首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An hypothesized advantage of seed dispersal is avoidance of high per capita mortality (i.e. density-dependent mortality) associated with dense populations of seeds and seedlings beneath parent trees. This hypothesis, inherent in nearly all seed dispersal studies, assumes that density effects are species-specific. Yet because many tree species exhibit overlapping fruiting phenologies and share dispersers, seeds may be deposited preferentially under synchronously fruiting heterospecific trees, another location where they may be particularly vulnerable to mortality, in this case by generalist seed predators. We demonstrate that frugivores disperse higher densities of Cornus florida seeds under fruiting (female) Ilex opaca trees than under non-fruiting (male) Ilex trees in temperate hardwood forest settings in South Carolina, USA. To determine if density of Cornus and/or Ilex seeds influences survivorship of dispersed Cornus seeds, we followed the fates of experimentally dispersed Cornus seeds in neighborhoods of differing, manipulated background densities of Cornus and Ilex seeds. We found that the probability of predation on dispersed Cornus seeds was a function of both Cornus and Ilex background seed densities. Higher densities of Ilex seeds negatively affected Cornus seed survivorship, and this was particularly evident as background densities of dispersed Cornus seeds increased. These results illustrate the importance of viewing seed dispersal and predation in a community context, as the pattern and intensity of density-dependent mortality may not be solely a function of conspecific densities.  相似文献   

2.
Whilst consumption by rodents is often invoked as a major mortality factor for large-seed species of trees, its relative importance compared with other mortality factors is poorly known. We investigated experimentally the fate of post-dispersal seeds of Quercus glauca under different understorey environments (areas covered by (i) a pteridophyte Pyrrosia lingua, (ii) a ground-vine, Trachelospermum asiaticum and (iii) no vegetation) from the germination stage to seedling emergence and establishment stages in humid maritime woodland. We employed a pair of caged and uncaged treatments to evaluate the impact of seed removal/predation by rodents, which allowed us to separate seed removal/predation mortality from mortality due to other factors. Effects by rodents were greater in the no-understorey habitat than in the Pyrrosia and Trachelospermum habitats at early stages of development, whilst non-rodent-associated mortality was relatively more important towards the seedling establishment stages in all habitats. In the absence of predation/removal by rodents (i.e. the caged treatment), more seedlings survived in the no-understorey habitat whilst seedlings were significantly taller in the Pyrrosia habitat. In contrast, no significant difference was observed in either seed/seedling survivorship or seedling height amongst habitats where seeds/seedlings were exposed to rodent predation/removal. Overall, this study in a humid maritime woodland has revealed the temporally variable influence of mortality factors and the context-dependent survival of oak seeds/seedlings, making a contrast to observations in drier woodlands; in the no-understorey environment predation/removal effect was heavier but later survivorship was higher, whilst in vegetated environments, predation/removal was reduced but survivorship was not high.  相似文献   

3.
Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p < 0.001) while predation rates increased (p = 0.06) with seed size. Removal rates were significantly lower for soft seeds (p = 0.002), whereas predation rates were significantly higher on soft seeds (p = 0.01). Our results show that murid rodents play a very important role in affecting the seed fates of tropical trees in the Eastern Himalayas. We also found that the different rodent groups differed in their seed handling behavior and responses to changes in seed characteristics.  相似文献   

