首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salinity reduces substrate water potential, thereby restricting water and nutrient uptake by plants; salinity may also cause ionic imbalance and toxicity. Because substrate salinity fluctuates through the growing season, a plant may be exposed to different salinity levels, at various stages of development, with potentially significant consequences on population dynamics. Here, we present the results of a study of the effect of substrate salinity on seed germination, seedling emergence, and growth of Aster laurentianus, an annual marsh plant, endemic to the Gulf of St. Lawrence and potentially threatened. Seed germination was reduced in low salt concentration (10 g sea salt/L) and completely inhibited by salinity levels >/=20 g sea salt/L. However, this inhibiting effect was reversible: seeds from the salt treatments germinated readily after being washed in distilled water. Though seedling emergence was diminished at low salinity levels, postemergence survival was little affected. Plant growth was reduced, but net carbon assimilation rate was not affected by high salinity levels. Increased root respiration and respiratory costs associated with salt tolerance might have contributed to lower C accumulation at higher salinity levels. All developmental processes considered are thus negatively affected by substrate salinity, with potentially significant consequences on population abundance and distribution in salt marshes. Yet, the tolerance of this species to high salinity levels after seedling emergence is remarkable. Seed germination represents a major bottleneck in the species life cycle, potentially controlling local distribution and abundance in the natural habitat.  相似文献   

2.
The influence of biotic factors on the distribution and establishment of halophytes is being considered in this review. Physicochemical factors, such as salinity and flooding, often are considered to be the determining factors controlling the establishment and zonational patterns of species in salt marsh and salt desert environments. Sharp boundaries commonly are found between halophyte communities even though there is a gradual change in the physicochemical environment, which indicates that biotic interactions may play a significant role in deterining the distribution pattern of species and the composition of zonal communities. Competition is hypothesized to play a key role in determining both the upper and lower limits of species distribution along a salinity gradient. Field and laboratory experiments indicate that the upper limits of distribution of halophytes into less saline or nonsaline habitats is often determined by competition. There appears to be a reciprocal relationship between the level of salt tolerance of species and their ability to compete with glycophytes in less saline habitats. Halophytes are not competitive in nonsaline habitats, but their competitive ability increases sharply in saline habitats. Allelopathic effects have been reported in salt desert habitats, but have not been reported along salinity gradients in salt marshes. Some species of halophytes that are salt accumulators have the ability to change soil chemistry. Chemical inhibition of intolerant species occurs when high concentrations of sodium are concentrated in the surface soils of salt desert plant communities that are dominated by salt-accumulating species. Establishment of less salt-tolerant species is inhibited in the vicinity of these salt-accumulating species. Herbivory is reported to cause both an increase and a decrease in plant diversity in salt marsh habitats. Heavy grazing is reported to eliminate sensitive species and produce a dense cover of graminoids in high marsh coastal habitats. However, in other marshes, grazing produced bare patches that allowed annuals and other low marsh species to invade upper marsh zonal communities. A retrogression in plant succession may occur in salt marshes and salt deserts because of heavy grazing. Intermediate levels of grazing by sheep, cattle, and horses could produce communities with the highest species richness and heterogeneity. Grazing by geese produced bare areas that had soils with higher salinity and lower soil moisture than vegetated areas, allowing only the more salt-tolerant species to persist. Removal of geese from areas by use of inclosures caused an increase in species richness in subarctic salt marshes. Invertebrate herbivores could also inhibit the survival of seeds and the ability of plants to establish in marshes. Parasites could play a significant role in determining the species composition of zonal communities, because uninfected rarer species are able to establish in the gaps produced by the death of parasitized species.  相似文献   

