首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim The family Rutaceae (rue family) is the largest within the eudicot order Sapindales and is distributed mainly in the tropical and subtropical regions of both the New World and the Old World, with a few genera in temperate zones. The main objective of this study is to present molecular dating and biogeographical analyses of the subfamily Spathelioideae, the earliest branching clade (which includes eight extant genera), to interpret the temporal and spatial origins of this group, ascertaining possible vicariant patterns and dispersal routes and inferring diversification rates through time. Location Pantropics. Methods A dataset comprising a complete taxon sampling at generic level (83.3% at species level) of Spathelioideae was used for a Bayesian molecular dating analysis (beast ). Four fossil calibration points and an age constraint for Sapindales were applied. An ancestral area reconstruction analysis utilizing the dispersal–extinction–cladogenesis model and diversification rate analyses was conducted. Results Dating analyses indicate that Rutaceae and Spathelioideae are probably of Late Cretaceous origin, after which Spathelioideae split into a Neotropical and a Palaeotropical lineage. The Palaeotropical taxa have their origin inferred in Africa, with postulated dispersal events to the Mediterranean, the Canary Islands, Madagascar and Southeast Asia. The lineages within Spathelioideae evolved at a relatively constant diversification rate. However, abrupt changes in diversification rates are inferred from the beginning of the Miocene and during the Pliocene/Pleistocene. Main conclusions The geographical origin of Spathelioideae probably lies in Africa. The existence of a Neotropical lineage may be the result of a dispersal event at a time in the Late Cretaceous when South America and Africa were still quite close to each other (assuming that our age estimates are close to the actual ages), or by Gondwanan vicariance (assuming that our age estimates provide minimal ages only). Separation of land masses caused by sea level changes during the Pliocene and Pleistocene may have been triggers for speciation in the Caribbean genus Spathelia.  相似文献   

2.
Bradyrhizobium strains isolated in Europe from Genisteae and serradella legumes form a distinct lineage, designated clade II, on nodulation gene trees. Clade II bradyrhizobia appear to prevail also in the soils of Western Australia and South Africa following probably accidental introduction with seeds of their lupine and serradella hosts. Given this potential for dispersal, we investigated Bradyrhizobium isolates originating from a range of native New World lupines, based on phylogenetic analyses of nodulation (nodA, nodZ, noeI) and housekeeping (atpD, dnaK, glnII, recA) genes. The housekeeping gene trees revealed considerable diversity among lupine bradyrhizobia, with most isolates placed in the Bradyrhizobium japonicum lineage, while some European strains were closely related to Bradyrhizobium canariense. The nodA gene tree resolved seven strongly supported groups (clades I to VII) that correlated with strain geographical origins and to some extent with major Lupinus clades. All European strains were placed in clade II, whereas only a minority of New World strains was placed in this clade. This work, as well as our previous studies, suggests that clade II diversified predominately in the Old World, possibly in the Mediterranean. Most New World isolates formed subclade III.2, nested in a large "pantropical" clade III, which appears to be New World in origin, although it also includes strains originating from nonlupine legumes. Trees generated using nodZ and noeI gene sequences accorded well with the nodA tree, but evidence is presented that the noeI gene may not be required for nodulation of lupine and that loss of this gene is occurring.  相似文献   

3.
Hypochaeris has a disjunct distribution, with more than 15 species in the Mediterranean region, the Canary Islands, Europe, and Asia, and more than 40 species in South America. Previous studies have suggested that the New World taxa have evolved from ancestors similar to the central European H. maculata. Based on internal transcribed spacer (ITS) sequences and fluorescence in situ hybridization (FISH) with 5S and 18S-25S rDNA of the previously overlooked Hypochaeris angustifolia from Moyen Atlas, Morocco, we show that it is sister to the entire South American group. A biogeographic analysis supports the hypothesis of long-distance dispersal from NW Africa across the Atlantic Ocean for the origin of the South American taxa rather than migration from North America, through the Panamian land bridge, followed by subsequent extinction in North America. With the assumption of a molecular clock, the trans-Atlantic dispersal from NW Africa to South America is roughly estimated to have taken place during Pliocene or Pleistocene.  相似文献   