4.
Survivorship and growth of seedlings of four dipterocarp species (Dipterocarpus actangulus, D. globosus, Dryobalanops aromatica, Dryobalanops lanceolata) were studied for 2.5 years in a mixed dipterocarp forest in Sarawak, East Malaysia. Predispersal seed predation rates were larger forD. globosus (75%) thanD. lanceolata (27–34%) andD. aromatica (18–26%). Less than 20% of the twoDryobalanops seeds were damaged by vertebrates after seed dispersal. During the period from seed dispersal to the time when the seedlings had shed cotyledons, more dispersed seeds died in the twoDipterocarpus (ca 90%) than the twoDryobalanops (ca 60–70%). The major mortality factors during this period were uprooted and seed/seedling predation by insects or vertebrates. After the seedlings shed cotyledons, all species showed constant mortality rates of 34, 15–16, 17 and 6%/year forD. actangulus, D. lanceolata, D. aromatica andD. globosus, respectively, in the forest understorey. Mortality was lower in less shaded conditions than in more shaded ones forD. aromatica andD. actangulus, but not significantly different forD. lanceolata andD. globosus. A majority of dead seedlings were killed by fallen branches or were found standing with wilted leaves, probably due to water stress. No significant correlation was found between seed/seedling mortality and distance from mother trees or the initial density of seeds/seedings for all species. The mean leaf production was positively correlated with the estimated diffuse light factor of their habitats for each species.  相似文献   

5.
High seed cost and low rates of establishment make tallgrass prairie restorations challenging and expensive endeavors. Typical seedling emergence rates in prairie restorations are approximately 10% and the causes of seed mortality are poorly understood. In this study, we examined the impact of small vertebrate granivores on prairie restoration by comparison of seedling emergence in open (sham) versus closed exclosures at three newly restored sites. To assess other causes of seed loss, we also tracked seed fates at one prairie restoration site. We coated seeds of four prairie species with fluorescent dye, placed them under closed exclosures, and monitored their fate (emerging seedling, partially germinated, nongerminated/viable, and nongerminated/nonviable) over a 5‐month period. On average, 9.6 more seedlings/m2 emerged in the closed than the opened exclosures, suggesting that small vertebrate granivores reduce seedling emergence in prairie restoration. Granivores influenced the composition of the emerging community but did not preferentially consume large‐seeded species. In the seed‐tracking experiment, we found that greater than 70% of seeds were lost within 30 days of sowing, that seed recovery and viability both decreased with time in soil, and that seed fates differed between species. Collectively, our results indicate that small vertebrate granivores are an important cause of seed loss in prairie restoration, but unidentified belowground (e.g. fungal decomposition, invertebrate predation) and environmental (wind, rain) factors account for a greater proportion of total seed loss. Until these causes of seed loss are better understood, high seed costs will persist and continue to impede prairie restoration.  相似文献   

6.
2010年9月至2013年4月通过设置人工土壤种子库,研究了野生樱桃李土壤种子库的动态及啮齿动物和凋落物覆盖对种子库中种子命运的影响.结果表明: 在有取食动物扰动下,48.3%的种子萌发输出为幼苗,50%的种子被动物搬运或当场取食,4%的种子腐烂.在排除了取食动物干扰的条件下,樱桃李种子形成了短期持久的土壤种子库,3年后依然有部分种子萌发并输出为幼苗.凋落物覆盖和对照处理中,被搬运和当场取食种子的比例均显著低于清除凋落物的裸地.地表凋落物存留能减少动物搬运、取食,但不足以导致新生幼苗的大量出现,而啮齿类动物的搬运或取食是影响野生樱桃李种子命运和种子库动态的主要因素.
  相似文献   

7.
植物天然更新过程中种子和幼苗死亡的影响因素   总被引:46,自引:0,他引:46  
植物天然更新包括有种子搬运、种子库动态、种子萌发和幼苗定居等过程。从种子生产到幼苗定居的更新是植物生活史中最为敏感的阶段之一 ,多种因素的影响种子和幼苗的命运。其中包括 :( 1 )动物取食或病原体侵袭。种子在扩散和搬运过程中 ,易被小哺乳动物或无脊椎动物取食。蛀虫也可以使种子失去萌芽能力。病原体感染种子和幼苗 ,容易引起种子和幼苗的死亡。 ( 2 )异质生境的影响。在不同生境中 ,光照条件、土壤水分和化学成分等因子的组合严重影响种子和幼苗的命运。 ( 3 )干扰的影响。小尺度和大尺度的干扰都可以影响到植物更新时种子和幼苗的命运。林窗作为特殊的干扰体系 ,为不同种类植物提供了更新的机会。 ( 4 )繁殖体特征。种子大小、质量和保护色等特征影响种子和幼苗在更新过程中的生存。种子休眠期间 ,由于生理衰老和腐烂的原因使种子失去活力而不能萌发。 ( 5 )密度和距离制约。母株附近由于密度竞争的影响 ,种子和幼苗死亡率都较高。  相似文献   

