首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Floral initiation and development were examined using scanning electron microscopy in Exostyles venusta, Harleyodendron unifoliolatum, Lecointea hatschbachii, and Zollernia ilicifolia. Common features include (1) unidirectional sepal initiation, (2) simultaneous petal initiation, (3) unidirectional initiation of each stamen whorl (except in the antesepalous whorl in Lecointea and Exostyles), (4) overlap in time of initiation of the two stamen whorls, and (5) initiation of the carpel concurrently with petals. Significant developmental features include (1) the first sepal median abaxial in all except Lecointea where it is non-median abaxial; (2) intraspecific variation in petal aestivation in Exostyles, Harleyodendron, and Lecointea; (3) initiation of antepetalous stamens before the antesepalous ones in Zollernia, Exostyles, and Lecointea; and (4) ovule initiation before the carpel margins are fused in Exostyles. The stamen sequence has not been found in any other legumes. The following late developmental events distinguish the four genera from each other: copious hairs hold the anthers together as a domelike structure at anthesis in Harleyodendron; zygomorphy in Zollernia results from differing petal reflexion; late hypanthium in Exostyles, Lecointea, and Holocalyx (no hypanthium in Harleyodendron or Zollernia); and reflexed sepal lobes in Exostyles, Harleyodendron, and Zollernia but not in Holocalyx and Lecointea. The genera studied here are ontogenetically more similar to taxa of Sophoreae than to other Swartzieae that have been investigated. None of the taxa studied here has a ring meristem, the structure that characterizes the remaining swartzioid taxa studied elsewhere.  相似文献   

2.
A new species Swartzia trimorphica Mansano & A. L. Souza (Leguminosae, Papilionoideae, Swartzieae) from the Amazonian Brazil, is described and illustrated. The new species is notable and distinct from all the other species of Swartzia by its highly unusual trimorphic stamens, while the other species have either an isomorphic or a dimorphic androecium. The new species is included in the section and subsection Swartzia , ser. Orthostylae based on its bracteolate pedicels, the cauligerous inflorescences, lateral style and the relative size of the ovary compared to the style. The atypically small gynoecium in the material suggests the possibility that flowers may be functionally unisexual. Field observations and more collections are needed to resolve this question.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 147 , 235–238.  相似文献   

3.
Flower and inflorescence anatomy and morphology of Exostyles, Harleyodendron, Holocalyx, Lecointea, and Zollernia (Leguminosae, Lecointea clade) were studied. Features common to all genera but otherwise rare within the Leguminosae include: (1) the presence of phenolic compounds in the epidermal cells of the anthers and subepidermal cells of the bracteoles, sepals, petals, and ovaries (absent in Holocalyx balansae); (2) simple trichomes on the adaxial base of the bracteoles and on the surface of the calyx and ovaries; and (3) tapetum persisting until the androspores are formed. Other notable anatomical features are: (1) colleters on the adaxial bases of the bracts and bracteoles of Holocalyx balansae and Zollernia ilicifolia; (2) trichomes on the anthers of Harleyodendron unifoliolatum, Holocalyx balansae, Lecointea hatschbachii, Zollernia ilicifolia and Z. magnifica; (3) osmophores on the petals of Exostyles godoyensis; (4) asynchronous pollen development in the anthers of Holocalyx balansae and Zollernia magnifica; and (5) vascular bundles surrounded by lignified fibers in Harleyodendron unifoliolatum. These anatomical characters are discussed according to their possible phylogenetic implications.  相似文献   

4.
Veitch NC  Kite GC  Lewis GP 《Phytochemistry》2008,69(12):2329-2335
A survey of foliar flavonoids in the swartzioid legume genus Cordyla s.l. revealed that three species, C. haraka, C. pinnata and C. richardii, were rich in flavonol pentaglycosides. Their structures were elucidated by spectroscopic and chemical methods as the 3-O-alpha-l-rhamnopyranosyl(1-->3)-alpha-l-rhamnopyranosyl(1-->2)[alpha-l-rhamnopyranosyl(1-->6)]-beta-d-galactopyranoside-7-O-alpha-l-rhamnopyranosides of quercetin and kaempferol (cordylasins A and B, respectively). These compounds were not found in the remaining species, C. africana, C. densiflora, C. madagascariensis (two subspecies) and C. somalensis, which exhibited different profiles of flavonoid glycosides. The distribution of flavonol pentaglycosides in Cordyla s.l. does not support a recent proposal to place both C. haraka and C. madagascariensis in the genus Dupuya [Kirkbride, J.H., 2005. Dupuya, a new genus of Malagasy legumes (Fabaceae). Novon 15, 305-314]. The generic relationship between Cordyla s.l. and Mildbraediodendron is also reassessed on the basis of chemical characters, as the O-linked tetrasaccharide that characterises cordylasins A and B is the same as that found in mildbraedin (kaempferol 3-O-alpha-l-rhamnopyranosyl(1-->3)-alpha-l-rhamnopyranosyl(1-->2)[alpha-l-rhamnopyranosyl(1-->6)]-beta-d-galactopyranoside), the main foliar flavonoid of Mildbraediodendron excelsum. Mildbraedin itself was found to be a minor constituent of leaflet extracts of C. haraka, C. pinnata and C. richardii, and a major constituent of C. somalensis.  相似文献   

