首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Andromonoecy is hypothesized to evolve as a mechanism enabling plants to independently allocate resources to female and male function. If staminate flower production is a mechanism to regulate allocation to female function (i.e., fruit production), then large-fruited species should be more strongly andromonoecious than smaller-fruited taxa because more resources are required to mature large fruit. We combined phylogenetically independent contrast analyses with extensive phenotypic characterization under common greenhouse conditions to examine the predicted relationship between fruit mass and the strength of andromonoecy among 13 species in Solanum sections Acanthophora and Lasiocarpa. The strength of andromonoecy, defined as the proportion of staminate flowers produced within inflorescences, was significantly and positively associated with fruit mass in both na?ve and phylogenetically independent analyses. Our results are consistent with the hypothesis that andromonoecy functions as a mechanism to regulate allocation to female function and suggest that the strength of andromonoecy is also associated with resource limitation. In general, we find that strong andromonoecy appears to arise via reductions in hermaphroditic flower number. However, increases in staminate flowers have also contributed to transitions to strong andromonoecy in certain species. Finally, our analyses identified a suite of correlated characters (flower size, ovary width, fruit mass) that are associated with changes in the sexual expression of andromonoecy.  相似文献   

2.
Factors underlying apparent floral sexual dimorphism were examined in six species of andromonoecious Solanum section Lasiocarpa (Solanaceae). Both multivariate and univariate analyses show that hermaphroditic flowers are significantly larger than staminate flowers for all features measured. Thus, flowers could be characterized as sexually size dimorphic. However, when size variation due to flower position (architecture) is controlled experimentally, differences between the floral genders for the nongynoecial characters disappear; there is no difference in corolla or androecium size. Staminate flowers appear to be generally smaller than hermaphroditic flowers, not because of any difference related to primary sexual function, but because they tend to occur in the distal regions of each inflorescence. In contrast, significant differences between hermaphroditic and staminate flowers for primary female traits (ovary, style, and stigma) remain after controlling for position: the two floral types are truly dimorphic for these characters. We show that consideration of architectural effects can direct and refine hypotheses concerning the evolution of andromonoecy. More generally, if architectural effects on flower size are common among taxa with unisexual flowers, then these effects may contribute to the common perception of size dimorphism in taxa with unisexual flowers.  相似文献   

3.
Field and laboratory studies of 19 diclinous species endemic to Australia help to clarify the nature and evolution of andromonoecy, androdioecy, and dioecy in the genus Solanum. Ten species are andromonoecious; typically these species bear inflorescences with a single, large basal hermaphroditic flower and 12–60 distal, smaller staminate flowers. We suggest that the andromonoecious condition was derived from hermaphroditic-flowered ancestors in part by hemisterilization of flowers but largely by addition of staminate flowers. The resultant larger inflorescences are hypothesized to serve both to attract and to entrain pollinators, yielding more or higher-quality seed set in hermaphroditic flowers and/or greater dispersion of pollen from staminate flowers. We suggest that andromonoecy may also serve to reduce selling. Nine other species are morphologically androdioecious but functionally dioecious. In these species, staminate flowers, like those of the andromonoecious species, bear anthers with copious tricolporate pollen and a highly reduced gynoecium. The morphologically hermaphroditic flowers are functionally pistillate and borne singly in inflorescences, and they bear anthers with inaperturate pollen. The inaperturate pollen, although viable, never germinates and is hypothesized to be retained in pistillate flowers as a reward to pollinators in the nectarless Solanum flowers. All other species of Solanum studied with pollen dimorphism in which one pollen morph is inaperturate are also best treated as functionally dioecious. We conclude that there is no evidence for androdioecy in Solanum. A review of other families suggests that there is little support for this unusual breeding system in any other angiosperm group either. Preliminary analyses suggest that andromonoecy and dioecy are polyphyletic in Solanum. Furthermore, dioecy is as likely to have arisen from hermaphroditic as from andromonoecious ancestors.  相似文献   

