首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Carnosine, homocarnosine, and anserine are present in high concentrations in the muscle and brain of many animals and humans. Previous studies showed that these compounds have an antioxidant function. We investigated the protective effects of carnosine and related compounds on the modification of human ceruloplasmin that is induced by H2O2. Carnosine, homocarnosine, and anserine significantly inhibited the fragmentation and inactivation of ceruloplasmin that is induced by H2O2. All three compounds also inhibited the release of copper ion from protein, and the formation of hydroxyl radicals in the ceruloplasmin/H2O2 system. These compounds inhibited the fragmentation of human serum albumin that is induced by the copper-catalyzed oxidation system, as well as by the iron-catalyzed oxidation system. These results suggest that carnosine, homocarnosine, and anserine might protect ceruloplasmin against H2O2-mediated oxidative damage through a combination of copper chelation and free radical scavenging.  相似文献   

2.
Neurofilament-L (NF-L) is a major element of the neuronal cytoskeleton and is essential for neuronal survival. Moreover, abnormalities in NF-L result in neurodegenerative disorders. Carnosine and the related endogeneous histidine dipeptides prevent protein modifications such as oxidation and glycation. In the present study, we investigated whether histidine dipeptides, carnosine, homocarnosine, or anserine protect NF-L against oxidative modification during reaction between cytochrome c and H(2)O(2). Carnosine, homocarnosine and anserine all prevented cytochrome c/H(2)O(2)-mediated NF-L aggregation. In addition, these compounds also effectively inhibited the formation of dityrosine, and this inhibition was found to be associated with the reduced formations of oxidatively modified proteins. Our results suggest that carnosine and histidine dipeptides have antioxidant effects on brain proteins under pathophysiological conditions leading to degenerative damage, such as, those caused by neurodegenerative disorders.  相似文献   

3.
The fragmentation of human Cu,Zn-superoxide dismutase (SOD) was observed during incubation with H(2)O(2). Hydroxyl radical scavengers such as sodium azide, formate and mannitol protected the fragmentation of Cu,Zn-SOD. These results suggested that *OH was implicated in the hydrogen peroxide-mediated Cu,Zn-SOD fragmentation. Carnosine, homocarnosine and anserine have been proposed to act as anti-oxidants in vivo. We investigated whether three compounds could protect the fragmentation of Cu,Zn-SOD induced by H(2)O(2). The results showed that carnosine, homocarnosine and anserine significantly protected the fragmentation of Cu,Zn-SOD. All three compounds also protected the loss of enzyme activity induced by H(2)O(2). Carnosine, homocarnosine and anserine effectively inhibited the formation of *OH by the Cu,Zn-SOD/H(2)O(2) system. These results suggest that carnosine and related compounds can protect the hydrogen peroxide-mediated Cu,Zn-SOD fragmentation through the scavenging of *OH.  相似文献   

4.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical ((.-)OH) formation from H(2)O(2) in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited (.-)OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the (.-)OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H(2)O(2). These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

5.
Carnosine (beta-alanyl-L-histidine), homocarnosine (gamma-amino-butyryl-L-histidine) and anserine (beta-alanyl-1-methyl-L-histidine) have been proposed to act as anti-oxidants in vivo. The protective effects of carnosine and related compounds against the oxidative damage of human Cu,Zn-superoxide dismutase (SOD) by peroxyl radicals generated from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) were studied. The oxidative damage to Cu,Zn-SOD by AAPH-derived radicals led to protein fragmentation, which is associated with the inactivation of enzyme. Carnosine, homocarnosine and anserine significantly inhibited the fragmentation and inactivation of Cu,Zn-SOD by AAPH. All three compounds also inhibited the release of copper ions from the enzyme and the formation of carbonyl compounds in AAPH-treated Cu,Zn-SOD. These compounds inhibited the fragmentation of other protein without copper ion. The results suggest that carnosine and related compounds act as the copper chelator and peroxyl radical scavenger to protect the protein fragmentation. Oxidation of amino acid residues in Cu,Zn-SOD induced by AAPH were significantly inhibited by carnosine and related compounds. It is proposed that carnosine and related dipeptides might be explored as potential therapeutic agents for pathologies that involve Cu,Zn-SOD modification mediated by peroxyl radicals.  相似文献   

