首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Cleavage of the amyloid precursor protein (APP) is a crucial event in Alzheimer disease pathogenesis that creates the amyloid-beta peptide (Abeta) and liberates the carboxy-terminal APP intracellular domain (AICD) into the cytosol. The interaction of the APP C terminus with the adaptor protein Fe65 mediates APP trafficking and signalling, and is thought to regulate APP processing and Abeta generation. We determined the crystal structure of the AICD in complex with the C-terminal phosphotyrosine-binding (PTB) domain of Fe65. The unique interface involves the NPxY PTB-binding motif and two alpha helices. The amino-terminal helix of the AICD is capped by threonine T(668), an Alzheimer disease-relevant phosphorylation site involved in Fe65-binding regulation. The structure together with mutational studies, isothermal titration calorimetry and nuclear magnetic resonance experiments sets the stage for understanding T(668) phosphorylation-dependent complex regulation at a molecular level. A molecular switch model is proposed.  相似文献   

4.
Gross GG  Feldman RM  Ganguly A  Wang J  Yu H  Guo M 《PloS one》2008,3(6):e2495
The Amyloid Precursor Protein (APP) undergoes sequential proteolytic cleavages through the action of beta- and gamma-secretase, which result in the generation of toxic beta-amyloid (Abeta) peptides and a C-terminal fragment consisting of the intracellular domain of APP (AICD). Mutations leading to increased APP levels or alterations in APP cleavage cause familial Alzheimer's disease (AD). Thus, identification of factors that regulate APP steady state levels and/or APP cleavage by gamma-secretase is likely to provide insight into AD pathogenesis. Here, using transgenic flies that act as reporters for endogenous gamma-secretase activity and/or APP levels (GAMAREP), and for the APP intracellular domain (AICDREP), we identified mutations in X11L and ubiquilin (ubqn) as genetic modifiers of APP. Human homologs of both X11L (X11/Mint) and Ubqn (UBQLN1) have been implicated in AD pathogenesis. In contrast to previous reports, we show that overexpression of X11L or human X11 does not alter gamma-secretase cleavage of APP or Notch, another gamma-secretase substrate. Instead, expression of either X11L or human X11 regulates APP at the level of the AICD, and this activity requires the phosphotyrosine binding (PTB) domain of X11. In contrast, Ubqn regulates the levels of APP: loss of ubqn function leads to a decrease in the steady state levels of APP, while increased ubqn expression results in an increase in APP levels. Ubqn physically binds to APP, an interaction that depends on its ubiquitin-associated (UBA) domain, suggesting that direct physical interactions may underlie Ubqn-dependent regulation of APP. Together, our studies identify X11L and Ubqn as in vivo regulators of APP. Since increased expression of X11 attenuates Abeta production and/or secretion in APP transgenic mice, but does not act on gamma-secretase directly, X11 may represent an attractive therapeutic target for AD.  相似文献   

5.
6.
7.
8.
Despite intensive studies of the secretase‐mediated processing of the amyloid precursor protein (APP) to form the amyloid β‐peptide (Aβ), in relation to Alzheimer's disease (AD), no new therapeutic agents have reached the clinics based on reducing Aβ levels through the use of secretase inhibitors or immunotherapy. Furthermore, the normal neuronal functions of APP and its various metabolites still remain under‐investigated and unclear. Here, we highlight emerging areas of APP function that may provide new insights into synaptic development, cognition, and gene regulation. By modulating expression levels of endogenous APP in primary cortical neurons, the frequency and amplitude of calcium oscillations is modified, implying a key role for APP in maintaining neuronal calcium homeostasis essential for synaptic transmission. Disruption of this homeostatic mechanism predisposes to aging and AD. Synaptic spine loss is a feature of neurogeneration resulting in learning and memory deficits, and emerging evidence indicates a role for APP, probably mediated via one or more of its metabolites, in spine structure and functions. The intracellular domain of APP (AICD) has also emerged as a key epigenetic regulator of gene expression controlling a diverse range of genes, including APP itself, the amyloid‐degrading enzyme neprilysin, and aquaporin‐1. A fuller understanding of the physiological and pathological actions of APP and its metabolic network could provide new opportunities for therapeutic intervention in AD.  相似文献   

9.
10.
11.
Amyloid precursor protein (APP) metabolism is central to the pathogenesis of Alzheimer disease. We showed recently that the amyloid intracellular domain (AICD), which is released by gamma-secretase cleavage of APP C-terminal fragments (CTFs), is strongly increased in cells treated with alkalizing drugs (Vingtdeux, V., Hamdane, M., Bégard, S., Loyens, A., Delacourte, A., Beauvillain, J.-C., Buée, L., Marambaud, P., and Sergeant, N. (2007) Neurobiol. Dis. 25, 686-696). Herein, we aimed to determine the cell compartment in which AICD accumulates. We show that APP-CTFs and AICD are present in multivesicular structures. Multivesicular bodies contain intraluminal vesicles (known as exosomes) when released in the extracellular space. We demonstrate that APP, APP-CTFs, and AICD are integrated and secreted within exosomes in differentiated neuroblastoma and primary neuronal culture cells. Together with recent data showing that amyloid-beta is also found in exosomes, our data show that multivesicular bodies are essential organelles for APP metabolism and that all APP metabolites can be secreted in the extracellular space.  相似文献   