3.
Jana Gesina Engels  Kai Jensen 《Oikos》2010,119(4):679-685
Understanding the mechanisms that shape plant distribution patterns is a major goal in ecology. We investigated the role of biotic interactions (competition and facilitation) and abiotic factors in creating horizontal plant zonation along salinity gradients in the Elbe estuary. We conducted reciprocal transplant experiments with four dominant species from salt and tidal freshwater marshes at two tidal elevations. Ten individuals of each species were transplanted as sods to the opposing marsh type and within their native marsh (two sites each). Transplants were placed at the centre of 9‐m2 plots along a line parallel to the river bank. In order to disentangle abiotic and biotic influences, we set up plots with and without neighbouring vegetation, resulting in five replicates per site. Freshwater species (Bolboschoenus maritimus and Phragmites australis) transplanted to salt marshes performed poorly regardless of whether neighbouring vegetation was present or not, although 50–70% of the transplants did survive. Growth of Phragmites transplants was impaired also by competition in freshwater marshes. Salt marsh species (Spartina anglica and Puccinellia maritima) had extremely low biomass when transplanted to freshwater marshes and 80–100% died in the presence of neighbours. Without neighbours, biomass of salt marsh species in freshwater marshes was similar to or higher than that in salt marshes. Our results indicate that salt marsh species are precluded from freshwater marshes by competition, whereas freshwater species are excluded from salt marshes by physical stress. Thus, our study provides the first experimental evidence from a European estuary for the general theory that species boundaries along environmental gradients are determined by physical factors towards the harsh end and by competitive ability towards the benign end of the gradient. We generally found no significant impact of competition in salt marshes, indicating a shift in the importance of competition along the estuarine gradient.  相似文献   

4.
Nutrients, competition and plant zonation in a New England salt marsh   总被引:13,自引:2,他引:11  
1 We examined the effects of nutrient availability on the competitive interactions of the New England salt marsh perennials that occupy discrete vegetational zones parallel to the shoreline.
2 Fertilized and unfertilized plots of pair-wise mixtures and monocultures of Spartina alterniflora, S. patens and Juncus gerardi were compared in order to assess the effects of nutrient addition on the competitive dynamics of these species in the field. In addition, we examined competition between some of these species and Distichlis spicata , a species common to disturbed marsh habitats.
3 After two growing seasons, changes in above-ground biomass of the species indicated that in fertilized plots, S. alterniflora outcompeted S. patens, S. patens outcompeted J. gerardi, and D. spicata outcompeted both J. gerardi and S. patens. This was the reverse of the interactions seen under ambient marsh conditions, and suggested that, under conditions of nutrient limitation, competitive dominance may result from efficient competition for nutrients.
4 Using a conceptual model of salt marsh zonation as a function of competition, physical stress and nutrient limitation, we hypothesize that a nutrient-induced reversal in the competitive dynamics among salt marsh perennials may result in modification of the pattern of plant zonation in this and similar marshes.  相似文献   

5.
The salt marshes along the Westerschelde estuary have been influenced by various human activities of which reclamation has been a major cause for the loss of salt marsh area. The salinity gradient in the aquatic system is also mirrored in the vegetation of the salt marshes.The role of the salt marshes for the estuary as a whole is manifold but a major importance is their function as a sink for anthropogenic substances.The possible role as a carbon and mineral source for the estuary is discussed in this paper. It is estimated that the total area of salt marsh adds about 8% to the organic matter input in the estuary while the nutrient input may be as high as 25%.Communication nr. 403 of the Delta Institute, Yerseke.  相似文献   

