encroached sites should also be present, which might be beneficial for overall species richness.  相似文献   

14.
Insects are major conduits of resources moving from aquatic to terrestrial systems. While the ecological impacts of insect subsidies are well documented, the underlying mechanisms by which these resources change recipient ecosystems remain poorly understood. Most subsidy inputs enter terrestrial systems as detritus; thus, soil microbes will likely influence the processing of insect subsidies, with implications for plant community composition and net primary productivity (NPP). In a subarctic ecosystem near Lake Mývatn, Iceland where midge (Diptera: Chironomidae) deposition to land is high, we investigated how insect subsidies affected litter processing and microbial communities. We also evaluated how those belowground effects related to changes in inorganic nitrogen, plant composition and NPP. We simulated subsidies by adding midge carcasses to 1-m2 heathland plots, where we measured effects on decomposition rates and the plant community. We then studied how fertilization treatments (control, KNO3 and midge-carcass addition) affected graminoid biomass and inorganic nitrogen in greenhouse experiments. Lastly, we conducted a soil-incubation study with a phospholipid fatty acid analysis (PLFA) to examine how midge addition to heathland soils affected microbial respiration, biomass and composition. We found that midge addition to heathland soils increased litter decomposition and graminoid plant cover by 2.6× and 2×, respectively. Greenhouse experiments revealed similar patterns, with midge carcasses increasing graminoid biomass by at least 2× and NH4+ concentrations by 7×. Our soil-incubation study found that midge carcasses elevated microbial respiration by 64%, microbial biomass by 43% and shifted microbial functional composition. Our findings indicate that insect subsidies can stimulate soil microbial communities and litter decomposition in subarctic heathlands, leading to increased NPP and changes in plant community composition.  相似文献   

15.
The coastal heathlands of North-western Europe are treeless anthropogenic landscape of high conservation value, now threatened by encroachment by both native (Pinus sylvestris L.) and non-native (Picea sitchensis (Bong) Carr.) conifers. This study wants to gain insight into the different external drivers which interact with the natural successional processes to determine the future development of the heathland landscape. We tested how seedling emergence and establishment is related to competitive effects from the standing vegetation. Heathlands are nutrient-stressed habitats and we tested the seedling emergence and establishment along a nutrient gradient using mean Ellenberg values. In addition we tested if phytotoxic substances are affecting the seedling emergence and establishment related to different successional stages. Study species differed in seed size and we expected different colonization rates and competitive effects from the heathland vegetation. A factorial experiment was carried out in three different successional stages to isolate the effects of competition versus phytotoxins on seedling emergence and establishment by combining vegetation cutting and charcoal addition treatments. Both conifers were able to invade all successional stages, but invasibility decreased during succession. This was largely attributable to competitive effects from the standing vegetation, although phytotoxic effects were also detected, especially in late-successional stages. Seedling emergence and establishment was higher in the larger-seeded P. sylvestris than in P. sitchensis. These results present a management challenge as fire is an important component of the traditional management of the coastal heathlands, while at the same time increasing invasibility. Managers at sites susceptible to invasion should ensure that resources for tree seedling control are available before fire or other management-related disturbances are applied.  相似文献   

16.
Land-use changes and atmospheric nitrogen deposition have negatively affected heathland biota. Active habitat management is one possible way of counteracting the biodiversity loss associated with these habitat alterations. However, management practices for lowland heathlands often have been transferred to montane heathlands, irrespective of the differences in environmental conditions or assemblage composition. The objective of this study was to evaluate the effects of so-called choppering for the rejuvenation of montane heathland. Choppering involves chaffing and removing the largest part of the organic layer down to the mineral soil. In this study, we compared montane heathlands that were rejuvenated through the application of choppering (CHOPPER) to old-growth montane heathlands (CONTROL). Thirteen years after the rejuvenation measures had been conducted, the environmental conditions between CHOPPER and CONTROL still differed. CHOPPER was characterised by shorter vegetation (herbs/grasses and dwarf shrubs), more bare soil, less litter and higher temperatures. Although, the vascular plants and all studied arthropod groups were affected by the environmental changes, their responses were somewhat different. CHOPPER had a unique assemblage of each taxonomic group that included at least a few heathland species that mainly occurred in this treatment. However, choppering was most beneficial for vascular plants, grasshoppers and carabid beetles. As shown for lowland heathlands, choppering is also a suitable management measure for montane heathland to rejuvenate vegetation with its characteristic arthropod fauna. Due to the intact seed banks and Ericaceae root systems with their mycorrhizas, in combination with the availability of bare soil, heathland vegetation can rapidly regenerate after choppering. The keystone structures that explain the high relevance of CHOPPER, especially for vascular plants, grasshoppers and carabid beetles, are low-growing vegetation and bare soil, which result in light and warm microclimatic conditions. Based on the results of our study, we recommend choppering as a regular management measure to rejuvenate montane heathland.  相似文献   