8.
Lindquist ES  Carroll CR 《Oecologia》2004,141(4):661-671
Recently, the importance of seed predation by crabs on mangrove species distributions and densities has been established by several studies. In a tropical coastal terrestrial forest in Costa Rica, we investigated the relative importance of predation by land crabs, Gecarcinus quadratus, and hermit crabs, Coenobita compressus, on measured forest composition through a series of seed removal and seedling establishment experiments. We also used natural light-gaps and adjacent non-gap sites to test how canopy cover affects crab predation (seed removal) and seedling establishment. We found fewer tree species (S=18) and lower densities (seedlings, saplings, and adults) in the coastal zone within 100 m of coastline, than in the inland zone (S=59). Land crab densities were higher in the coastal zone (3.03±1.44 crabs m–2) than in the inland zone (0.76±0.78 crabs m–2), and hermit crabs were not present in the inland zone. Seed removal and seedling mortality also were higher in the coastal zone than in the inland zone, and in the open controls than in the crab exclosures. Mortality of seeds and seedlings was two to six times higher in the controls than exclosures for four of the five experiments. Crabs preferred seeds and younger seedlings over older seedlings but showed no species preferences in the seed (Anacardium excelsum, Enterolobium cyclocarpum, and Terminalia oblonga) and seedling (Pachira quinata and E. cyclocarpum) stages. We conclude that the observed differences in tree densities were caused by differential crab predation pressure along the coastal gradient, while the differences in species composition were due to predator escape (satiation) by seed quantity. Canopy cover did not affect seed removal rates, but did affect seedling survival with higher mortality in the non-gap versus gap environments. In summary, crab predation of seeds and seedlings, and secondarily canopy cover, are important factors affecting tree establishment in terrestrial coastal forests.  相似文献   

9.
The seed and seedling mortality ofFagus crenata Blume after a mast year (1993) was examined in relation to density and distance from the nearest conspecific adult tree in a mixed conifer-hardwood forest in Ohdaigahara, western Japan. The mortality of fallen seeds during winter amounted to 93.7%, and 79.2% of the current-year seedlings died in the first growing season. The most important factor of death for both seeds and seedlings was predation by vertebrates. The mortality of seeds during winter was positively correlated with sound seed density. The mortality of seedlings was positively correlated with density but not significantly related to the distance from the nearest crown edge of a conspecific adult tree. Mortality patterns varied with stages and spatial scales due to the behavior of predators; it is thus important to investigate the spatial pattern of seeds and seedling mortality at various temporal and spatial scales. After the first growing season, the difference in seedling density between distance classes was not significant at <4m from the nearest adult trees due to density-dependent mortality. However, seedling density was significantly lower in the ≥4 m class than in the <4 m classes.  相似文献   