5.
Floral ontogeny is described in eight species of Sophora sensu lato, representing the Sophora group, as part of a comparative ontogenetic analysis of Polhill's eight groups of tribe Sophoreae, subfamily Papilionoideae. This tribe includes taxa having relatively unspecialized floral structure. Flowers have a five-lobed calyx, a corolla of five free petals, ten mostly unfused, identical stamens, and a carpel. Order of initiation is predominantly acropetal (except for the carpel): sepals, petals, outer stamens plus carpel, inner stamens. Order of initiation within each whorl is unidirectional from the abaxial side. Overlapping initiation among whorls occurs only in S. chrysophylla. Keel petals are slightly fused in six species, and wing petals are fused in 5. tomentosa. Two bird-pollinated species (S. chrysophylla, S. microphylla) lack the papilionaceous corolla of other species, and their petals are unusually long and lack wing sculpturing found in the others. Other floral differences among species mostly involve flower color, differing absolute or relative sizes among organs, and degree of reflexing of vexillum. All but S. davidii have a hypanthium, which develops very late, starting when the bud is about 5 mm long. The distinctions among species (petal size, degree of reflexed position of vexillum, petal sculpturing, color, anther shape, filament hairs, hypanthium presence, calyx lobing) tend to be expressed late in ontogeny.  相似文献   

6.
In order to elucidate the position of the Swartzieae in Leguminosae, Swartzia langsdorffii was chosen as a representative of this tribe type genus and subjected to structural studies of immature ovaries (in the floral bud and flowers) and developing and mature fruits. The external epidermis of the ovary is characterized by one layer of thin-walled polyhedral cells with a thin cuticle. Parenchyma cells have a large quantity of tannin-containing idioblasts located inside a procambial ring. The one-layered inner epidermis consists of flattened cells. In fruits the one-layered exocarp is covered by a thick cuticle. The mesocarp consists of three distinct regions, the middle region being a sclerenchymatous layer. The one-layered endo-carp shows cells with little cohesion. The occurrence of canals consisting of a net of resinous cells was also observed in the mesocarp. Secretion was of an elaborate composition. Differentiation of the secretory structures begin in the floral bud ovary, where they appear as idioblasts containing tannin. The taxonomic position of this tribe, as well as the function of the mesocarp secreting canals, are discussed.  相似文献   

7.
Floral ontogeny and morphology of the Leguminosae are of interest because of their potential to provide characteristics useful for phylogeny. To determine if these features corroborate the phylogenetic segregation of the section Ochopodium from Aeschynomene, this study used comparative analysis between Aeschynomene falcata and A. sensitiva, which are within the sections Ochopodium and Aeschynomene, respectively. Flower buds were analysed by use of scanning electron microscopy. Aeschynomene falcata has a unidirectional initiation of sepals from the abaxial side, and a tendency toward whorled initiation for petals and stamens. At maturity, it has a calyx tube with five lobes, a pubescent standard petal, keel petals with coherent (but not fused) margins above and below the stamens, and a carpel with a long hairy stipe. Aeschynomene sensitiva has a distinct initiation pattern of petals (1st abaxial, 2nd adaxial, and 3rd lateral) and a tendency toward whorled initiation of sepals and stamens. Overlap between sepals, petals, and antesepalous stamens initiation was observed. At maturity, A. sensitiva has a glabrous bilobed calyx and a glabrous standard petal, keel petals postgenitally fused above the stamens, and a carpel with a short and glabrous stipe. Floral ontogeny and morphology of A. falcata are very similar to those of Machaerium and Dalbergia species so far studied, corroborating the phylogenetic proximity of section Ochopodium to these genera. Important features of the floral ontogeny of A. sensitiva seem to be related to the origin of the bilobed calyx, which is shared with the rest of Aeschynomeninae except section Ochopodium, suggesting they are synapomorphies for those species.  相似文献   