6.
Yoon JH  An SH  Kyeong IG  Lee MS  Kwon SC  Kang JH 《BMB reports》2011,44(3):165-169
Excess free iron generates oxidative stress that may contribute to the pathogenesis of various causes of neurodegenerative diseases. In this study, we assessed the modification of ferritin induced by H(2)O(2). When ferritin was incubated with H(2)O(2), the degradation of ferritin L-chain increased with the H(2)O(2) concentration whereas ferritin H-chain was remained. Free radical scavengers, azide, thiourea, and N-acetyl-(L)-cysteine suppressed the H(2)O(2)-mediated ferritin modification. The iron specific chelator, deferoxamine, effectively prevented H(2)O(2)-mediated ferritin degradation in modified ferritin. The release of iron ions from ferritin was increased in H(2)O(2) concentration-dependent manner. The present results suggest that free radicals may play a role in the modification and iron releasing of ferritin by H(2)O(2). It is assumed that oxidative damage of ferritin by H(2)O(2) may induce the increase of iron content in cells and subsequently lead to the deleterious condition.  相似文献   

7.
Ceruloplasmin (CP) is the major plasma antioxidant and copper transport protein. In a previous study, we showed that the aggregation of human ceruloplasmin was induced by peroxyl radicals. We investigated the effects of antioxidant dipeptides carnosine, homocarnosine and anserine on peroxyl radical-mediated ceruloplasmin modification. Carnosine, homocarnosine and anserine significantly inhibited the aggregation of CP induced by peroxyl radicals. When CP was incubated with peroxyl radicals in the presence of three compounds, ferroxidase activity, as measured by the activity staining method, was protected. All three compounds also inhibited the formation of dityrosine in peroxyl radicals-treated CP. The results suggest that carnosine and related compounds act as peroxyl radical scavenger to protect the protein modification. It is proposed that carnosine and related peptides might be explored as potential therapeutic agents for pathologies that involve CP modification mediated by peroxyl radicals generated in the lipid peroxidation.  相似文献   

8.
We reviewed the mechanism of oxidative DNA damage with reference to metal carcinogenesis and metal-mediated chemical carcinogenesis. On the basis of the finding that chromium (VI) induced oxidative DNA damage in the presence of hydrogen peroxide (H2O2), we proposed the hypothesis that endogenous reactive oxygen species play a role in metal carcinogenesis. Since then, we have reported that various metal compounds, such as cobalt, nickel, and ferric nitrilotriacetate, directly cause site-specific DNA damage in the presence of H2O2. We also found that carcinogenic metals could cause DNA damage through indirect mechanisms. Certain nickel compounds induced oxidative DNA damage in rat lungs through inflammation. Endogenous metals, copper and iron, catalyzed ROS generation from various organic carcinogens, resulting in oxidative DNA damage. Polynuclear compounds, such as 4-aminobiphenyl and heterocyclic amines, appear to induce cancer mainly through DNA adduct formation, although their N-hydroxy and nitroso metabolites can also cause oxidative DNA damage. On the other hand, mononuclear compounds, such as benzene metabolites, caffeic acid, and o-toluidine, should express their carcionogenicity through oxidative DNA damage. Metabolites of certain carcinogens efficiently caused oxidative DNA damage by forming NADH-dependent redox cycles. These findings suggest that metal-mediated oxidative DNA damage plays important roles in chemical carcinogenesis.  相似文献   