6.
We examined the linkage between climate and interspecific plant interactions in New England salt marshes. Because harsh edaphic conditions in marshes can be ameliorated by neighboring plants, plant neighbors can have net competitive or facilitative interactions, depending on ambient physical stresses. In particular, high soil salinities, which are largely controlled by solar radiation and the evaporation of marsh porewater, can be ameliorated by plant neighbors under stressful conditions leading to facilitative interactions. Under less stressful edaphic conditions, these same neighbors may be competitors. In this paper, we use this mechanistic understanding of marsh plant interactions to examine the hypothesis that latitudinal and inter-annual variation in climate can influence the nature and strength of marsh plant species interactions. We quantified the relationship between climate and species interactions by transplanting marsh plants into ambient vegetation and unvegetated bare patches at sites north and south of Cape Cod, a major biogeographic barrier on the east coast of North America. We hypothesized that the cooler climate north of Cape Cod would lead to fewer positive interactions among marsh plants. We found both latitudinal and inter-annual variation in the neighbor relations of marsh plants that paralleled latitudinal differences in temperature and salinity. South of Cape Cod, plant neighbor interactions tended to be more facilitative, whereas north of Cape Cod, plant neighbor interactions were more competitive. At all sites, soil salinity increased and plant neighbor interactions were more facilitative in warmer versus cooler years. Our results show that interspecific interactions can be strikingly linked to climate, but also reveal that because the sensitivity of specific species interactions to climatic variation is highly variable, predicting how entire communities will respond to climate change will be difficult, even in relatively simple, well-studied systems.  相似文献   

7.
Plant zonation patterns across New England salt marshes have been investigated for years, but how nutrient availability differs between zones has received little attention. We investigated how N availability, P availability, and plant N status varied across Juncus gerardii, Spartina patens, and mixed forb zones of a Northern New England high salt marsh. We also investigated relationships between several edaphic factors and community production and diversity across the high marsh. P availability, soil salinity, and soil moisture were higher in the mixed forb zone than in the two graminoid zones. NH+ 4-N availability was highest in the J. gerardii zone, but NO 3-N availability and mid season net N mineralization rates did not vary among zones. Plant tissue N concentrations were highest in the mixed forb zone and lowest in the S. patens zone, reflecting plant physiologies more so than soil N availability. Community production was highest in the J. gerardii zone and was positively correlated with N availability and negatively correlated with soil moisture. Plant species diversity was highest in the mixed forb zone and was positively correlated with P availability and soil salinity. Thus, nutrient availability, plant N status, and plant species diversity varied across zones of this high marsh. Further investigation is needed to ascertain if soil nutrient availability influences or is a result of the production and diversity differences that exist between vegetation zones of New England high salt marshes.  相似文献   

8.
Reintroduction of fresh water to coastal systems with altered hydrologic regimes is a management option for restoring degraded wetland habitats. Plant production in these systems is believed to be enhanced by increased nutrient availability and reduced salinity. Although studies have documented nutrient limitation and salinity stress in coastal marshes, interpreting the effects of freshwater reintroduction on plant production is difficult because high nutrient availability often is confounded with low salinity. We tested the hypothesis that plant growth response to nutrients does not vary with salinity in a greenhouse study. Treatments consisted of four nutrient concentrations and four non-lethal salinity levels; plant response was measured as biomass accumulation after 144 days of exposure. The significant interaction between salinity and nutrient concentrations indicates that response of Spartina patens marshes to freshwater inflows would vary by site-specific soil conditions. Biomass decreased with increased salinity at all four nutrient concentrations with variation among the nutrient concentrations decreasing as salinity increased. We demonstrate the importance of considering ambient salinity and nutrient soil conditions in restoration planning involving freshwater inflow. We propose salinity should remain a primary concern in restoration plans targeted at improving degraded S. patens-dominated marsh habitat.  相似文献   

9.
Data from salt marshes in the U.S. Southeast show that long-term variations in mean water level (MWL) correlate strongly with salt marsh productivity and porewater salinity. Here we used numerical models of tidally-driven groundwater flow to assess the effect of variations in tidal amplitude and MWL on porewater exchange between salt marshes and tidal creeks. We modeled homogeneous and layered stratigraphy and compared flat and sloped topography for the marsh surface. Results are consistent with field observations and showed that increases in tidal amplitude increased groundwater flushing, particularly when increasing the tidal amplitude caused the marsh platform to be inundated at high tide. Increases in MWL caused groundwater flushing to increase if that rise caused greater areas of the marsh to be inundated at high tide. Once the marsh was fully inundated at high tide, further increases in MWL caused groundwater flushing to decrease. Results suggest that small increases in MWL associated with sea level rise could increase nutrient export significantly in marshes with elevations that are equilibrated near mean high water, but rising sea level could decrease the export of nutrients to, and thus fertility in, estuaries adjacent to marshes that are equilibrated lower in the tidal frame. Likewise, macrotidal estuaries are predicted to be subject to much larger groundwater and nutrient exchange than similar microtidal estuaries. We speculate that the early stages of rising relative sea level may significantly impact water quality in estuaries that are not river-dominated by raising the discharge of nutrients from coastal wetlands.  相似文献   