4.
Sexual expression in andromonoecious species—those in which a single individual can bear both staminate and hermaphroditic flowers—may vary among reproductive events in the same plant, among individuals and across populations. This variation influences, in turn, the individual contribution of hermaphroditic plants via male and female fitness functions (i.e., Lloydʼs phenotypic gender). However, temporal variation in sexual expression in andromonoecious species and its relationship with seasonal changes in climatic conditions remain poorly understood. Here we analyze floral attributes, visitors and variation in sexual expression in three populations of Solanum lycocarpum A. St. -Hil. Seasonality in the production of floral types, the mating system and floral visitors were also investigated. Hermaphroditic flowers produced more pollen grains, but the pollen of staminate flowers had higher viability. Only hermaphroditic flowers produced fruits, and ovules in staminate flowers were sterile. Solanum lycocarpum is mainly pollinated by large bees with the ability to vibrate flowers. Phenotypic gender varied throughout the year, and the seasonal production of staminate flowers is associated with the local climate. We suggest that the higher and seasonally variable relative abundance of staminate flowers compared to the low and uniform production of hermaphroditic flowers may be explained by (a) the very high energetic costs incurred in producing large fruits, which in turn make hermaphroditic flower production very costly, and (b) the potentially lower energy expenditure of the smaller staminate flowers with reduced pistils and non-viable ovules that allow them to rapidly respond to climate variability.  相似文献   

5.
Krupnick  Gary A.  Weis  Arthur E. 《Plant Ecology》1998,134(2):151-162
Flower-feeding insects may influence the reproductive behavior of their host plant. In plants with labile sex expression, the ratio of maternal to paternal investment may change in response to damage, an effect that goes beyond the direct reduction of plant gametes. We examined the effects of floral herbivory by the beetle Meligethes rufimanus (Nitidulidae) on the ratio of hermaphroditic flowers to male flowers in an andromonoecious shrub, Isomeris arborea (Capparaceae) in southern California. Plants exposed to herbivory had a greater rate of flower bud abortion than those protected from herbivory. Exposed plants produced a greater proportion of hermaphroditic flowers to male flowers, although damaged inflorescences still produced fewer fruit. An additional manipulative experiment showed that the removal of pistils on inflorescences led to an increase in the proportion of hermaphroditic flowers. This suggests that the presence of fruit may lead to pistil suppression in developing flowers. Adaptive responses to herbivory which favor andromonoecy thus include the continued production of hermaphroditic flowers when floral damage is high (and hence low fruit set), and a switch to male flower production when floral damage is low (and fruit production increases). The consequences of an altered six ratio induced by insect herbivores may lead to indirect effects on both the male and female reproductive success of this plant.  相似文献   

6.
Abstract: The proportions of hermaphrodite to staminate flowers in inflorescences of the andromonoecious species Caesalpinb calycina vary. Analysis of fruit position along the flowering rhachis, and also of the sex of floral buds in inflorescences with fruits set in different positions, indicate that fruiting success influences the sex of flowers in distal positions along the rhachis. Other reports of andromonoecy in caesalpinoid species are examined with reference to floral sex lability and the influence of fruit set.  相似文献   

7.
Studies of andromonoecious species have shown that sex expression (proportions of hermaphrodite and staminate flowers) is quite variable. It is not known, however, whether this variation is due to variation among individuals for genetically fixed patterns of allocation to staminate and hermaphrodite flowers (population level variation) and/or to developmental plasticity of individuals in a heterogeneous environment (organismal level variation). Distinguishing between these two levels of variation is important for understanding the evolution of andromonoecy. This study investigates levels of variation in sex expression in the andromonoecious Solanum hirlum. Sex expression in this species is shown to be plastic among individuals of the same genotype (organismal level variation) and determined, in part, by the resource status of the individual. Among the genotypes examined there is also genetic variation for developmental plasticity. Thus, developmental plasticity can potentially respond to selection, and the evolution of this developmental system may have been instrumental in the establishment and maintenance of andromonoecy in S. hirtum.  相似文献   