8.
Three new species of Swartzieae are described and illustrated:Swartzia alternifoliolata, S. capixabensis, andZollernia cowanii. Swartzia apetala var.blanchetii and var.subcordata are considered to be synonyms ofS. apetala var.apetala, andS. grazielana a synonym ofS. macrostachya var.macrostachya. Keys to southeastern Brazil members ofSwartzia andZollernia are provided.  相似文献   

9.
Floral organogeny and development are described in Cadia purpurea, a legume with radial symmetry, unstable petal aestivation, and free organs, all unusual features among papilionoids. Flowers are usually solitary or, rarely, in few-flowered racemes. No bracteoles are formed. The order of organ initiation is unidirectional in each whorl, and the carpel initiates directly after petal initiation.The petal primordia remain small until all other floral organs have initiated, enlarged, and differentiated. Petal aestivation is variable, unlike the great majority of papilionoid flowers. Petal margins of Cadia grow straight outward rather than some petal margins curving inward inside the adjacent petal as is the case in other papilionoids. When adjacent growing petal margins of Cadia meet, chance determines which petal becomes positioned inside the other. Hence, the pattern of petal aestivation is random.  相似文献   

10.
Floral organogenesis and development of the bushy perennial legume Astragalus caspicus were studied using epi-illumination light microscopy techniques. Based on our observations, flowers are in axillary two-flowered racemes, initiate all 21 floral organs and show precocious appearance of zygomorphy. The order of floral organ initiation is unidirectional in whorls starting from the abaxial position of the flower with a high degree of overlap. Another important ontogenetic feature is the existence of two successive common primordial stages categorized as primary and secondary. The primary common primordia produce antesepalous stamens and secondary common primordia. In contrast, the five secondary common primordia subdivide into a petal and an antepetalous stamen primordia. Our findings on floral ontogeny of A. caspicus provide new evidence for the complex and variable floral initiation and development in legumes. The floral apex with strong overlapping initiation of different organs illustrates a paradox in which different capabilities must be presumed to exist simultaneously. Moreover, two extraordinary types of common primordia represent possibly an advanced evolutionary trend where time intervals between the initiations of different floral organs in Papilionoideae are shortened.  相似文献   

11.
Floral organogenesis and development of the tropical legume treesDalbergia brasiliensis, Machaerium villosum, Platymiscium floribundum, andPterocarpus rotundifolius were studied using scanning electron microscopy. The aims were to compare ontogenies and to elucidate if floral ontogenetic data will provide new character states diagnostic of the tribe Dalbergieae, which is considered a basal papilionoid tribe and primarily defined on fruit characters. Organ inception is principally acropetal in all taxa studied. Carpel inception is, however, consistently precocious. InD. brasiliensis sepals are initiated in an order not previously reported in Papilionoideae. It may be considered modified helical. InP. rotundifolius the inner whorl of stamens initiate in an unusual way, this is lateral two stamens first, then the two abaxial ones, and last the adaxial one, opposed to the unidirectional order usually seen in Papilionoideae. Generally the differences in flower development among the studied genera appear at initiation and late stage in ontogenesis, rather than at mid-stage.  相似文献   

12.
Swartzia (ca. 180 spp.) is a characteristic and diverse element of neotropical rainforest tree communities. As such, it has been identified as a focal group in studies of evolutionary diversification and community assembly in rainforests. However, progress is impeded by the lack of a phylogenetic hypothesis for the genus and its close relatives, which together constitute the descendents of one of the first branches of the papilionoid phylogeny. Here we present a molecular phylogenetic study with extensive sampling of species of Swartzia and with complete sampling of genera of the "swartzioid" clade. The results, based on analysis of chloroplast (atpB-rbcL, trnL intron, and trnL-F) and nuclear (AAT1 and ITS) DNA sequences, add substantially to our understanding of relationships within this diverse group and call for taxonomic changes, particularly within Swartzia. The monophyly of a redefined Swartzia is weakly to moderately supported. Within Swartzia, the analyses identify 11 nonoverlapping subclades, few of which correspond exactly to previously published taxa. The analyses support the recent segregations of Bobgunnia from Swartzia and of Trischidium from Bocoa, as well as the resurrection of the monospecific genus Fairchildia. The analyses identify a "core swartzioid" clade comprising the remainder of Swartzia, Bocoa, and Candolleodendron.  相似文献   