4.
The geographical distribution of the limpet family Patellidae is essentially antitropical, with 18 species in southern Africa, 10 in the northeastern Atlantic, and only 11 species elsewhere (although 4 of these do occur in the tropics). One possible explanation for this distribution is the suggestion of a recent, perhaps Early Pliocene, migration from southern Africa northward. We tested this hypothesis by constructing a molecular phylogeny, derived from partial sequences of the 12S and 16S mitochondrial genes, obtained from 34 of the 38 patellid species. Five species of Nacellidae and 3 of Lottiidae were included as potential outgroups. Analysis revealed that two patellid clades are represented in the northeastern Atlantic. The typical European patellids (Patella sensu stricto) form a single clade within which there is little molecular divergence, but are distant from all other patellids, thus refuting the idea of recent southern ancestry. From the limited fossil record and estimated rates of molecular divergence, we suggest that Patella s.s. may have originated at least as early as the Upper Cretaceous and that its northern distribution may have been achieved at the same time. The second patellid clade present in the northeastern Atlantic is the genus Cymbula, of which the single species Cymbula safiana extends from West Africa to the Mediterranean. In contrast to Patella s.s., C. safiana is indeed a member of an otherwise southern African clade and may have attained its present distribution more recently, during the Miocene. The geographical origin of the family remains unclear, but a Mesozoic radiation in southern Gondwana is possible. By optimizing morphological characters on our molecular tree, we consider the evolution of shell mineralogy and sperm ultrastructure. We also discuss the phylogenetic classification of the patellids and present some evidence that the family may not be monophyletic.  相似文献   

5.
The taxonomy of diploid Mediterranean Senecio sect. Senecio (Asteraceae) is complex, owing to a recent species radiation, high morphological plasticity and occasional interspecific hybridization. A study was conducted to resolve the origin of a novel form of Senecio restricted to sand dunes in southern Sicily, Italy. This has been described previously as morphologically intermediate to Senecio gallicus and Senecio glaucus ssp. coronopifolius, indicating a possible hybrid origin, or as a variant of Senecio leucanthemifolius. Plants of this form grown in a glasshouse were morphologically intermediate to S. glaucus and S. leucanthemifolius, but were also similar to some cultivated individuals of S. gallicus. No evidence for a hybrid origin was obtained from a survey of random amplified polymorphic DNA variation; instead the plants surveyed were most closely allied to Tunisian S. glaucus. They were also polymorphic for the same set of cpDNA haplotypes present in Tunisian S. glaucus. We conclude that the Sicilian Senecio is a variant form of North African S. glaucus ssp. coronopifolius, which most probably dispersed to sand dunes in southern Sicily in the relatively recent past. The presence of several cpDNA haplotypes in this material indicates that there have been multiple introductions of the species to Sicily.  相似文献   

6.
Lathyrus (Leguminosae; Papilionoideae) is the largest genus in tribe Fabeae and exhibits an intriguing extratropical distribution. We studied the systematics and biogeography of Lathyrus using sequence data, from accessions representing 53 species, for the internal transcribed spacer plus 5.8S-coding region of nuclear ribosomal DNA as well as the trnL-F and trnS-G regions of chloroplast DNA. Our results generally supported recent morphology-based classifications, resolving clades corresponding to sections Lathyrus and Lathyrostylis, but question the monophyly of the large, widespread section Orobus sensu Asmussen and Liston. Sections Orobus, Aphaca, and Pratensis form a predominantly northern Eurasian-New World clade. Within this clade, the North American and eastern Eurasian species, including both Holarctic species (L. palustris and L. japonicus), form a transberingian clade of relatively recent origin and diversification. The South American Notolathyrus group is distant from this transberingian lineage and should be reinstated as a distinct section within the northern Eurasian-New World clade. The Notolathyrus lineage reached the New World most probably through long-distance dispersal from Eurasia. The remaining sections in the genus are centered on the Mediterranean region.  相似文献   

7.
The evolutionary origin of the only north‐west Saharan haplochromine cichlid, Astatotilapia desfontainii, was explored using mitochondrial DNA sequences. Phylogenetic analyses revealed that this species belonged to the main East African–Nilotic haplochromine clade, but was a distinct lineage that diverged from modern haplochromines in the Pliocene. The results suggest that A. desfontainii is a relict haplochromine lineage that has endured major climate fluctuations in North Africa.  相似文献   