8.
Sex expression (the proportions of staminate and hermaphrodite flowers produced) in andromonoecious Solarium hirtum is phenotypically plastic, and there is genetic variation for sex expression plasticity. Changes in sex expression phenotype are inherently the result of altered development. However, the underlying developmental components of sex expression plasticity and of differences in plasticity among genotypes are unknown. This study takes an explicitly genetic and developmental approach to the study of phenotypic plasticity and examines changes in sex expression of ten clonally replicated genotypes at three levels of organization: among inflorescences, within inflorescences, and at the level of developing floral meristems. Changes in sex expression of individuals and differences among individuals are the result of a predictable interplay of resource, architectural, and floral level response within the hierarchical construction of the shoot system. Phenotypic plasticity of whole plant sex expression is ultimately due to sexual lability of individual developing flowers: floral sex is not determined until a primordium size of 9–10 mm. Until that time, sex expression remains labile and developing floral primordia can respond to changes in plant resource status. This flower level developmental lability, however, is expressed within the constraints set by the architecture and ontogenetic history of the organism. Only those floral primordia produced in distal portions of each inflorescence are labile, capable of developing into either a staminate or hermaphrodite flower, whereas those primordia in basal positions invariably develop as hermaphrodite flowers. The genotypes differ with respect to the architectural components of phenotypic plasticity and it is this architectural variation that results in differences in plasticity among genotypes. The phenomenon, in which the developmental fate of a primordium depends upon where and when it is produced within the architecture of an organism and what events have preceded it during ontogeny, can be termed “ontogenetic contingency.”  相似文献   

9.
在雌雄同株植物中, 花性别被认为是两性资源分配对环境条件的响应, 了解个体性别随时间的变化对探讨植物性系统的变异有重要意义。早春短命植物新疆郁金香(Tulipa sinkiangensis)多为两性花居群, 前期调查显示一些居群由雄花和两性花构成。为了探讨新疆郁金香雄花的发生与变化, 我们连续7年对一个居群的花性别及其变化动态进行了跟踪。结果显示: (1)该居群主要是由一朵花植株和两朵花植株构成, 分别占居群植株总数的74.5%和23.0%。两种性别的花随机分布在不同类型的单株上, 形成了以两性花植株为主, 含有雄株、雄花与两性花同株(andromonoecy)的居群结构。(2)雄花相对较小, 子房退化, 无胚珠发育, 在植株或居群中花期较晚出现。与相同大小的两性花相比, 雄花在单花花粉量、花粉败育率、花粉粒大小及形态、雄性功能等方面没有差异。(3) 7年间, 雄花在居群中的比例经历了2011-2014年间的显著下降(23.4-3.1%)和2015-2017年间相对稳定的零星分布(1.5-1.0%)两个阶段。居群中一朵花植株数量和两朵花植株数量在年份间呈波动性变化。(4)雄花的出现可能是植株受自身资源状况及环境条件等因素的影响在花性别选择上作出的可塑性反应。  相似文献   

10.
In long-lived plants, sexual expression can be highly variable in time and space. The extent to which sexual dimorphism of flowers is expressed in the same or in separate individuals, may have implications for the plants’ dependence on pollen vectors, the compatibility of the pollen received, and the potential for setting fruit. Here, we account for variability in sexual expression in the small tree Acacia caven, which produces hermaphrodite and male flowers on the same or in separate individuals. We focus on whether individual sexual expression influences fruit set, which latter has been reported to be extremely low in this species. Individual sexual expression, estimated as the hermaphrodite: male flowers ratio was variable both within and among plants across two reproductive seasons. Though male flower production could be very high (up to 99% of the flowers), all trees produced both flower types within the same individual, thus confirming andromonoecy in this species. More interestingly, hermaphrodite: male flowers ratio had a negative effect on fruit set. This pattern was consistent across two reproductive seasons and suggests that maleness should favor female function. Similar trends found in other plant species with the same sexual system support the hypothesis that male flowers of andromonoecious species may contribute to reduce self-pollen interference compared with hermaphrodite flowers. By favoring the deposition of compatible pollen grains and increasing fruit set, maleness would then help to maintain andromonoecy in this and other andromonoecious species.  相似文献   