10.
Abstract. Zonation of above‐ground vegetation often occurs in salt marshes along salinity and moisture gradients. The above‐ground vegetation and seed bank in four physiognomically different vegetation zones in a salt marsh were compared to determine their level of similarity using percent similarity as a distance measure. 10‐m transects were established along a salinity gradient through four different vegetation zones; a Salicornia zone, a Salicornia‐Atriplex zone, an Atriplex zone and an Atriplex‐Hordeum zone. A UPGMA cluster analysis demonstrated that the above‐ground vegetation was not usually highly correlated with the seed bank composition of zonal communities. Since seeds of these annual salt marsh species occurred in all zones, the levels of salt stress may be the main factor determining which species were found in the above‐ground vegetation.  相似文献   

11.
Traditionally, salt marsh ecosystems were thought to be controlled exclusively by bottom–up processes. Recently, this paradigm has shifted to include top–down control as an additional primary factor regulating salt‐marsh community structure. The most recent research on consumer impacts in southern US marshes has shown that top–down forces often interact with biotic and abiotic factors, such as secondary fungal infection in grazer‐induced wounds, soil nutrients and climatic variation, to influence ecosystem structure. In a more northern salt marsh, located in New England, we examined the separate and interactive effects of nutrient availability, insect herbivory and secondary fungal infection, on growth of the foundation species, Spartina alterniflora. We used a factorial design with two levels of nutrients (control and addition) insects (control and removal) and fungi (control and removal). Nutrient addition increased plant biomass by 131% in the absence of herbivores. When insect consumers were allowed access to fertilized plots, biomass was reduced by nearly 45% when compared with treatments with nutrients and insecticide. In contrast, insect herbivores did not affect plant biomass in unfertilized control treatments. These differences suggest that consumer effects are triggered under high nutrient levels only. We also found that secondary fungal infections in grazer‐induced wounds, in contrast to lower latitude marshes, did not significantly impact primary production. Our results suggest that while New England salt marshes may typically be under bottom–up control, eutrophication can trigger dual control with inclusion of top–down regulation. However, unlike lower latitude marshes, consumer control of plant growth in northern US salt marshes is not dependent on herbivores facilitating fungal infections that then control grass growth, suggesting that the intensity of disease mediated top–down control by small grazers may be regulated by climate and/or grazer identity that co‐vary with latitude.  相似文献   

12.
The strength of species interactions often varies geographically and locally with environmental conditions. Competitive interactions are predicted to be stronger in benign environments while facilitation is expected to be stronger in harsh ones. We tested these ideas with an aboveground neighbor removal experiment at six salt marshes along the California coast. We determined the effect of removals of either the dominant species, Salicornia pacifica, or the subordinate species on plant cover, aboveground biomass and community composition, as well as soil salinity and moisture. We found that S. pacifica consistently competed with the subordinate species and that the strength of competition varied among sites. In contrast with other studies showing that dominant species facilitate subordinates by moderating physical stress, here the subordinate species facilitated S. pacifica shortly after removal treatments were imposed, but the effect disappeared over time. Contrary to expectations based on patterns observed in east coast salt marshes, we did not see patterns in species interactions in relation to latitude, climate, or soil edaphic characteristics. Our results suggest that variation in interactions among salt marsh plants may be influenced by local‐scale site differences such as nutrients more than broad latitudinal gradients.  相似文献   