8.
Hybridization is an important evolutionary factor in the diversification of many plant and animal species. Of particular interest is that historical hybridization resulting in the origin of new species or introgressants has occurred between species now geographically separated by great distances. Here, we report that Senecio massaicus, a tetraploid species native to Morocco and the Canary Islands, contains genetic material of two distinct, geographically separated lineages: a Mediterranean lineage and a mainly southern African lineage. A time-calibrated internal transcribed spacer phylogeny indicates that the hybridization event took place up to 6.18 Ma. Because the southern African lineage has never been recorded from Morocco or the Canary Islands, we hypothesize that it reached this area in the distant past, but never became permanently established. Interestingly, the southern African lineage includes S. inaequidens, a highly invasive species that has recently become widespread throughout Europe and was introduced at the end of the 19th century as a 'wool alien'. Our results suggest that this more recent invasion of Europe by S. inaequidens represents the second arrival of this lineage into the region.  相似文献   

9.
The modern geographic distribution of the spider family Sicariidae is consistent with an evolutionary origin on Western Gondwana. Both sicariid genera, Loxosceles and Sicarius are diverse in Africa and South/Central America. Loxosceles are also diverse in North America and the West Indies, and have species described from Mediterranean Europe and China. We tested vicariance hypotheses using molecular phylogenetics and molecular dating analyses of 28S, COI, 16S, and NADHI sequences. We recover reciprocal monophyly of African and South American Sicarius, paraphyletic Southern African Loxosceles and monophyletic New World Loxosceles within which an Old World species group that includes L. rufescens is derived. These patterns are consistent with a sicariid common ancestor on Western Gondwana. North American Loxosceles are monophyletic, sister to Caribbean taxa, and resolved in a larger clade with South American Loxosceles. With fossil data this pattern is consistent with colonization of North America via a land bridge predating the modern Isthmus of Panama.  相似文献   

10.
Bradyrhizobium strains isolated in Europe from Genisteae and serradella legumes form a distinct lineage, designated clade II, on nodulation gene trees. Clade II bradyrhizobia appear to prevail also in the soils of Western Australia and South Africa following probably accidental introduction with seeds of their lupine and serradella hosts. Given this potential for dispersal, we investigated Bradyrhizobium isolates originating from a range of native New World lupines, based on phylogenetic analyses of nodulation (nodA, nodZ, noeI) and housekeeping (atpD, dnaK, glnII, recA) genes. The housekeeping gene trees revealed considerable diversity among lupine bradyrhizobia, with most isolates placed in the Bradyrhizobium japonicum lineage, while some European strains were closely related to Bradyrhizobium canariense. The nodA gene tree resolved seven strongly supported groups (clades I to VII) that correlated with strain geographical origins and to some extent with major Lupinus clades. All European strains were placed in clade II, whereas only a minority of New World strains was placed in this clade. This work, as well as our previous studies, suggests that clade II diversified predominately in the Old World, possibly in the Mediterranean. Most New World isolates formed subclade III.2, nested in a large “pantropical” clade III, which appears to be New World in origin, although it also includes strains originating from nonlupine legumes. Trees generated using nodZ and noeI gene sequences accorded well with the nodA tree, but evidence is presented that the noeI gene may not be required for nodulation of lupine and that loss of this gene is occurring.  相似文献   

11.
Lycium comprises approximately 70 species and is disjunctly distributed in temperate to subtropical regions in South America, North America, southern Africa, Eurasia, and Australia. Among them, only Lycium sandwicense A. Gray sporadically occurs widely on oceanic islands in the Pacific Ocean. To investigate phylogenetic and biogeographic relationships of the genus with emphasis on L. sandwicense, the coding region of matK, the two intergenic spacers trnT (UGU)-trnL (UAA) and trnL (UAA)-trnF (GAA), and the trnL (UAA) intron of chloroplast DNA (cpDNA) were sequenced. A strict consensus tree resulting from the phylogenetic analysis indicates the following: (1) New World species comprise a potentially paraphyletic assemblage; (2) southern African, Australian, and Eurasian species together are monophyletic; (3) southern African species are a paraphyletic assemblage; and (4) L. sandwicense is in a clade with certain New World species. The estimated biogeographic events based on the cpDNA analysis indicate that (1) Lycium originated in the New World, (2) all southern African, Australian, and Eurasian species have a common ancestor from the New World, (3) Australian and Eurasian species originated once from a southern African progenitor, and (4) L. sandwicense differentiated from the New World species.  相似文献   