11.
We studied the perennial vine Passiflora incarnata Linnaeus (Passifloraceae) in Alachua County, Florida, from May to August 1983 to determine the breeding system and investigate seasonal changes in phenotypic gender of individual plants. Passiflora incarnata is an obligate outcrosser, incapable of self-fertilization. The major pollinators were carpenter bees (Xylocopa sp.). The proportion of flowers setting fruit was not limited by pollinator service, but the weight of individual fruits and number of seeds/fruit was increased over naturally pollinated flowers by manually performing cross-pollination. Morphological differences in style position among flowers caused some flowers to function primarily as males and others to function as hermaphrodites. Although some of the flowers that functioned as males set fruit when manually cross-pollinated, the proportion of these male flowers capable of setting fruit was lower than the proportion of hermaphroditic flowers setting fruit when manually cross-pollinated. Further, some male flowers had atrophied ovary and styles and were completely incapable of setting fruit. Passiflora incarnata is thus functionally andromonoecious. The relative production of male versus hermaphroditic flowers varied among individuals and over the course of the flowering season. Unmanipulated plants in the population became increasingly male-biased in floral sex ratios as the reproductive season progressed. We attempted to modify phenotypic gender in experimental plants by limiting the ability of plants in some treatment groups to set fruit. Treatment groups significantly affected production of hermaphroditic flowers, but production of male flowers was not affected by treatment. Treatment did not significantly affect fruit weight, number of seeds per fruit or the percentage of hermaphroditic flowers that successfully matured fruit. These results suggest that andromonoecy in P. incarnata is a mechanism for adjusting allocation of reproductive effort to male and female function, and that maternal investment in this species is regulated primarily by varying production of hermaphroditic flowers.  相似文献   

12.
Selection favoring avoidance of stigma clogging, pollen discounting, self-fertilization, and other negative effects of self-pollination can produce intricate patterns of intra- and interfloral dichogamy in plants bearing numerous flowers. Here we report an extensive study of the relationships among dichogamy, floral sex allocation (pollen-to-ovule ratios), nectar production, floral visitors, mating system, and fruit set in natural populations of Schefflera heptaphylla, a widespread paleotropical secondary forest tree that produces thousands of flowers in a blooming season. Each tree produces 15?C30 sequentially blooming, paniculate, compound inflorescences. Each compound inflorescence has up to three orders of umbellets, which also bloom sequentially. While hand-pollinations showed that S. heptaphylla was capable of self-fertilization, our observations of thousands of flowers showed that strong intra- and interfloral protandry severely restricts both autogamous and geitonogamous self-pollination. All flowers were bisexual, thus the sexual system of the populations we studied was hermaphroditism. The pollen-to-ovule (P/O) ratios were characteristic of outcrossing species, and P/O ratios of flowers in the last-maturing (third order) umbellets were significantly higher than those in earlier-maturing (first and second order) umbellets. Floral visitors were primarily flies (Chrysomya sp. and Syrphinae sp.) and wasps (Vespula sp. and Eumenes sp.). Flowers produced nectar during both the male (pollen presentation) and female (stigma receptivity) stages of their development, and the volume of nectar production was higher in the female stage. Nevertheless, flowers received fewer visits in the female stage than they did in the male stage, and natural fruit set was low, especially in first and third order umbellets. Fruit set from hand cross- and self-pollinations was significantly higher than natural fruit set, indicating pollen limitation of fruit set. Schefflera heptaphylla has also been reported to be andromonoecious. Both hermaphroditism and andromonoecy are consistent with theoretical predictions for variation in sex allocation among sequentially maturing flowers in protandrous species. Further studies comparing hermaphroditic and andromonoecious populations of S. heptaphylla could elucidate the selective factors affecting sex expression, nectar production, and fruit set in species with numerous flowers displaying both intra- and interfloral dichogamy.  相似文献   

13.
Andromonoecy (i.e. the occurrence on individual plants of hermaphroditic and male flowers) is a rare sexual system among the angiosperms, regarded by some authors as a transitional stage from hermaphroditism to monoecy. Having discovered the occurrence of andromonoecy in Erophaca baetica (a Mediterranean shrubby legume with two subspecies), a novelty for Old World papilionoid legumes, we investigated the morpho‐functional correlates and the geographical distribution of this phenomenon in the species. The relative frequencies of hermaphrodite and male flowers were determined in two field and 111 herbarium populations. Biomass allocation within flowers, pollen production and viability, pollen tube growth, nectar production and the temporal pattern of male flower production were also studied in two nearby southern Spanish populations. Virtually all of the studied populations were andromonoecious. Male flowers tended to appear at apical positions within the inflorescence, and became more abundant by the end of the flowering season. Male flowers were externally similar to hermaphroditic flowers (although with less biomass and smaller parts) and released equivalent amounts of pollen and nectar; however, their pollen germinated significantly better. Erophaca is the first example of an andromonecious Papilionoid in the Old World. Since the main difference among floral morphs in this species is functional (i.e. pollen germination rate) rather than morphological, andromonoecy is not readily noticeable, and very careful inspection may be required to reveal it. The potential effect of andromonoecy in enhancing outcrossing rate in this species is discussed.  相似文献   

