首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome sequence data were used to clone and express two sialyltransferase enzymes of the GT-42 family from Helicobacter acinonychis ATCC 51104, a gastric disease isolate from Cheetahs. The deposited genome sequence for these genes contains a large number of tandem repeat sequences in each of them: HAC1267 (RQKELE)(15) and HAC1268 (EEKLLEFKNI)(13). We obtained two clones with different numbers of repeat sequences for the HAC1267 gene homolog and a single clone for the HAC1268 gene homolog. Both genes could be expressed in Escherichia coli and sialyltransferase activity was measured using synthetic acceptor substrates containing a variety of terminal sugars. Both enzymes were shown to have a preference for N-acetyllactosamine, and they each made a product with a different linkage to the terminal galactose. HAC1267 is a mono-functional α2,3-sialyltransferase, whereas HAC1268 is a mono-functional α2,6-sialyltransferase and is the first member of GT-42 to show α2,6-sialyltransferase activity.  相似文献   

2.
A non-human like glycosylation pattern in human recombinant glycoproteins expressed by animal cells may compromise their use as therapeutic drugs. In order to correct the CHO glycosylation machinery, a CHO cell line producing recombinant human interferon- (IFN) was transformed to replace the endogenous pseudogene with a functional copy of the enzyme 2,6-sialyltransferase (2,6-ST). Both the parental and the modified CHO cell line were propagated in serum-free batch culture with or without 1 mM sodium butyrate. Although Na-butyrate inhibited cell growth, IFN concentration was increased twofold. The IFN sialylation status was determined using linkage specific sialidases and HPLC. Under non- induced conditions, IFN expressed by 2,6-engineered cells contained 68% of the total sialic acids in the 2,6- conformation and the overall molar ratio of sialic acids to IFN was 2.3. Sodium butyrate addition increased twofold the molar ratio of total sialic acids to IFN and 82% of total sialic acids on IFN were in the 2,6-conformation. In contrast, no effect of the sodium butyrate was noticed on the sialylation of the IFN secreted by the 2,6-ST deficient parental cell line. This study deals for the first time with the effect of Na-butyrate on CHO cells engineered to produce human like sialylation.  相似文献   

3.
ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities. Adam22 is highly expressed in human brain. The adam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved by in vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function and development.  相似文献   

4.
ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities. Adam22 is highly expressed in human brain. The adam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3 β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved by in vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function a  相似文献   

5.
ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities.Adam22 is highly expressed in human brain. Theadam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3 β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved byin vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function and development.  相似文献   

6.
Many proteins exist and function as homodimers. Understanding the detailed mechanism driving the homodimerization is important and will impact future studies targeting the “undruggable” oncogenic protein dimers. In this study, we used 14-3-3σ as a model homodimeric protein and performed a systematic investigation of the potential roles of amino acid residues in the interface for homodimerization. Unlike other members of the conserved 14-3-3 protein family, 14-3-3σ prefers to form a homodimer with two subareas in the dimeric interface that has 180° symmetry. We found that both subareas of the dimeric interface are required to maintain full dimerization activity. Although the interfacial hydrophobic core residues Leu12 and Tyr84 play important roles in 14-3-3σ dimerization, the non-core residue Phe25 appears to be more important in controlling 14-3-3σ dimerization activity. Interestingly, a similar non-core residue (Val81) is less important than Phe25 in contributing to 14-3-3σ dimerization. Furthermore, dissociating dimeric 14-3-3σ into monomers by mutating the Leu12, Phe25, or Tyr84 dimerization residue individually diminished the function of 14-3-3σ in resisting drug-induced apoptosis and in arresting cells at G2/M phase in response to DNA-damaging treatment. Thus, dimerization appears to be required for the function of 14-3-3σ.  相似文献   

7.
Pozuelo-Rubio M 《Autophagy》2011,7(2):240-242
Autophagy is an evolutionarily conserved pathway involved in a great variety of physiological roles such as starvation adaptation, elimination of microorganisms, and intracellular protein and organelle clearance. It seems clear that autophagy is strictly controlled because of the multiplicity of its functions and thus, autophagy components are finely regulated. Here, 14-3-3ζ protein has been shown as negative regulator of autophagy by association and inactivation of the vesicle nucleation component vacuolar protein sorting 34 (hVps34), the class III phosphatidylinositol-3- kinase (PI3KC3).  相似文献   

8.
Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3ζ. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3ζ is ∼3-folds higher than that between unphosphorylated 4R-tau and 14-3-3ζ. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3ζ to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3ζ. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3ζ exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3ζ suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.  相似文献   

9.
Polyunsaturated fatty acids, like arachidonic acid, can bind proteins and affect their function. The 14-3-3 proteins bind phosphorylated sites on a diverse array of client proteins and, in this way, are involved in many intracellular signaling pathways. In this study, we used a novel approach to discover that 14-3-3ζ is able to directly bind arachidonic acid. Furthermore, arachidonic acid, at physiological concentrations, reduced the binding of 14-3-3ζ to phosphorylated BAD, an interaction that is important in regulating apoptosis. In addition, high concentrations of arachidonic acid caused the polymerization of 14-3-3ζ, an event observed in neurodegenerative disorders. Taken together, these results indicate that arachidonic acid directly interacts with 14-3-3ζ and that this interaction may be important in both normal and pathological cellular events. If so, then factors that mediate the release, metabolism and reacylation of arachidonic acid into membranes represent key points of regulation.  相似文献   