17.
Biotic homogenization due to replacement of native biodiversity by widespread generalist species has been demonstrated in a number of ecosystems and taxonomic groups worldwide, causing growing conservation concern. Human disturbance is a key driver of biotic homogenization, suggesting potential conservation challenges in seminatural ecosystems, where anthropogenic disturbances such as grazing and burning are necessary for maintaining ecological dynamics and functioning. We test whether prescribed burning results in biotic homogenization in the coastal heathlands of north‐western Europe, a seminatural landscape where extensive grazing and burning has constituted the traditional land‐use practice over the past 6000 years. We compare the beta‐diversity before and after fire at three ecological scales: within local vegetation patches, between wet and dry heathland patches within landscapes, and along a 470 km bioclimatic gradient. Within local patches, we found no evidence of homogenization after fire; species richness increased, and the species that entered the burnt Calluna stands were not widespread specialists but native grasses and herbs characteristic of the heathland system. At the landscapes scale, we saw a weak homogenization as wet and dry heathland patches become more compositionally similar after fire. This was because of a decrease in habitat‐specific species unique to either wet or dry habitats and postfire colonization by a set of heathland specialists that established in both habitat types. Along the bioclimatic gradient, species that increased after fire generally had more specific environmental requirements and narrower geographical distributions than the prefire flora, resulting in a biotic ‘heterogenisation’ after fire. Our study demonstrates that human disturbance does not necessarily cause biotic homogenization, but that continuation of traditional land‐use practices can instead be crucial for the maintenance of the diversity and ecological function of a seminatural ecosystem. The species that established after prescribed burning were heathland specialists with relatively narrow geographical ranges.  相似文献   

18.
During the last decades, the perennial tussock grass Molinia caerulea has shown an increased abundance in European heathlands, most likely as a result of increased nitrogen deposition and altered management schemes. Because of its deciduous nature, Molinia produces large amounts of litter each year, which may affect the intensity and frequency of accidental fires in heathlands. These fires may influence plant population dynamics and heathland community organization through their effects on plant vital attributes and competitive interactions. In this study, fire-induced changes in competitive ability and invasiveness of Molinia through changes in biomass production, seed set and seed germination under both natural and laboratory conditions were investigated. We found that fire significantly increased aboveground biomass, seed set and germination of Molinia. Seed set was twice as high in burned compared to unburned heathland. Two years after fire, seedling densities in natural conditions were on average six times higher in burned than in unburned heathland, which resulted in increased abundance of Molinia after burning. The seed germination experiment indicated that seeds harvested from plants in burned heathland showed higher germination rates than those from unburned heathland. Hence, our results clearly demonstrate increased invasive spread of Molinia after large and intense fires. Active management guidelines are required to prevent further encroachment of Molinia and to lower the probability of large fires altering the heathland community in the future.  相似文献   

19.
《Acta Oecologica》2006,29(3):299-305
During the last decades, the perennial tussock grass Molinia caerulea has shown an increased abundance in European heathlands, most likely as a result of increased nitrogen deposition and altered management schemes. Because of its deciduous nature, Molinia produces large amounts of litter each year, which may affect the intensity and frequency of accidental fires in heathlands. These fires may influence plant population dynamics and heathland community organization through their effects on plant vital attributes and competitive interactions. In this study, fire-induced changes in competitive ability and invasiveness of Molinia through changes in biomass production, seed set and seed germination under both natural and laboratory conditions were investigated. We found that fire significantly increased aboveground biomass, seed set and germination of Molinia. Seed set was twice as high in burned compared to unburned heathland. Two years after fire, seedling densities in natural conditions were on average six times higher in burned than in unburned heathland, which resulted in increased abundance of Molinia after burning. The seed germination experiment indicated that seeds harvested from plants in burned heathland showed higher germination rates than those from unburned heathland. Hence, our results clearly demonstrate increased invasive spread of Molinia after large and intense fires. Active management guidelines are required to prevent further encroachment of Molinia and to lower the probability of large fires altering the heathland community in the future.  相似文献   

20.
Open heathlands of the Strait of Gibraltar region constitute a singularvegetation type within the Mediterranean Basin owing to their high biodiversitylevels and distinct features in the biological aspects of endemism. However,they have been traditionally depicted as low profitable, tree-less, barrenlandsand have been either overlooked in conservation policies or included inextensive pine-tree afforestation programmes. Nowadays, most of the existingpine plantations are no longer exploited and have become dense pine woodlands.Here we present the results of a comparative analysis aimed to ascertain theeffects of pine stands on the structure and diversity of the woody component ofthese mediterranean heathlands. Ten sampling sites were located within thestudyarea, each consisting of two adjacent subsamples: an open heathland and aneighbouring heathland under pine-tree cover. Woody species richness andoverallshrub cover was much lower in pine-tree heath understoreys. This drop in coverwas more marked for short-lived species (seeders and withering resprouters),implying a decrease of the life-history diversity and also having noticeableconsequences in homogenizing the floristic composition of heath patches underpine trees. Heathland narrow endemics dropped significantly in pine stands,showing greater sensitivity to afforestation than nonendemics. We suggest thatthe open heathlands of the Strait of Gibraltar should be given furtherattentionin EU and IUCN conservation policies. Programmes should be implemented toprogressively eliminate abandoned pine plantations so as to restore andpreservethese highly diverse mediterranean heathlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号