14.
? The diversity of plant breeding systems provides the opportunity to study a range of potential reproductive adaptations. Many mechanisms remain poorly understood, among them the evolution and maintenance of male flowers in andromonoecy. Here, we studied the role of morphologically male flowers ('male morph') in andromonoecious Passiflora incarnata. ? We measured morphological differences between hermaphroditic and male morph flowers in P.?incarnata and explored the fruiting and siring ability of both flower types. ? Male morph flowers in P.?incarnata were of similar size to hermaphroditic flowers, and there was little evidence of different resource allocation to the two flower types. Male morph flowers were less capable of producing fruit, even under ample pollen and resource conditions. By contrast, male morph flowers were more successful in siring seeds. On average, male morph flowers sired twice as many seeds as hermaphroditic flowers. This difference in male fitness was driven by higher pollen export from male morph flowers as a result of greater pollen production and less self-pollen deposition. ? The production of male morph flowers in P.?incarnata appears to be a flexible adaptive mechanism to enhance male fitness, which might be especially beneficial when plants face temporary resource shortages for nurturing additional fruits.  相似文献   

15.
A population ofWurmbea dioica subsp.alba in Western Australia contained monoclinous and andromonoecious individuals in roughly equal proportions. The average number of flowers per inflorescence for the former was 2.6 and for the latter 2.9, with its terminal flower staminate. Ovule number and seed production per perfect flower of both morphs decreased progressively from lower to upper flowers in the inflorescence. Two-flowered monoclinous individuals had a greater percentage of ovules maturing to seed than did threeflowered ones, but seed production of the latter exceeded that of the former. No differences in percent seed set or in seed production were noted for similar individuals of andromonoecious individuals. Although monoclinous and andromonoecious plants apparently contributed equally to the pollen pool, seed production of the former exceeded that of the latter. Thus, the energetic costs of monocliny exceed those of andromonoecy in this population.  相似文献   

16.
Summary Flower and fruit characters were measured in ten female, five male and five fruiting male selections of A. deliciosa var deliciosa (A. Chev) Liang and Ferguson. Flowers from female vines had functional pistils, which contained many ovules. Stamens appeared to be fully developed but produced only empty pollen grains. Flowers from male vines had functional stamens that produced high percentages of pollen grains with stainable cytoplasmic contents. Pistils did not contain ovules and were generally small with vestigial styles. Fruiting male vines had both staminate and bisexual flowers. Staminate flowers were similar to those found on strictly male vines. Bisexual flowers produced ovules and stainable pollen. Pistils were smaller than in pistillate flowers. Although the three flower sexes differed in style length, ovary dimensions and ovules per carpel, staminate and bisexual flowers were similar in number of flowers per inflorescence, stamen filament length, pollen stainability, inflorescence rachis length and carpel number, and differed from pistillate flowers in these characters. The three flower sexes had similar sepal and petal numbers. The fruit of fruiting males were considerably smaller than those of females. Low ovule number appears to be the major factor limiting fruit size in the fruiting males studied. Prospects for developing hermaphroditic kiwifruit cultivars through breeding are discussed.  相似文献   

17.
Andromonoecy, the production of both male and hermaphrodite flowers in the same individual, is a widespread phenomenon that occurs in approximately 4,000 species distributed in 33 families. Hypotheses for the evolution of andromonoecy suggest that the production of intermediate proportions of staminate flowers may be favored by selection acting through female components of fitness. Here we used the andromonoecious herb Solanum carolinense to determine the pattern of selection on the production of staminate flowers. A multivariate analysis of selection indicates that selection through female fitness favors the production of staminate flowers in at least one population. We conclude that this counterintuitive benefit of staminate flowers on female fitness highlights the importance of considering female components of fitness in the evolution of andromonoecy, a reproductive system usually interpreted as a "male" strategy.  相似文献   