10.
N. Greig 《Oecologia》1993,93(3):412-420
Absolute number of seeds lost to predispersal seed predators and proportion of total seeds lost per infructescence were compared among five Costa Rican Piper species of different annual fecundities. Mean seed number and mean seed size in the five species were negatively correlated. The impact of predation on these species was inversely related to the number of seeds they produced. The two early successional species had very high fecundities, a combination of many seeds per infructescence, many infructescences per plant, and, in one species, year-round reproduction. Although seed predators destroyed as many or more seeds of these early successional species than they did of the less fecund, late successional species, this loss accounted for a relatively minor proportion (9 and 12%) of the seeds of the early successional species. In contrast, late successional species produced fewer, larger seeds in a smaller number of infructescences and were not continually in fruit. One of these species, which produced intermediate numbers of intermediately sized seeds, lost 30% of the seeds in each infructescence on average. Seed predators destroyed a larger proportion (65 and 76%) of the seeds per infructescence in the two species with fewest seeds per infructescence. High levels of insect damage in these late successional species caused many of their infructescences to abort prematurely. Taken together these factors resulted in annual fecundities several orders of magnitude smaller in shade-tolerant Piper species than the annual fecundities of shade-intolerant, early successional species. Seedlings of the two early successional species were common in large gaps and other sunny clearings and seedlings of the species with 30% seed loss were occasional, whereas no seedlings were seen of the two species with the highest proportional seed loss, suggesting that seed predation on the latter species may limit seedling recruitment.  相似文献   

11.
啮齿类取食的物种偏好与时空格局   总被引:1,自引:1,他引:1  
沈泽昊  唐圆圆  李道兴 《生态学报》2008,28(12):6018-6024
通过强烈消耗土壤种子库,动物取食种子对植物种群更新和群落动态产生深远的影响。一般认为种子被食概率的空间格局取决于种子密度和离母树的距离,而环境(如地形)异质性的影响则一直没有得到足够的关注,与此相关的机制及其影响程度亦不清楚。研究设计在野外埋放种子以模拟种子扩散后的情形,监测啮齿类对种子的取食,以检验种子取食受埋藏生境、时间及动物对种子种类的偏好等因素的影响。结果表明,经过1a实验,8种落叶阔叶树种子的累计取食概率为0~48.25%,平均值为20%;山顶部位的取食概率大致是其它部位概率的3倍;埋放在凋落物层中的种子被食概率大约为埋放在土壤层中概率的2倍。利用logistic回归模型进行统计分析表明,种子被食概率变化的45%可以被上述因素解释。其中,物种偏好是影响种子被取食概率的首要因素,其后依次是地形、埋藏时间和深度。啮齿类明显喜好较大的种子;其取食行为在山脊部位明显较其它部位更频繁和剧烈;对埋藏种子的取食从3月份开始加剧,到7月份以后平息下来。种子埋放深度对啮齿类的取食概率有显著影响。  相似文献   

12.
Abstract. The recruitment of the relict shrub Juniperus communis on a mountain in SE Spain was studied during the period 1994–1998. The main objective was to determine both the quantitative and qualitative effects of bird dispersal on seedling establishment. Seed removal by birds, seed rain, post‐dispersal seed predation, germination, and seedling emergence and survival were analysed in different microhabitats. Birds removed 53 ‐ 89% of the seeds produced by plants. Seed rain was spatially irregular as most seeds accumulated near stones used by birds as perches and below mother plants while a few seeds were dropped in wet meadows and open ground areas. Post‐dispersal seed predation by rodents affected < 10% of dispersed seeds but varied significantly among microhabitats. Only 3.6 ‐ 5.5% of dispersed seeds appeared viable, as many seeds had aborted or showed wasp damage. Seeds germinated in the second and third springs after sowing, reaching a germination percentage of 36%. Seedling emergence was concentrated in wet meadows. Seedling mortality was high (75–80%), but significantly lower in wet meadows, the only microhabitat where seedlings could escape from summer drought, the main mortality cause. Seed abortion, germination and seedling mortality proved to be the main regeneration constraints of J. communis on Mediterranean mountains. Birds exerted a strong demographic effect, although their qualitative effect was limited by abiotic factors which caused the pattern of seed rain to differ from the final pattern of recruitment between microhabitats.  相似文献   