9.
Carnosine, homocarnosine and anserine have been proposed to act as antioxidants in vivo. Our studies show that all three compounds are good scavengers of the hydroxyl radical (.OH) but that none of them can react with superoxide radical, hydrogen peroxide or hypochlorous acid at biologically significant rates. None of them can bind iron ions in ways that interfere with 'site-specific' iron-dependent radical damage to the sugar deoxyribose, nor can they restrict the availability of Cu2+ to phenanthroline. Homocarnosine has no effect on iron ion-dependent lipid peroxidation; carnosine and anserine have weak inhibitory effects when used at high concentrations in some (but not all) assay systems. However, the ability of these compounds to interfere with a commonly used version of the thiobarbituric acid (TBA) test may have led to an overestimate of their ability to inhibit lipid peroxidation in some previous studies. By contrast, histidine stimulated iron ion-dependent lipid peroxidation. It is concluded that, because of the high concentrations present in vivo, carnosine and anserine could conceivably act as physiological antioxidants by scavenging .OH, but that they do not have a broad spectrum of antioxidant activity, and their ability to inhibit lipid peroxidation is not well established. It may be that they have a function other than antioxidant protection (e.g. buffering), but that they are safer to accumulate than histidine, which has a marked pro-oxidant action upon iron ion-dependent lipid peroxidation. The inability of homocarnosine to react with HOCl, interfere with the TBA test or affect lipid peroxidation systems in the same way as carnosine is surprising in view of the apparent structural similarity between these two molecules.  相似文献   

10.
Zhao G  Arosio P  Chasteen ND 《Biochemistry》2006,45(10):3429-3436
Overexpression of human H-chain ferritin (HuHF) is known to impart a degree of protection to cells against oxidative stress and the associated damage to DNA and other cellular components. However, whether this protective activity resides in the protein's ability to inhibit Fenton chemistry as found for Dps proteins has never been established. Such inhibition does not occur with the related mitochondrial ferritin which displays much of the same iron chemistry as HuHF, including an Fe(II)/H(2)O(2) oxidation stoichiometry of approximately 2:1. In the present study, the ability of HuHF to attenuate hydroxyl radical production by the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + OH(-) + *OH) was examined by electron paramagnetic resonance (EPR) spin-trapping methods. The data demonstrate that the presence of wild-type HuHF during Fe(2+) oxidation by H(2)O(2) greatly decreases the amount of .OH radical produced from Fenton chemistry whereas the ferroxidase site mutant 222 (H62K + H65G) and human L-chain ferritin (HuLF) lack this activity. HuHF catalyzes the pairwise oxidation of Fe(2+) by the detoxification reaction [2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH(core) + 4H(+)] that occurs at the ferroxidase site of the protein, thereby preventing the production of hydroxyl radical. The small amount of *OH radical that is produced in the presence of ferritin (相似文献   

11.
Increased risks of cancers and oxidative DNA damage have been observed in diabetic patients. Many endogenous aldehydes such as 3-deoxyglucosone and glyceraldehyde (GA) increase under hyperglycemic conditions. We showed that these aldehydes induced Cu(II)-mediated DNA damage, including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation. GA had the strongest ability to damage DNA, and addition of low concentrations of H2O2 markedly enhanced the DNA damage. GA significantly increased 8-oxodG formation in human cultured cells (HL-60), and H2O2 enhanced it. We conclude that oxidative DNA damage by hyperglycemia-related aldehydes, especially GA, and marked enhancement of DNA damage by H2O2 may participate in diabetes-associated carcinogenesis.  相似文献   