10.
Abstract

A simple procedure is described for the preparation of the title compounds 1, 8 and 9. 3′-3′ or 3′-5′ or 5′-5′ TpT was reacted with a twofold molar excess of TPS in anhydrous DMF, at room temperature, for 5 min, followed by a 1 min in situ treatment of the reaction mixture with excess 7.0 N NH4OH, at 0°C. The alkaline hydrolysis of 1, 8 and 9 proceeds without the assistance of 3′- and 5′-hydroxyl groups resulting in equimolar mixtures of thymidine (4) and thymidine 3′-phosphoramidate (6) (for the 3′-3′ isomer) or thymidine 5′-phosphoramidate (7) (for the 5′-5′ isomer) or 6 and 7 in equal quantities (for the 3′-5′ isomer).  相似文献   

11.
Toll-like receptors (TLRs) are a group of pattern recognition receptors that play a crucial role in the induction of the innate immune response against bacterial and viral infections. TLR3 has emerged as a key sensor of viral double-stranded RNA. Thus, a clearer understanding of the biological processes that modulate TLR3 signaling is essential. Limited studies have applied proteomics toward understanding the dynamics of TLR signaling. Herein, a proteomics approach identified 14-3-3ϵ and 14-3-3σ proteins as new members of the TLR signaling complex. Toward the functional characterization of 14-3-3ϵ and 14-3-3σ in TLR signaling, we have shown that both of these proteins impair TLR2, TLR3, TLR4, TLR7/8, and TLR9 ligand-induced IL-6, TNFα, and IFN-β production. We also show that 14-3-3ϵ and 14-3-3σ impair TLR2-, TLR3-, TLR4-, TLR7/8-, and TLR9-mediated NF-κB and IFN-β reporter gene activity. Interestingly, although the 14-3-3 proteins inhibit poly(I:C)-mediated RANTES production, 14-3-3 proteins augment Pam3CSK4, LPS, R848, and CpG-mediated production of RANTES (regulated on activation normal T cell expressed and secreted) in a Mal (MyD88 adaptor-like)/MyD88-dependent manner. 14-3-3ϵ and 14-3-3σ also bind to the TLR adaptors and to both TRAF3 and TRAF6. Our study conclusively shows that 14-3-3ϵ and 14-3-3σ play a major regulatory role in balancing the host inflammatory response to viral and bacterial infections through modulation of the TLR signaling pathway. Thus, manipulation of 14-3-3 proteins may represent novel therapeutic targets for inflammatory conditions and infections.  相似文献   

12.
13.

Background

Beclin 1 plays an essential role in autophagy; however, the regulation of Beclin 1 expression remains largely unexplored. An earlier ChIP-on-chip study suggested Beclin 1 could be an E2F target. Previously, we also reported that 14-3-3τ regulates E2F1 stability, and is required for the expression of several E2F1 target genes. 14-3-3 proteins mediate many cellular signaling processes, but its role in autophagy has not been investigated. We hypothesize that 14-3-3τ could regulate Beclin 1 expression through E2F1 and thus regulate autophagy.

Methods and Findings

Using the RNAi technique we demonstrate a novel role for one of 14-3-3 isoforms, 14-3-3τ, in the regulation of Beclin 1 expression and autophagy. Depletion of 14-3-3τ inhibits the expression of Beclin 1 in many different cell lines; whereas, upregulation of 14-3-3τ induces Beclin 1. The regulation is physiologically relevant as an extracellular matrix protein tenascin-C, a known 14-3-3τ inducer, can induce Beclin 1 through 14-3-3τ. Moreover, rapamycin-induced, serum free-induced and amino acid starvation-induced autophagy depends on 14-3-3τ. We also show the expression of Beclin 1 depends on E2F, and E2F can transactivate the Beclin 1 promoter in a promoter reporter assay. Upregulation of Beclin 1 by 14-3-3τ requires E2F1. Depletion of E2F1, like 14-3-3τ, also inhibits autophagy.