13.
Large animal species, which provide important ecological functions such as dispersal of seeds or top–down control of seed predators, are very vulnerable in fragmented forests, being unable to survive in small fragments, and facing increasing hunting pressure. The loss of large animals affects two main ecological processes crucial for the tree reproductive cycle: seed dispersal of large seeds (e.g. provided by tapirs) and control of seed predator population (e.g. provided by large cats). The changes in both processes are expected to increase seed mortality since seeds are not dispersed away from conspecifics (causing increased pre‐dispersal mortality due to negative density dependent effects) and/or face increased predation after a dispersal event (post‐dispersal mortality). Although an extensive body of empirical knowledge exists on seed predation, the link between seed loss and adult tree community composition and structure is not well established, as well as the temporal scale seed changes affect adults. Using an individual‐based forest model (FORMIND), we evaluate the long‐term consequences of increased pre and post‐dispersal seed mortality on the future forest biomass retention of a Brazilian northeastern Atlantic forest. Our results show that forest biomass is significantly affected after 80–93% pre‐dispersal loss of large seeds, or post‐dispersal predation densities of 20–25 predators per parent tree. Large‐seeded tree species are at increased risk of local extinction causing up to 26.2% loss of forest biomass when both pre and post‐dispersal processes are combined. However, these changes can last up to 100 years after the occurrence of defaunation. In summary we conclude that large animal loss has the potential to reduce future forest biomass and tree species‐richness by impacting seed survival, and should be considered in the planning of biodiversity friendly landscapes as well as in calculations of the global carbon budget.  相似文献   

14.
生境片段化伴随的面积效应和边缘效应, 可改变分散贮食动物的竞争强度、觅食行为以及隐蔽条件, 影响种子捕食和扩散模式。阐明生境片段化对多物种种子捕食和扩散的影响, 对理解片段化生境中的植物更新和生物多样性维持十分重要。该研究在浙江省千岛湖地区的岛屿和大陆上开展了针对6种壳斗科植物的种子捕食和扩散实验, 分析了物种、分散贮食动物相对多度、种子产量、岛屿大小和边缘效应如何共同影响种子命运和种子扩散距离。主要结果: (1)种子命运和扩散距离在物种间存在显著差异; (2)大陆比岛屿有更长的种子留存时间, 小岛种子留存时间最短, 岛屿内部比岛屿边缘有更长的种子留存时间; (3)物种和岛屿大小对种子原地取食率存在交互作用, 白栎(Quercus fabri)种子在大岛上有更高的原地取食率; (4)种子在小岛上有最高的扩散率, 分散贮食动物相对多度对种子扩散后贮藏率有负效应。表明在千岛湖地区, 生境片段化改变了种子捕食和扩散模式, 且面积效应对不同物种的种子捕食和扩散模式产生了不同作用, 从而影响森林群落更新和生物多样性维持。  相似文献   

15.
Ants have been traditionally considered either as predators or dispersers of seeds, but not both. That is, ant dispersal is restricted to myrmecochorous seeds, while almost all seeds removed by seed‐harvesting ants are eaten. However, harvesting ants might be simultaneously antagonistic and mutualistic towards seeds. This study analyzes the predation–dispersal relationship between seed‐harvesting ants and seeds of Lobularia maritima, a non‐myrmechorous perennial herb, in order to disentangle the dual role of ants as dispersers and predators of L. maritima seeds. The results obtained confirm the role of harvesting ants as both predators and dispersers of the non‐myrmechorous seeds of L. maritima. The removal activity of Messor bouvieri on L. maritima seeds is very important, particularly in autumn, which is the flowering and fruiting peak of this plant. It can be estimated that harvesting ants collect more than 85% of seeds, and almost 70% of them are effectively lost to predation. However, these granivorous ants also have drawbacks as seed dispersers. There is a relatively small percent of seeds collected by ants that escape predation, either because they are dropped on the way to the nest (16.4% of seeds harvested), or because they are mistakenly rejected on the refuse pile (0.9%). Abiotic dispersal of L. maritima seeds in the absence of ants occurs over very short distances from the plant stem. As seeds dispersed by ants reach a considerably greater distance than that obtained by gravity, this might represent a real advantage for the species, because it reduces intraspecific adult competition for seedlings, which directly influences seedling survivorship. These results challenge the generalization that seed removal by ants generally leads to successful seed dispersal if done by legitimate seed dispersers, or seed loss if done by seed consumers that eat them, and confirm that harvesting ants might have a dual role as both predators and dispersers of nonmyrmechorous seeds.  相似文献   