13.
Inflorescence and floral development of three species of Indigofera (Leguminosae-Papilionoideae), I. lespedezioides, I. spicata, and I. suffruticosa, were investigated and compared with that of other papilionoid groups, especially with members of the recently circumscribed Millettioid clade, which was merged as sister to Indigofereae in a recent cladistic analysis. Although Indigofera is a genus of special interest, because of its great richness in species and its economic importance, few studies have been made of floral development in the genus or in Indigofereae as a whole. Flower buds and inflorescences were analysed at several stages of development in the three species. Our results confirmed that Indigofera species bear a usual inflorescence type among legumes, the raceme, which comprises flowers initiated in acropetal succession, each with a subtending bract and no bracteoles initiated. The inception of the floral organs is as follows: sepals (5), petals (5), carpel (1), outer stamens (5), and, finally, inner stamens (5). Organ initiation in the sepal, petal, and both stamen whorls is unidirectional, from the abaxial side; the carpel cleft is adaxial. The vexillum is larger than other petals at maturity, covering the keels, which are fused edge-to-edge. Nine filaments are fused to form an adaxially open sheath, and the adaxial stamen of the inner whorl remains free (diadelphous androecium) in the mid-stage of development. Most of the infra-generic differences occurred in the later stages of development. Data on floral development in Indigofera obtained here were also compared with those from other members of Papilionoideae. This comparison showed that the early expression of zygomorphy is shared with other members of the Millettioid clade but is rarely found in other papilionoids, corresponding to a hypothetically morphological synapomorphy in the pair Indigoferae plus millettioids.  相似文献   

14.
BACKGROUND AND AIMS: There are few embryological reports on wild legumes and even fewer on their seminal appendages. There are no existing studies on the complete ontogeny of these appendages in Cytiseae, a very important Papilionoideae tribe in Mediterranean ecosystems. In this work megasporogenesis, megagametogenesis and aril ontogeny were studied in Cytisus multiflorus and C. striatus, endemics from the western Mediterranean region. METHODS: Ovaries and ovules from flower buds, flowers at anthesis and hand cross-pollinated flowers were sectioned with a rotary microtome and studied under light and fluorescence microscopy. KEY RESULTS: A monosporic Polygonum-type of megagametogenesis is observed in both species but with megasporogenesis characterized by formation of a triad of cells after incomplete meiosis. The original cell wall of the megaspore mother cell and triad, including the transverse walls between the latter, are surrounded by a callose layer that isolates them from the surrounding diploid tissue; this callose layer gradually disappears during embryo sac formation. There are no antipodals in the mature embryo sac. Aril ontogeny starts in pre-anthesis with the formation of the aril primordium, and its normal development will occur only after fertilization, more specifically after endosperm initiation. After fertilization, a reactivation of meristem capacity takes place in the aril cells resulting in slow and sparse growth. Later, this type of development gradually decreases but the aril cells continue to grow by cell expansion, which in the last period of seed development is the only type of growth of the aril. In the mature seed, the seminal appendage acquires an irregular U-shape in transverse section, showing vacuolated cells with a large central vacuole that stores lipids and some proteins. CONCLUSIONS: Meiotic triad formation is due to a failure in meiosis II of the chalazal cell of the dyad. In Cytisus seeds the aril has a funicular origin with predominantly post-fertilization development, but a normal growth of the endosperm is needed for proper aril development.  相似文献   

15.
16.
Floral ontogeny of Lespedeza thunbergii was studied with the use of scanning electron microscopy (SEM). The ontogeny varies in all whorls from the undirectional mode, which has been long held to be the rule in Leguminosae. In the sepal whorl, the lateral and the adaxial sepals are formed simultaneously, which is interpreted as a tendency towards whorled organ formation. Whorled organ formation is shown in the petal whorl. The antesepalous stamen whorl varies least from the unidirectional mode. Here, the adaxial stamens are formed successively. This is seen as a remnant of an original helical organ formation in Papilionoideae. Within the antepetalous stamen whorl, the two abaxial stamens and the adaxial stamen are formed first, followed by the two lateral stamens. This is a rarely found phenomenon, which is hard to interpret at the present state of knowledge. Concerning the mature flower, it is shown that nectar stomata are found in a distinct area on the adaxial side of the flower. The presented new characteristics should be an initial step toward further work on taxa of the tribe Desmodieae. These studies will broaden the data set and enable a detailed phylogenetic analysis.  相似文献   