18.
簇花芹(Soranthus meyeri)是古尔班通古特沙漠中常见的、具雄全同株性系统的伞形科多年生早春短命植物。该文对簇花芹花期性比(两性花数/总花数)与植株大小的关系及其开花式样进行了研究, 重点对花期大小依赖的性别资源分配进行了讨论。结果表明: 2006-2008年簇花芹群体水平的性比分别为0.69 ± 0.03、0.62 ± 0.03和0.69 ± 0.02, 彼此间无显著差异( p > 0.05), 表明其性比是相对稳定的, 可能受遗传因素的控制。雄花生物量与花粉量均比两性花的小, 说明产生雄花比产生两性花所需资源少。一级复伞形花序比二级复伞形花序具有较多的两性花, 说明前者易从植株上获得资源用于增加雌性适合度; 而后者产生较多的雄花以避免在雌性功能上资源投入的浪费, 增大花展示以吸引更多传粉者来增加花粉输出总量, 提高其整体适合度。植株水平的性比与地上营养器官的生物量间呈正相关关系, 说明较大个体对雌性功能的投资较大, 雌性繁殖成功受资源限制。复伞形花序内各伞形花序几乎同时向心开放, 且所有两性花及花序均为雄性先熟, 雌雄阶段完全分离, 但一级复伞形花序比二级复伞形花序早开放约5天, 彼此开花重叠期约为1天。这些特征对于一级复伞形花序进行异株异花授粉以及植株内不同级别花序间的同株异花传粉、避免雌雄功能间的干扰具有重要意义。  相似文献   

19.
The degree of sexual dimorphism in flowers and inflorescences can be evaluated early in flower development through the study of floral organ size co-variation. In the present work, the gynoecium-androecium size relationship was studied to assess the degree of sexual expression in flowers and inflorescences of the andromonoecious shrub Caesalpinia gilliesii. The co-variation pattern of floral organ sizes was compared between small and large inflorescences, under the hypothesis that inflorescence size reflected differential resource availability. Also, staminate and perfect flowers were collected from three populations and compared on the basis of gynoecium, ovule length, filament length, pollen size and number. The obtained results indicated that staminate and perfect flowers differed only in the gynoecium and ovule length, whereas filament length, pollen size, and number varied across populations. The gynoecium size was smaller and its variability was much higher in staminate than in perfect flowers, as explained by a recent hypothesis about pollinator-mediated gynoecium size selection acting upon perfect flowers. The analysis of the gynoecium-androecium size relationship during flower development, revealed a dissociation of gynoecium growth relative to other floral structures in some buds. Lower gynoecium-androecium regression slopes and smaller gynoecia length characterized smaller inflorescences, thus reflecting the fact that sexual expression was more male-biased. This trend is in agreement with a differential resource-related response at the inflorescence level, however, post-mating resource allocation and the inclusion of other modular levels may also help us to understand the variation in sexual dimorphism in this species.  相似文献   

20.
Androdioecy is a rare sexual system in nature, as predicted theoretically. Among the androecious species reported so far, Castilla elastica (Moraceae) is unique in that flowers are unisexual and staminate and pistillate flowers on cosexual plants are produced on different inflorescences. In addition, inflorescence structure of staminate inflorescences on males and staminate and pistillate inflorescences on cosexes is markedly different. Staminate inflorescences on males are bivalvate, while staminate inflorescences on cosexes are "fig-like" and urceolate. Pistillate inflorescences are discoidal. The difference may reflect different roles and requirements of the three inflorescences in pollination and protection from herbivores. This study reports thrips pollination of C. elastica, demonstrated by a pollinator introduction experiment. Thrips pollination of the species may be an example of mutualism originating from plant-herbivore interactions. In the Moraceae, shifts from simple herbivores on flowers to pollinators might have occurred many times, evolving into diverse pollination systems including the fig-fig wasp mutualism. The family, of which little is known about pollination systems, provides interesting and unique opportunities to study evolution of pollination systems and roles of nonpollinating associates of inflorescences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号