16.
Ellen Andresen 《Biotropica》2002,34(2):261-272
The effectiveness of a seed disperser depends on the quantity and quality of dispersal. The quality of dispersal depends in large part on factors that affect the post–dispersal fate of seeds, and yet this aspect of dispersal quality is rarely assessed. In the particular case of seed dispersal through endozoochory, the defecation pattern produced has the potential of affecting the fate of dispersed seeds and consequently, dispersal quality and effectiveness. In this study, I assessed the effects of dung presence and dung/seed densities on seed predation by rodents and secondary dispersal by dung beetles. In particular, I compared seed fates in clumped defecation patterns, as those produced by howler monkeys, with seed fates in scattered defecation patterns, as those produced by other frugivores. I also determined the prevalence of red howler monkeys (Alouatta seniculus) as seed dispersers at the plant community level in Central Amazonia by determining the number of species they dispersed in a 25–month period. I found that dung presence and amount affected rodent and dung beetle behavior. Seed predation rates were higher when dung was present, and when it was in higher densities. The same number of seeds was buried by dung beedes, in dumped versus scattered defecation patterns, but more seeds were buried when they were inside large dung–piles versus small piles. Seed density had no effect on rodent or dung beetle behavior. Results indicate that caution should be taken when categorizing an animal as a high or low quality seed disperser before carefully examining the factors that affect the fate of dispersed seeds. Red howler monkeys dispersed the seeds of 137 species during the study period, which is the highest yet reported number for an Alouatta species, and should thus be considered highly prevalent seed dispersers at the plant community level in Central Amazonian terra firme rain forests.  相似文献   

17.
Fremontodendron decumbens grows in a single county in central California, USA. Prior research showed that its elaiosome-bearing seeds are dispersed by the harvester ant Messor andrei. I tested several hypotheses regarding the positive role of ant-mediated dispersal to F. decumbens: (1) Does ant-mediated seed dispersal facilitate seed escape from rodent predation?; (2) Does ant processing of seeds stimulate germination?; (3) Are ant middens more suitable microsites for seed or seedling survival in unburned chaparral areas?; and (4) Do survival benefits of dispersal occur post-fire in the form of differences in seedling survival probabilities and, if so, why? Results of tests of each hypothesis were: (1) similar percentages of seeds placed on ant middens and under F. decumbens shrub canopies were destroyed by rodents, but seeds from which elaiosomes had been removed were more likely to escape rodent predation; (2) seeds processed by ants did not germinate more readily than seeds removed directly from shrub branches; (3) seedling predation was a major cause of mortality in unburned chaparral on both ant middens and under shrubs, and overall seedling survival did not differ between the two microsites; (4) post-burn seedling survival was significantly greater for seedlings dispersed away from F. decumbens shrub canopies, because dispersed seedlings were both less likely to be killed by predators and more likely to be growing in a gap created by the fire-caused death of an established shrub. I concluded that the major ecological benefit to F. decumbens of ant-mediated seed dispersal was elevated post-fire seedling survival resulting from enhanced escape by dispersed seedlings from both predation and competition.  相似文献   