Conclusion

Taken together, this study uncovers a role for 14-3-3τ in Beclin 1 and autophagy regulation probably through regulation of E2F1.  相似文献   

14.
(S)-1-(2,6-二氯-3-氟苯基)乙醇是抗癌药物克唑替尼的手性合成前体,可由2,6-二氯-3-氟苯乙酮经乙醇脱氢酶催化还原制备,还原中所需的还原型辅酶Ⅱ再生是该反应的技术瓶颈.本研究构建重组大肠杆菌E.coli BL21-ADH和E.coli BL21-GDH,实现了葡萄糖脱氢酶和乙醇脱氢酶的共表达,并进行偶联转化.结果表明,当在反应温度为30℃,pH为7的条件下,(S)-l-(2,6-二氯-3-氟苯基)乙醇的产量达到最高,在投料量为6%时,该体系转化率为93.75%.  相似文献   

15.
The sialyl-α2,6-lactosaminyl-structure: Biosynthesis and functional role   总被引:1,自引:0,他引:1  
Sialylation represents one of the most frequently occurring terminations of the oligosaccharide chains of glycoproteins and glycolipids. Sialic acid is commonly found ,3- or ,6-linked to galactose (Gal), ,6-linked to N-acetylgalactosamine (GalNAc) or ,8-linked to another sialic acid. The biosynthesis of the various linkages is mediated by the different members of the sialyltransferase family. The addition of sialic acid in ,6-linkage to the galactose residue of lactosamine (type 2 chains) is catalyzed by -galactoside ,6-sialyltransferase (ST6Gal.I). Although expressed by a single gene, this enzyme shows a complex pattern of regulation which allows its tissue- and stage-specific modulation. The cognate oligosaccharide structure, NeuAc,6Gal1,4GIcNAc, is widely distributed among tissues and is involved in biological processes such as the regulation of the immune response and the progression of colon cancer. This review summarizes the current knowledge on the biochemistry of ST6Gal.I and on the functional role of the sialyl-,6-lactosaminyl structure.  相似文献   

16.
文章论述了Fru-2,6-P_2调控系统在植物细胞中的分布、定位、催化特性及其相互作用。阐述了Fru-2,6-P_2系统在植物糖酵解中的调节作用及其可能机理,重点讨论:Fru-2,6-P_2系统在植物光合碳代谢中的重要调节作用,并简要探讨Fru-2,6-P_2作为一种新的信号物质,在植物逆境生理中的可能作用。  相似文献   

17.
Members of the conserved 14-3-3 protein family spontaneously self-assemble as homo- and heterodimers via conserved sequences in the first four (αA-αD) of the nine helices that comprise them. Dimeric 14-3-3s bind conserved motifs in diverse protein targets involved in multiple essential cellular processes including signaling, intracellular trafficking, cell cycle regulation, and modulation of enzymatic activities. However, recent mostly in vitro evidence has emerged, suggesting functional and regulatory roles for monomeric 14-3-3s. We capitalized on the simplicity of the 14-3-3 family in Drosophila to investigate in vivo 14-3-3ζ monomer properties and functionality. We report that dimerization is essential for the stability and function of 14-3-3ζ in neurons. Moreover, we reveal the contribution of conserved amino acids in helices A and D to homo- and heterodimerization and their functional consequences on the viability of animals devoid of endogenous 14-3-3ζ. Finally, we present evidence suggesting endogenous homeostatic adjustment of the levels of the second family member in Drosophila, D14-3-3ϵ, to transgenic monomeric and dimerization-competent 14-3-3ζ.  相似文献   

18.
19.
The 14-3-3 proteins are a set of highly conserved scaffolding proteins that have been implicated in the regulation of a variety of important cellular processes such as the cell cycle, apoptosis and mitogenic signaling. Recent evidence indicates that the expression of some of the family members is elevated in human cancers suggesting that they may play a role in tumorigenesis. In the present study, the oncogenic potential of 14-3-3γ was shown by focus formation and tumor formation in SCID mice using 14-3-3γ transfected NIH3T3 mouse fibroblast cells. In contrast, 14-3-3σ, a putative tumor suppressor, inhibited NIH3T3 transformation by H-ras and c-myc. We also report that activation of both MAP kinase and PI3K signaling pathways are essential for transformation by 14-3-3γ. In addition, we found that 14-3-3γ interacts with phosphatidylinositol 3-kinase (PI3K) and TSC2 proteins indicating that it could stimulate PI3K signaling by acting at two points in the signaling pathway. Overall, our studies establish 14-3-3γ as an oncogene and implicate MAPK and PI3K signaling as important for 14-3-3γ induced transformation.  相似文献   

20.
This article describes the synthesis of (3 ′S) and (3 ′R)-3 ′-amino-3 ′-deoxy pyranonucleosides and their precursors (3 ′S) and (3 ′R)-3 ′-azido-3 ′-deoxy pyranonucleosides. Azidation of 1,2:5,6-di-O-isopropylidene-3-O-toluenesulfonyl-α-D-allofuranose followed by hydrolysis and subsequent acetylation afforded 3-azido-3-deoxy-1,2,4,6-tetra-O-acetyl-D-glucopyranose, which upon coupling with the proper silylated bases, deacetylation, and catalytic hydrogenation, obtained the target 3 ′-amino-3 ′-deoxy-β-D-glucopyranonucleosides. The desired 1-(3 ′-amino-3 ′-deoxy-β-D-allopyranosyl)5-fluorouracil was readily prepared from the suitable imidazylate sugar after azidation followed by a protection/deprotection sequence and reduction of the unprotected azido precursor. No antiviral activity was observed for the novel nucleosides. Moderate cytostatic activity was recorded for the 5-fluorouracil derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号