13.
1 The effects of disturbances and elevation on marsh plant communities were examined using experimental disturbances along an elevation gradient in marshes with different disturbance histories. In addition, differences in species composition among five marshes were determined at elevations at which the greatest concentration of burial by wrack occurred.
2 Experimental wrack burial generally caused significant mortality of the high-marsh competitive dominants, Juncus gerardi and Spartina patens , and strongly increased the abundance of the fugitive perennial, Distichlis spicata .
3 The effects of experimental wrack burial interacted strongly with abiotic factors associated with elevation to influence the distributions of both competitive dominants and annual fugitive plants.
4 Frequent wrack burial in a marsh appears to lead to a persistent assemblage of plants dominated by competitively subordinate fugitives. This assemblage of fugitives tends to occur at intermediate elevations within the marsh, where wrack gets stranded for long periods of time and where the resistance of Juncus gerardi to wrack burial is lowest.
5 We suggest that wrack-burial disturbances interact strongly with marsh elevation to influence the zonation of plants in New England salt marshes, and discuss some implications of our results.  相似文献   

14.
Although supralittoral salt marshes are habitats of high environmental instability, the meiofauna is rich in species and abundance is high. The community structure of free-living Plathelminthes (Turbellaria) in these salt marshes is described. On an average, 104 individuals are found below an area of 10 cm2. The average species density in ungrazed salt marshes is 11.3 below 10 cm2 and 45.2 below 100 cm2, indicating strong small-scale heterogenity. The faunal similarity between sediment and the corresponding above-ground vegetation is higher than between adjacent sample sites. Species prefer distinct ranges of salinity. In the lower part of the supralittoral salt marshes, the annual fluctuations of salinity are strongest and highly unpredictable. This region is richest in plathelminth species and abundance; diversity is highest, and the faunal composition of parallel samples is quite similar. In the upper part of the supralittoral salt marshes, the annual variability of salinity is lower, plathelminths are poor in species diversity and abundance. Parallel samples often have no species in common. Thus, those salt marsh regions with the most unstable environment are inhabited by the most diverse species assemblage. Compared to other littoral zones of the North Sea, however, plathelminth diversity in salt marshes is low. The observed plathelminth diversity pattern can apparently be explained by the dynamic equilibrium model (Huston, 1979).  相似文献   

15.
We evaluated the process of salt-marsh colonization in early successional stages of salt-marsh restoration and investigated how the sequence of species establishment related to different success factors. Vegetation data were collected by permanent plots from the restoration site and adjacent, reference salt marshes during three consecutive periods. Seed length, width and mass were used as dispersal traits, and Ellenberg moisture, salinity and nutrient indices as indicators of site suitability. Seed production in the reference site and seed bank in the restoration site were also investigated. The establishment of salt-marsh species within the restoration site was rapid (less than 5 years). The cover of plant species was not correlated between the restored and the reference sites at the first year of restoration, but this correlation was significant during the following years. Seed availability was more important in explaining the sequence of species establishment than salt and nutrient-limitation tolerance. The first colonizers are known as massive seed producers, with shorter seed length and lower seed mass, which probably increased buoyancy. Among dispersal and site traits, seed length and mass, and in a less extent salinity and nutrients, indicated a relationship with new colonizers. Despite few species have not (yet) appeared in vegetation and seed bank in the restoration site, the existence of an existing salt marsh adjacent to the restoration site is shown to be vital for fast colonization of newly created intertidal areas.  相似文献   