18.
Three hypotheses have been proposed to explain the functional relationship between seed mass and seedling performance: the reserve effect (larger seeds retain a larger proportion of reserves after germinating), the metabolic effect (seedlings from larger seeds have slower relative growth rates), and the seedling-size effect (larger seeds produce larger seedlings). We tested these hypotheses by growing four Mediterranean Quercus species under different light conditions (3, 27, and 100% of available radiation). We found evidence for two of the three hypotheses, but none of the four species complied with all three hypotheses at the same time. The reserve effect was not found in any species, the metabolic effect was found in three species (Q. ilex, Q. pyrenaica, and Q. suber), and the seedling-size effect in all species. Light availability significantly affected the relationships between seed size and seedling traits. For Q. ilex and Q. canariensis, a seedling-size effect was found under all three light conditions, but only under the lowest light (3%) for Q. suber and Q. pyrenaica. In all species, the correlation between seed mass and seedling mass increased with a decrease in light, suggesting that seedlings growing in low light depend more upon their seed reserves. A causal model integrates the three hypotheses, suggesting that larger seeds generally produced larger seedlings.  相似文献   

19.
BACKGROUND AND AIMS: Pathogen-seed interactions may involve a race for seed resources, so that seeds that germinate more quickly, mobilizing reserves, will be more likely to escape seed death than slow-germinating seeds. This race-for-survival hypothesis was tested for the North American seed pathogen Pyrenophora semeniperda on seeds of the annual grass Bromus tectorum, an invasive plant in North America. In this species, the seed germination rate varies as a function of dormancy status; dormant seeds germinate slowly if at all, whereas non-dormant seeds germinate quickly. METHODS: Three experimental approaches were utilized: (a) artificial inoculations of mature seeds that varied in primary dormancy status and wounding treatment; (b) naturally inoculated undispersed seeds that varied in primary dormancy status; and (c) naturally inoculated seeds from the carry-over seed bank that varied in degree of secondary dormancy, habitat of origin and seed age. KEY RESULTS: In all three approaches, seeds that germinated slowly were usually killed by the pathogen, whereas seeds that germinated quickly frequently escaped. Pyrenophora semeniperda reduced B. tectorum seed banks. Populations in drier habitats sustained 50 times more seed mortality than a population in a mesic habitat. Older carry-over seeds experienced 30 % more mortality than younger seeds. CONCLUSIONS: Given the dramatic levels of seed death and the ability of this pathogen to reduce seed carry-over, it is intriguing to consider whether P. semeniperda could be used to control B. tectorum through direct reduction of its seed bank.  相似文献   

20.
García D  Obeso JR  Martínez I 《Oecologia》2005,144(3):435-446
We investigated the role of seed predation by rodents in the recruitment of the fleshy-fruited trees Taxus baccata, Ilex aquifolium and Crataegus monogyna in temperate secondary forests in NW Spain. We measured the densities of dispersed seeds, early emerged seedlings, established recruits and adults, at four sites over a period of 2 years. Seed predation among species was compared by seed removal experiments and analysis of rodent larder-hoards. The three species differed markedly in local regeneration patterns. The rank order in the seed rain following decreasing seed density was Ilex, Taxus and Crataegus. However, Crataegus established 3.3 times more seedlings than Taxus. For all species, there was a positive linear relationship between the density of emerged seedlings and seed density, suggesting that recruitment was seed- rather than microsite-limited. A consistent pattern of seed selection among species was exerted by rodents, which preferred Taxus and, secondarily, Ilex seeds to Crataegus seeds. Predation ranking was the inverse of that of seed protection against predators, measured as the mass of woody coat per mass unit of the edible fraction. Recruitment potential, evaluated as the ratio of seedlings to seeds, was negatively related to seed predation, with the rank order Crataegus > Ilex > Taxus. The selective early recruitment limitation exerted by predation may have a demographic effect in the long term, as judged by the positive relationship between early seedling emergence and the density of established recruits. By modulating the pre-emptive competition for seed safe sites, rodents may preclude the progressive exclusion of species that produce low numbers of seeds (i.e. Crataegus) by those dominant in seed number (i.e. Ilex, Taxus), or at least foster the evenness for site occupation among seedlings of different species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号