12.
Fourteen native species of Linum are recognized in southern Africa, all of which belong to sect. Linopsis. Four are commonly accepted species; four were described more than a century ago but have not been recognized in recent treatments; six are newly described. Thirteen species are endemic; one ranges as far north as Angola and Tanzania. Among the new species two are heterostylous, the first described for the genus from this region.
The section Linopsis ranges broadly from the Mediterranean region to southern Africa and to both North and South America. The occurrence in the Mediterranean region of species exhibiting such features as heterostyly and chromosome numbers of 2n = 18 or 20, the only diploids known in the section, seems to indicate that in that region are to be found the most primitive species of the section. The close similarity between species of southern Africa and a number of South American and North American species appears to place the southern African species in an intermediate evolutionary position with respect to the Old and New World species of the section.  相似文献   

13.

Background

Due to its complex, dynamic and well-known paleogeography, the Mediterranean region provides an ideal framework to study the colonization history of plant lineages. The genus Linaria has its diversity centre in the Mediterranean region, both in Europe and Africa. The last land connection between both continental plates occurred during the Messinian Salinity Crisis, in the late Miocene (5.96 to 5.33 Ma).

Methodology/Principal Findings

We analyzed the colonization history of Linaria sect. Versicolores (bifid toadflaxes), which includes c. 22 species distributed across the Mediterranean, including Europe and Africa. Two cpDNA regions (rpl32-trnLUAG and trnK-matK) were sequenced from 66 samples of Linaria. We conducted phylogenetic, dating, biogeographic and phylogeographic analyses to reconstruct colonization patterns in space and time. Four major clades were found: two of them exclusively contain Iberian samples, while the other two include northern African samples together with some European samples. The bifid toadflaxes have been split in African and European clades since the late Miocene, and most lineage and speciation differentiation occurred during the Pliocene and Quaternary. We have strongly inferred four events of post-Messinian colonization following long-distance dispersal from northern Africa to the Iberian Peninsula, Sicily and Greece.

Conclusions/Significance

The current distribution of Linaria sect. Versicolores lineages is explained by both ancient isolation between African and European populations and recent events of long-distance dispersal over sea barriers. This result provides new evidence for the biogeographic complexity of the Mediterranean region.  相似文献   

14.
Sylvietta is a broadly distributed group of African species inhabiting a wide range of habitats and presents an interesting opportunity to investigate the historic mechanisms that have impacted the biogeography of African avian species. We collected sequence data from 50 individuals and used model‐based phylogenetic methods, molecular divergence estimates and ancestral area estimates to construct a time‐calibrated phylogeny and estimation of biogeographic history. We estimate a southern African origin for Sylvietta, with an initial divergence splitting the genus into two clades. The first consists of arid‐adapted species, with a southern African origin and subsequent diversification north into Ethiopia–Somalia. The second clade is estimated as having a Congolian forest origin with an eastward pattern of colonization and diversification as a result of Plio‐Pleistocene forest dynamics. Additionally, two members of the genus Sylvietta display interesting patterns of intraspecific diversification. Sylvietta rufescens is an arid‐adapted species inhabiting southern Africa, and we recover two subclades with a divergence dating to the Pleistocene, a unique pattern for avian species which may be explained via isolation in arid habitat fragments in the early Pleistocene. Second, Sylvietta virens, a species endemic to Afro‐tropical forests, is recovered with geographically structured genetic diversification across its broad range, an interesting result given that recent investigations of several avian forest species have found similar and substantial geographically structured genetic diversity relating to Plio‐Pleistocene forest fragmentation. Overall, Plio‐Pleistocene habitat cycling played a significant role in driving diversification in Sylvietta, and this investigation highlights the substantial impact of climate‐driven habitat dynamics on the history of sub‐Saharan species.  相似文献   

15.
Abstract The sequences of 16S rDNA, cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b) genes from nine field collections (seven provinces in China: Guangxi, Hubei, Guangdong, Guizhou, Zhejiang, Hunan, Jiangxi, and also southern and northern part of Iran), plus the sequences of Africa, Europe, Americas and Japan obtained form GenBank were used to re-analyse the genetic variation in the southern green stink bug Nezara viridula (Linnaeus). The phylogeographic re-analysis by using four algorithms (NJ, MP, ML and Bayesian) showed three main lineages. The Iranian haplotypes fell into lineage II formed from Europe and America, rather than in lineage III from Asia; the Chinese haplotypes fell into the Asian clade. Our results suggested that African and non-African gene pools have been isolated since the Miocene era with the molecular clock calibrations for Heteroptera mtDNA, and not since the Pliocene as mentioned previously. The corresponding age of the separation of the eastern and western Asia clades is estimated to be 4.0–1.6 million years ago, coinciding with the Pliocene–Pleistocene epoch and with acute rising events in the Tibet Plateau locates in the western China, which may have formed the barriers observed today.  相似文献   