12.
Copper and iron are two widely studied transition metals associated with hydroxyl radical (˙OH) generation, oxidative damage, and disease development. Because antioxidants ameliorate metal-mediated DNA damage, DNA gel electrophoresis assays were used to quantify the ability of ten selenium-containing compounds to inhibit metal-mediated DNA damage by hydroxyl radical. In the Cu(I)/H(2)O(2) system, selenocystine, selenomethionine, and methyl-selenocysteine inhibit DNA damage with IC(50) values ranging from 3.34 to 25.1 μM. Four selenium compounds also prevent DNA damage from Fe(II) and H(2)O(2). Additional gel electrophoresis experiments indicate that Cu(I) or Fe(II) coordination is responsible for the selenium antioxidant activity. Mass spectrometry studies show that a 1?:?1 stoichiometry is the most common for iron and copper complexes of the tested compounds, even if no antioxidant activity is observed, suggesting that metal coordination is necessary but not sufficient for selenium antioxidant activity. A majority of the selenium compounds are electroactive, regardless of antioxidant activity, and the glutathione peroxidase activities of the selenium compounds show no correlation to DNA damage inhibition. Thus, metal binding is a primary mechanism of selenium antioxidant activity, and both the chemical functionality of the selenium compound and the metal ion generating damaging hydroxyl radical significantly affect selenium antioxidant behavior.  相似文献   

13.
Propyl gallate (PG), widely used as an antioxidant in foods, is carcinogenic to mice and rats. PG increased the amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a characteristic oxidative DNA lesion, in human leukemia cell line HL-60, but not in HP100, which is hydrogen peroxide (H2O2)-resistant cell line derived from HL-60. Although PG induced no or little damage to 32P-5'-end-labeled DNA fragments obtained from genes that are relevant to human cancer, DNA damage was observed with treatment of esterase. HPLC analysis of the products generated from PG incubated with esterase revealed that PG converted into gallic acid (GA). GA induced DNA damage in a dose-dependent manner in the presence of Fe(III)EDTA or Cu(II). In the presence of Fe(III) complex such as Fe(III)EDTA or Fe(III)ADP, GA caused DNA damage at every nucleotide. Fe(III) complex-mediated DNA damage by GA was inhibited by free hydroxy radical (*OH) scavengers, catalase and an iron chelating agent. These results suggested that the Fe(III) complex-mediated DNA damage caused by GA is mainly due to *OH generated via the Fenton reaction. In the presence of Cu(II), DNA damage induced by GA occurred at thymine and cytosine. Although *OH scavengers did not prevent the DNA damage, methional inhibited the DNA damage. Cu(II)-mediated DNA damage was inhibited by catalase and a Cu(I) chelator. These results indicated that reactive oxygen species formed by the interaction of Cu(I) and H2O2 participates in the DNA damage. GA increased 8-oxodG content in calf thymus DNA in the presence of Cu(II), Fe(III)EDTA or Fe(III)ADP. This study suggested that metal-mediated DNA damage caused by GA plays an important role in the carcinogenicity of PG.  相似文献   

14.
15.
Dietary iron may contribute to colon cancer risk via production of reactive oxygen species (ROS). The aim of the study was to determine whether physiological ferric/ferrous iron induces oxidative DNA damage in human colon cells. Therefore, differentiated human colon tumour cells (HT29 clone 19A) were incubated with ferric-nitrilotriacetate (Fe-NTA) or with haemoglobin and DNA breaks and oxidised bases were determined by microgelelectrophoresis. The effects of Fe-NTA were measured with additional H(2)O(2) (75microM) and quercetin (25-100microM) treatment. Analytic detection of iron in cell cultures, treated with 250microM Fe-NTA for 15 min to 24h, showed that 48.02+/-5.14 to 68.31+/-2.11% were rapidly absorbed and then detectable in the cellular fraction. Fe-NTA (250-1000microM) induced DNA breaks and oxidised bases, which were enhanced by subsequent H(2)O(2) exposure. Simultaneous incubation of HT29 clone 19A cells with Fe-NTA and H(2)O(2) for 15 min, 37 degrees C did not change the effect of H(2)O(2) alone. The impact of Fe-NTA and H(2)O(2)-induced oxidative damage is reduced by the antioxidant quercetin (75-67% of H(2)O(2)-control). Haemoglobin was as effective as Fe-NTA in inducing DNA damage. From these results we can conclude that iron is taken up by human colon cells and participates in the induction of oxidative DNA damage. Thus, iron or its capacity to catalyse ROS-formation, is an important colon cancer risk factor. Inhibition of damage by quercetin reflects the potential of antioxidative compounds to influence this risk factor. Quantitative data on the genotoxic impact of ferrous iron (e.g. from red meat) relative to the concentrations of antioxidants (from plant foods) in the gut are now needed to determine the optimal balance of food intake that will reduce exposure to this type of colon cancer risk factor.  相似文献   