16.
We examined forms of solid phosphorus fractions in intertidal marsh sediments along a salinity (0–22%.) gradient in a river-dominated estuary and in a marine-dominated salt marsh with insignificant freshwater input. Freshwater marsh sediments had the highest ratio of organic N:P of between 28:1 and 47:1 mol:mol, compared to 211 to 311 molmol in the saltmarshes, which is consistent with a trend toward P-limitation of primary production in freshwater and N-limitation in salt marshes. However, total P concentration, 24.7±11.1mol P g dw–1 (±1 SD) averaged over the upper meter of sediment, was greatest in the freshwater marsh where bioavailablity of P is apparently limited. In the freshwater marsh the greatest fraction of total P (24–51%.) was associated with humic acids, while the importance of humic-P decreased with increasing salinity to 1–23%. in the salt marshes. Inorganic P contributed considerably less to total sediment P in the freshwater marsh (15–40%.) than in the salt marshes (33–85%.). In reduced sediments at all sites, phosphate bound to aluminum oxides and clays was an important inorganic P pool irrespective of salinity. Inorganic P associated with ferric iron [Fe(III)] phases was most abundant in surface sediments of freshwater and brackish marshes, while Ca-bound P dominated inorganic P pools in the salt marshes. Thus, our results showed that particle-bound P in marsh sediments exhibited changes in chemical association along the salinity gradient of an estuarine system, which is a likely consequence of changes in ionic strength and the availability of iron and calcium.  相似文献   

17.
Increasing evidence has shown that nutrients and consumers interact to control primary productivity in natural systems, but how abiotic stress affects this interaction is unclear. Moreover, while herbivores can strongly impact zonation patterns in a variety of systems, there are few examples of this in salt marshes. We evaluated the effect of nutrients and herbivores on the productivity and distribution of the cordgrass Spartina densiflora along an intertidal stress gradient, in a Southwestern Atlantic salt marsh. We characterized abiotic stresses (salinity, ammonium concentration, and anoxia) and manipulated nutrients and the presence of the herbivorous crab Neohelice (Chasmagnathus) granulata, at different tidal heights with a factorial experiment. Abiotic stress increased at both ends of the tidal gradient. Salinity and anoxia were highest at the upper and lower edge of the intertidal, respectively. Nutrients and herbivory interacted to control cordgrass biomass, but their relative importance varied with environmental context. Herbivory increased at lower tidal heights to the point that cordgrass transplants onto bare mud substrate were entirely consumed unless crabs were excluded, while nutrients were most important where abiotic stress was reduced. Our results show how the impact of herbivores and nutrients on plant productivity can be dependent on environmental conditions and that the lower intertidal limits of marsh plants can be controlled by herbivory.  相似文献   

18.
Salinity changes resulting from storm surge, tides, precipitation, and stormwater run-off are common in coastal wetlands. Soil microbial communities respond quickly to salinity changes, altering the rate of soil organic carbon (SOC) loss and associated biogeochemical processes. This study quantified the impact of salinity-altering pulses on SOC loss, defined as microbial respiration (CO2 flux) at high and low tide, CH4 flux, and dissolved OC (DOC) release, in 3 intertidal wetlands (Jacksonville, FL, USA). Intact soil cores from a freshwater tidal, brackish, and salt marsh were exposed to simulated tides and 3 salinity pulsing events during a 53-day laboratory experiment. Soil and water physio-chemical properties, nutrient release, and microbial indicators were measured. Microbial respiration was the dominate pathway of SOC loss (>97 %). Soil hydraulic conductivity was greater in brackish and salt marshes and was critical to overall soil respiration. High tide CO2 flux was greatest in the freshwater marsh (58 % of SOC loss) and positively correlated with DOC concentration; low tide CO2 flux was greatest in brackish and salt marshes (62 and 70 % of SOC loss, respectively) and correlated with NH4 + and microbial biomass. The freshwater marsh was sensitive to brackish pulses, causing a 112 % increase in respiration, presumably from accelerated sulfate reduction and N-cycling. SOC loss increased in the salt marsh pulsed with freshwater, suggesting freshwater run-off may reduce a salt marsh’s ability to keep-pace with sea level rise. Increased inundation from storm surges could accelerate SOC loss in freshwater marshes, while decreasing SOC loss in brackish and salt marshes.  相似文献   