16.
Contrasting patterns of radiation in African and Australian Restionaceae   总被引:3,自引:0,他引:3  
The floras of the Mediterranean-climate areas of southern Africa and southwestern Australia are remarkably species rich. Because the two areas are at similar latitudes and in similar positions on their respective continents, they have probably had similar Cenozoic climatic histories. Here we test the prediction that the evolution of the species richness in the two areas followed a similar temporal progression by comparing the rates of lineage accumulation for African and Australian Restionaceae. Restionaceae (Poales) are typical and often dominant elements in the fynbos vegetation of the Cape Floristic Region of southern Africa and the kwongan vegetation of the Southwestern Floristic Province of Western Australia. The phylogeny of the family was estimated from combined datasets for rbcL and trnL-F sequences and a large morphological dataset; these datasets are largely congruent. The monophyly of Restionaceae is supported and a basal division into an African clade (approximately 350 species) and an Australian clade (146 species) corroborated. There is also support for a futher subdivision of these two large sister-clades, but the terminal resolution within the African clade is very weak. Fossil pollen records provided a minimum age of the common ancestor of Australian and African Restionaceae as 64-71 million years ago, and this date was used to calibrate a molecular clock. A molecular clock was rejected by a likelihood ratio test; therefore, rate changes between the lineages were smoothed using nonparametric rate smoothing. The rate-corrected ages were used to construct a plot of lineages through time. During the Palaeogene the Australian lineage diversity increased consistent with the predictions of the constant birthrate model, while the African lineage diversity showed a dramatic increase in diversification rate in the Miocene. Incomplete sampling obscures the patterns in the Neogene, but extending the trends to the modern extant diversity suggests that this acceleration in the speciation rate continued in the African clade, whereas the Australian clade retained a constant diversification rate. The substantial morphological and anatomical similarity between the African and Australian Restionaceae appear to preclude morphological innovations as possible explanations for the intercontinental differences. Most likely these differences are due to the greater geographical extent and ecological variation in temperate Australia than temperate Africa, which might have provided refugia for basal Restionaceae lineages, whereas the more mountainous terrain of southern Africa might have provided the selective regimes for a more rapid, recent speciation.  相似文献   

17.
Evidence for Gondwanan vicariance in an ancient clade of gecko lizards   总被引:2,自引:0,他引:2  
Aim Geckos (Reptilia: Squamata), due to their great age and global distribution, are excellent candidates to test hypotheses of Gondwanan vicariance against post‐Gondwanan dispersal. Our aims are: to generate a phylogeny of the sphaerodactyl geckos and their closest relatives; evaluate previous phylogenetic hypotheses of the sphaerodactyl geckos with regard to the other major gecko lineages; and to use divergence date estimates to inform a biogeographical scenario regarding Gondwanan relationships and assess the roles of vicariance and dispersal in shaping the current distributions of the New World sphaerodactyl geckos and their closest Old World relatives. Location Africa, Asia, Europe, South America, Atlantic Ocean. Methods We used parsimony and partitioned Bayesian methods to analyse data from five nuclear genes to generate a phylogeny for the New World sphaerodactyl geckos and their close Old World relatives. We used dispersal–vicariance analysis to determine ancestral area relationships among clades, and divergence times were estimated from the phylogeny using nonparametric rate smoothing. Results We recovered a monophyletic group containing the New World sphaerodactyl genera, Coleodactylus, Gonatodes, Lepidoblepharis, Pseudogonatodes and Sphaerodactylus, and the Old World Gekkotan genera Aristelliger, Euleptes, Quedenfeldtia, Pristurus, Saurodactylus and Teratoscincus. The dispersal–vicariance analysis indicated that the ancestral area for this clade was North Africa and surrounding regions. The divergence between the New World spaherodactyl geckos and their closest Old World relative was estimated to have occurred c. 96 Myr bp . Main conclusions Here we provide the first molecular genetic phylogenetic hypothesis of the New World sphaerodactyl geckos and their closest Old World relatives. A combination of divergence date estimates and dispersal–vicariance analysis informed a biogeographical scenario indicating that the split between the sphaerodactyl geckos and their African relatives coincided with the Africa/South America split and the opening of the Atlantic Ocean. We resurrect the family name Sphaerodactylidae to represent the expanded sphaerodactyl clade.  相似文献   