17.
Microsporogenesis, chromosome number, meiotic behaviour and meiotic index were investigated in Dahlstedtia pinnata and D . pentaphylla , two legume species occurring largely in Brazil, in order to ascertain whether the pollen could limit fertilization events. Archesporial cells originate primary sporogenous and anther wall precursor cells, the tapetum is uniseriate, uninucleate and glandular. Tetrads are tetrahedric or decussate, and cytokinesis is of the simultaneous type. Mature pollen grains are tricolpate and bicellular. No abnormalities in microsporogenesis were found. In both species the chromosome number is n = 11, a number not reported previously. The base number for Dahlstedtia is also 11, because cytological observations include both species of Dahlstedtia . D. pentaphylla has a higher meiotic index and lower individual variation values, and it is considered meiotically stable. Its pollen grains do not limit fertilization. D. pinnata has a lower meiotic index, and the pollen is one of the factors which limit fertilization. Furthermore, D. pinnata has numerous adventitious shoots, which suggest that vegetative propagation is important in its reproductive process. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 461–471.  相似文献   

18.
The jequirity bean (Abrus precatorius) is well known because of its shiny black and red coloured seeds and because of the poison (abrin) it contains. The genus Abrus is placed in a monogeneric tribe Abreae which is placed in a relatively isolated systematic position at the base of Millettieae. To contribute to a better understanding of this taxon, a detailed ontogenetic and morphologic analysis of its flowers is presented. Floral primordia are subtended by an abaxial bract and preceded by two lateral bracteoles which are formed in short succession. Sepal formation is unidirectional starting abaxially. All petals are formed simultaneously. The carpel is formed concomitantly with the outer (antesepalous) stamen whorl, which arises unidirectionally, starting in an abaxial position. In the inner, antepetalous stamen whorl two abaxial stamens are formed first, followed by two lateral stamen primordia. The adaxial, antepetalous position remains organ free (i.e. this stamen is lost). Later in development the nine stamen filaments fuse to form an adaxially open sheath. The filament bases of the two adaxial outer-whorl stamens grow inwards, possibly to provide stability and to compensate for the lost stamen. In the mature flower a basal outgrowth can be found in the position of the lost stamen. However this is more likely to be an outgrowth of the filament sheath rather than a remnant of the lost stamen. These ontogenetic patterns match in parts those found in other Millettieae (unidirectional formation of sepals and stamens, simultaneous petal formation). In contrast, the complete loss of a stamen is rather unusual and supports the isolated position of Abreae and probably justifies (among other characters) its tribal status. A review of androecial characters shows that androecial merosity is on the one hand extremely variable among Leguminosae, varying from a single stamen per flower to more than 500. On the other hand it is noteworthy that the number of stamens becomes stabilised in more derived Papilionoideae such as the large non-protein-amino-acid-accumulating clade (NPAAA clade). This indicates that the androecium has played an important role in the success of a major part of Leguminosae.  相似文献   

19.
Summary Explants of axillary buds excised from mature adult stems of Swainsona formosa (G. Don) J. Thompson (syn. Clianthus formosus) were cultured on Murashige and Skoog medium supplemented with a range of auxins, cytokinins, and sucrose concentrations. Auxins did not increase shoot or bud numbers above controls, and 2,4-dichlorophenoxyacetic acid was the only auxin to significantly increase callus production. Benzyladenine or thidiazuron incorporated into the medium at 0.1 μM stimulated shoot and bud production, and shoot growth occurred following removal of cytokinins from the medium after 4 wk. Shoot number increased linearly with sucrose concentration up to 40 g l−1, but shoot height and the number of cytokinin-induced buds were optimal at sucrose levels of 20–30 g l−1. Roots were initiated in vitro following treatment of cuttings with 0.1% indole-3-butyric acid and 0.1% α-naphthaleneactic acid. Plantlets were successfully established in soil but were plagiotropic and exhibited distichous phyllotaxy.  相似文献   

20.
A new species Exostyles godoyensis Soares-Silva & Mansano (Leguminosae, Papilionoideae, Swartzieae), endemic to Paraná state in southern Brazil, is described and illustrated. The new species is distinct from all the other species of Exostyles in having a leaf with up to five leaflets, while the other species have at least seven leaflets per leaf. The new species is distinct from Exostyles amazonica Yakovlev in its longer stamen filaments and ovary stipe and from E. glabra Vogel and E. venusta Schott by its shorter anthers. In addition to these morphological characters E. godoyensis has a disjunct geographical distribution.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 103–106.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号