19.
We investigated subsurface hydrology in two fringing tidal marshes and in underlying aquifers in the coastal plain of Virginia. Vertical distributions of hydraulic conductivity, hydraulic head and salinity were measured in each marsh and a nearby subtidal sediment. Discharge of hillslope groundwater into the base of the marshes and subtidal sediment was calculated using Darcy's law. In the marshes, fluxes of pore water across the sediment surface were measured or estimated by water balance methods. The vertical distribution of salt in shoreline sediments was modeled to assess transport and mixing conditions at depth. Hydraulic gradients were upward beneath shoreline sediments; indicating that groundwater was passing through marsh and subtidal deposits before reaching the estuary. Calculated discharge (6 to 10 liters per meter of shoreline per day) was small relative to fluxes of pore water across the marsh surface at those sites; even where discharge was maximal (at the upland border) it was 10 to 50 times less than infiltration into marsh soils. Pore water turnover in our marshes was therefore dominated by exchange with estuarine surface water. In contrast, new interstitial water entering subtidal sediments appeared to be primarily groundwater, discharged from below. The presence of fringing tidal marshes delayed transport and increased mixing of groundwater and solute as it traveled towards the estuaries. Soil-contact times of discharged groundwater were up to 100% longer in marshes than in subtidal shoreline sediments. Measured and modeled salinity profiles indicated that, prior to export to estuaries, the solutes of groundwater, marsh pore water and estuarine surface water were more thoroughly mixed in marsh soils compared to subtidal shoreline sediments. These findings suggest that transport of reactive solutes in groundwater may be strongly influenced by shoreline type. Longer soil-contact times in marshes provide greater opportunity for immobilization of excess nutrients by plants, microbes and by adsorption on sediment. Also, the greater dispersive mixing of groundwater and pore water in marshes should lead to increased availability of labile, dissolved organic carbon at depth which could in turn enhance microbial activity and increase the rate of denitrification in situations where groundwater nitrate is high.  相似文献   

20.
We investigated subsurface hydrology in two fringing tidal marshes and in underlying aquifers in the coastal plain of Virginia. Vertical distributions of hydraulic conductivity, hydraulic head and salinity were measured in each marsh and a nearby subtidal sediment. Discharge of hillslope groundwater into the base of the marshes and subtidal sediment was calculated using Darcy's law. In the marshes, fluxes of pore water across the sediment surface were measured or estimated by water balance methods. The vertical distribution of salt in shoreline sediments was modeled to assess transport and mixing conditions at depth. Hydraulic gradients were upward beneath shoreline sediments; indicating that groundwater was passing through marsh and subtidal deposits before reaching the estuary. Calculated discharge (6 to 10 liters per meter of shoreline per day) was small relative to fluxes of pore water across the marsh surface at those sites; even where discharge was maximal (at the upland border) it was 10 to 50 times less than infiltration into marsh soils. Pore water turnover in our marshes was therefore dominated by exchange with estuarine surface water. In contrast, new interstitial water entering subtidal sediments appeared to be primarily groundwater, discharged from below. The presence of fringing tidal marshes delayed transport and increased mixing of groundwater and solute as it traveled towards the estuaries. Soil-contact times of discharged groundwater were up to 100% longer in marshes than in subtidal shoreline sediments. Measured and modeled salinity profiles indicated that, prior to export to estuaries, the solutes of groundwater, marsh pore water and estuarine surface water were more thoroughly mixed in marsh soils compared to subtidal shoreline sediments. These findings suggest that transport of reactive solutes in groundwater may be strongly influenced by shoreline type. Longer soil-contact times in marshes provide greater opportunity for immobilization of excess nutrients by plants, microbes and by adsorption on sediment. Also, the greater dispersive mixing of groundwater and pore water in marshes should lead to increased availability of labile, dissolved organic carbon at depth which could in turn enhance microbial activity and increase the rate of denitrification in situations where groundwater nitrate is high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号