18.
Among elephants, the phylogeographic patterns of mitochondrial (mt) and nuclear markers are often incongruent. One hypothesis attributes this to sex differences in dispersal and in the variance of reproductive success. We tested this hypothesis by examining the coalescent dates of genetic markers within elephantid lineages, predicting that lower dispersal and lower variance in reproductive success among females would have increased mtDNA relative to nuclear coalescent dates. We sequenced the mitochondrial genomes of two forest elephants, aligning them to mitogenomes of African savanna and Asian elephants, and of woolly mammoths, including the most divergent mitogenomes within each lineage. Using fossil calibrations, the divergence between African elephant F and S clade mitochondrial genomes (originating in forest and savanna elephant lineages, respectively) was estimated as 5.5 Ma. We estimated that the (African) ancestor of the mammoth and Asian elephant lineages diverged 6.0 Ma, indicating that four elephantid lineages had differentiated in Africa by the Miocene–Pliocene transition, concurrent with drier climates. The coalescent date for forest elephant mtDNAs was c. 2.4 Ma, suggesting that the decrease in tropical forest cover during the Pleistocene isolated distinct African forest elephant lineages. For all elephantid lineages, the ratio of mtDNA to nuclear coalescent dates was much greater than 0.25. This is consistent with the expectation that sex differences in dispersal and in variance of reproductive success would have increased the effective population size of mtDNA relative to nuclear markers in elephantids, contributing to the persistence of incongruent mtDNA phylogeographic patterns.  相似文献   

19.
The cpDNA restriction variation in 39 populations representing a geographical sampling of 18 species of Androcymbium in southwestern and northern Africa was examined to assess the historical biogeography of the genus. The cpDNA phylogeny indicates that the disjunction between South and North Africa is best explained by the dispersal of southern African ancestors into North Africa. Divergence time estimates suggest that the geographic range of the genus may have extended considerably north (perhaps to Tanzania and Kenya) prior to the global desiccation of Africa in the Miocene. Further expansion of the genus northward was probably stalled until climatic changes in the late Miocene brought about the gradual replacement of a subtropical woodland savanna with the arid landscape that gave rise to the Sahara. Aridification of the northern quarter of the continent provided the ecological conditions for fostering the expansion of Androcymbium along the Mediterranean fringe (probably east to west) and its introduction into the Canary Islands. Unlike their South African congeners, the northern species have experienced expansions, fragmentations, and local extinctions in response to the severe climatic shifts in this area during the Pliocene-Pleistocene. According to our divergence time estimates, the arid track may have already existed as a continuous area connecting southern and northern Africa in the late Miocene.  相似文献   

20.
Most examples of intercontinental dispersal events after the Miocene contact between Africa and Asia involve mammal lineages. Among amphibians, a number of probably related groups are known from both continents, but their phylogenies are so far largely unresolved. To test the hypothesis of Miocene dispersal against a Mesozoic vicariance scenario in the context of Gondwana fragmentation, we analyzed fragments of the mitochondrial 16S rRNA gene (572 bp) in 40 specimens of 34 species of the anuran family Ranidae. Results corroborated the monophyly of tiger frogs (genus Hoplobatrachus), a genus with representatives in Africa and Asia. The African H. occipitalis was the sister group of the Asian H. crassus, H. chinensis, and H. tigerinus. Hoplobatrachus was placed in a clade also containing the Asian genera Euphlyctis and Nannophrys. Combined analysis of sequences of 16S and 12S rRNA genes (total 903 bp) in a reduced set of taxa corroborated the monophyly of the lineage containing these three genera and identified the Asian genus Fejervarya as its possible sister group. The fact that the African H. occipitalis is nested within an otherwise exclusively Asian clade indicates its probable Oriental origin. Rough molecular clock estimates did not contradict the assumption that the dispersal event took place in the Miocene. Our data further identified a similar molecular divergence between closely related Asian and African species of Rana (belonging to the section Hylarana), indicating that Neogene intercontinental dispersal also may have taken place in this group and possibly in rhacophorid treefrogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号