16.
1. Carnosine, anserine, and homocarnosine are endogenous dipeptides concentrated in brain and muscle whose biological functions remain in doubt.2. We have tested the hypothesis that these compounds function as endogenous protective substances against molecular and cellular damage from free radicals, using two isolated enzyme systems and two models of ischemic brain injury. Carnosine and homocarnosine are both effective in activating brain Na, K-ATPase measured under optimal conditions and in reducing the loss of its activity caused by incubation with hydrogen peroxide.3. In contrast, all three endogenous dipeptides cause a reduction in the activity of brain tyrosine hydroxylase, an enzyme activated by free radicals. In hippocampal brain slices subjected to ischemia, carnosine increased the time to loss of excitability.4. In in vivo experiments on rats under experimental hypobaric hypoxia, carnosine increased the time to loss of ability to stand and breath and decreased the time to recovery.5. These actions are explicable by effects of carnosine and related compounds which neutralize free radicals, particularly hydroxyl radicals. In all experiments the effective concentration of carnosine was comparable to or lower than those found in brain. These observations provide further support for the conclusion that protection against free radical damage is a major role of carnosine, anserine, and homocarnosine.  相似文献   

17.
Kim KS  Choi SY  Kwon HY  Won MH  Kang TC  Kang JH 《Biochimie》2002,84(7):625-631
Alpha-synuclein is a key component of Lewy bodies in the brain of patients with Parkinson's disease (PD) and recent studies suggest that oxidative stress reactions might contribute to abnormal aggregation of this molecule. Since hydrogen peroxide-mediated ceruloplasmin (CP) modification can induce the formation of free radicals and release of copper ions, we investigated the role of CP in the aggregation of alpha-synuclein. When alpha-synuclein was incubated with both CP and H(2)O(2), alpha-synuclein concomitantly was induced to be aggregated. Thioflavin-S staining of alpha-synuclein aggregates showed that they displayed characteristic fibrillar structures. Hydroxyl radical scavengers and spin-trapping agent such as 5,5'-dimethyl 1-pyrolline N-oxide and tert-butyl-alpha-phenylnitrone significantly inhibited the aggregation of alpha-synuclein. Copper chelator, penicillamine also inhibited the CP/H(2)O(2) system-induced alpha-synuclein aggregation. This indicates that the aggregation of alpha-synuclein can be mediated by the CP/H(2)O(2) system via the generation of hydroxyl radical. The CP/H(2)O(2) system-induced alpha-synuclein aggregation resulted in the generation of protein carbonyl derivatives. Antioxidant molecules, carnosine, homocarnosine and anserine significantly inhibited the CP/H(2)O(2) system-induced aggregation of alpha-synuclein. These results suggest that the CP/H(2)O(2) system may be related to abnormal aggregation of alpha-synuclein which may be involved in the pathogenesis of PD and related disorders.  相似文献   

18.
The mechanism of DNA damage induced by metabolites of nitrobenzene was investigated in relation to the carcinogenicity and reproductive toxicity of nitrobenzene. Nitrosobenzene, a nitrobenzene metabolite, induced NADH plus Cu(II)-mediated DNA cleavage frequently at thymine and cytosine residues. Catalase and bathocuproine inhibited the DNA damage, suggesting the involvement of H2O2 and Cu(I). Typical free hydroxyl radical scavengers showed no inhibitory effects on DNA damage. Nitrosobenzene caused the formation of 8-oxo-7, 8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of NADH and Cu(II). ESR spectroscopic study has confirmed that nitrosobenzene is reduced by NADH to the phenylhydronitroxide radical even in the absence of Cu(II). These results suggest that nitrosobenzene can be reduced non-enzymatically by NADH, and the redox cycle reaction resulted in oxidative DNA damage due to the copper-oxygen complex, derived from the reaction of Cu(I) with H2O2.  相似文献   

19.
Epidemiological studies have suggested that the use of aspirin is associated with a decreased incidence of human malignancies, particularly colorectal cancer. Since reactive oxygen species (ROS) are critically involved in multistage carcinogenesis, this study was undertaken to examine the ability of aspirin to inhibit ROS-mediated DNA damage. Hydrogen peroxide (H2O2)+Cu(II) and hydroquinone (HQ) + Cu(II) were used to cause oxidative DNA strand breaks in phiX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.5-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a marked inhibition of oxidative DNA damage induced by either H2O2/Cu(II) or HQ/Cu(II). The inhibition of oxidative DNA damage by aspirin was exhibited in a concentration-dependent manner. Moreover, aspirin was found to be much more potent than the hydroxyl radical scavengers, mannitol and dimethyl sulfoxide, in protecting against the H2O2/Cu(II)-mediated DNA strand breaks. Since the reduction of Cu(II) to Cu(I) is crucially involved in both H2O2/Cu(II)- and HQ/Cu(II)-mediated formation of hydroxyl radical or its equivalent, and the subsequent oxidative DNA damage, we examined whether aspirin could inhibit this Cu(II)/Cu(I) redox cycle. It was observed that aspirin at concentrations that showed the inhibitory effect on oxidative DNA damage did not alter the Cu(II)/Cu(I) redox cycle in either H2O2/Cu(II) or HQ/Cu(II) system. In addition, aspirin was not found to significantly scavenge H2O2. This study demonstrates for the first time that aspirin potently inhibits both H2O2/Cu(II)- and HQ/Cu(II)-mediated oxidative DNA strand breaks most likely through scavenging the hydroxyl radical or its equivalent derived from these two systems. The potent inhibition of oxidative DNA damage by aspirin may thus partially contribute to its anticancer activities observed in humans.  相似文献   

20.
Rothfuss A  Speit G 《Mutation research》2002,508(1-2):157-165
Hyperbaric oxygen (HBO) treatment of cell cultures is a well suited model for studying genetic and cellular consequences of oxidative stress. We have previously shown that exposure of isolated human lymphocytes to HBO induces DNA damage and leads to the development of an adaptive response which protects lymphocytes from oxidative DNA damage induced by a repeated HBO exposure or by treatment with H(2)O(2). Our earlier studies also provided evidence for a functional involvement of the inducible enzyme heme oxygenase-1 (HO-1) in this adaptive protection. In contrast, V79 Chinese hamster cells did neither show a comparable adaptive protection nor an induction of HO-1 after HBO exposure. We now investigated possible mechanism(s) by which HO-1 contributes to an enhanced resistance of lymphocytes against oxidative stress. HO-1 catalyzes the rate-limiting step in heme degradation to form carbon monoxide (CO), biliverdin and free iron. We can now show that supplementation with exogenous CO does not protect V79 cells from HBO-induced oxidative DNA damage suggesting that increased generation of CO cannot account for the observed adaptive protection. On the other hand, HBO-exposed lymphocytes showed a small but reproducible increase in cellular ferritin levels, which might indicate that the underlying protective mechanism is based on an induction of ferritin, which may act antioxidatively by preventing the generation of the DNA-damaging hydroxyl radical via Fenton reaction. Our results further show that isolated lymphocytes also induce HO-1 and develop an adaptive protection when the first HBO exposure does not induce DNA damage, indicating that DNA damage is not the trigger for the development of the adaptive protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号