12.
13.
We showed previously that cells expressing wild-type (WT) beta-amyloid precursor protein (APP) or coexpressing WTAPP and WT presenilin (PS) 1/2 produced APP intracellular domains (AICD) 49-99 and 50-99, with the latter predominating. On the other hand, the cells expressing mutant (MT) APP or coexpressing WTAPP and MTPS1/2 produced a greater proportion of AICD-(49-99) than AICD-(50-99). In addition, the expression of amyloid beta-protein (Abeta) 49 in cells resulted in predominant production of Abeta40 and that of Abeta48 leads to preferential production of Abeta42. These observations suggest that epsilon-cleavage and gamma-cleavage are interrelated. To determine the stoichiometry between Abeta and AICD, we have established a 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid-solubilized gamma-secretase assay system that exhibits high specific activity. By using this assay system, we have shown that equal amounts of Abeta and AICD are produced from beta-carboxyl-terminal fragment (C99) by gamma-secretase, irrespective of WT or MTAPP and PS1/2. Although various Abeta species, including Abeta40, Abeta42, Abeta43, Abeta45, Abeta48, and Abeta49, are generated, only two species of AICD, AICD-(49-99) and AICD-(50-99), are detected. We also have found that M233T MTPS1 produced only one species of AICD, AICD-(49-99), and only one for its counterpart, Abeta48, in contrast to WT and other MTPS1s. These strongly suggest that epsilon-cleavage is the primary event, and the produced Abeta48 and Abeta49 rapidly undergo gamma-cleavage, resulting in generation of various Abeta species.  相似文献   

14.
15.
Accumulation of extracellular amyloid beta peptide (Abeta), generated from amyloid precursor protein (APP) processing by beta- and gamma-secretases, is toxic to neurons and is central to the pathogenesis of Alzheimer disease. Production of Abeta from APP is greatly affected by the subcellular localization and trafficking of APP. Here we have identified a novel intracellular adaptor protein, sorting nexin 17 (SNX17), that binds specifically to the APP cytoplasmic domain via the YXNPXY motif that has been shown previously to bind several cell surface adaptors, including Fe65 and X11. Overexpression of a dominant-negative mutant of SNX17 and RNA interference knockdown of endogenous SNX17 expression both reduced steady-state levels of APP with a concomitant increase in Abeta production. RNA interference knockdown of SNX17 also decreased APP half-life, which led to the decreased steady-state levels of APP. Immunofluorescence staining confirmed a colocalization of SNX17 and APP in the early endosomes. We also showed that a cell surface adaptor protein, Dab2, binds to the same YXNPXY motif and regulates APP endocytosis at the cell surface. Our results thus provide strong evidence that both cell surface and intracellular adaptor proteins regulate APP endocytic trafficking and processing to Abeta. The identification of SNX17 as a novel APP intracellular adaptor protein highly expressed in neurons should facilitate the understanding of the relationship between APP intracellular trafficking and processing to Abeta.  相似文献   

16.
β-淀粉样蛋白前体蛋白胞内结构域(AICD)研究进展   总被引:1,自引:0,他引:1  
张弦  许华曦  张云武 《生命科学》2008,20(2):159-164
老年性痴呆症(Alzheimer’s disease,AD)一个重要的病理学特征,是在神经细胞外形成由β-淀粉样蛋白(β-amyloid,Aβ)组成的淀粉样斑(amyloidplaques)。β-淀粉样蛋白前体蛋白(β-amyloidprocursorprotein,APP)经β-分泌酶和γ-分泌酶依次水解后产生AB和APP胞内结构域(APP intrace Uulardomain,AICD)。现在已经知道AB在AD的发病机制中起着关键作用,但是关于AICD的生理及病理功能还不清楚。近年来研究发现AICD可以与细胞内多种蛋白相互作用,而且AICD在基因转录、细胞凋亡以及APP的加工和运输过程中均有调节功能。本文针对这一领域的研究进展,对AICD的生理及病理功能进行探讨。  相似文献   

17.
To develop a therapeutic intervention for Alzheimer's disease (AD), it is necessary to clarify the mechanisms underlying the pathogenesis of AD, in which senile plaques, neurofibrillary tangles and neuronal loss in the cerebrum are the central abnormalities. A number of studies have focused on the major component of the senile plaques, which is amyloid-beta (Abeta) and its precursor protein APP, and have investigated the roles of these molecules in the onset, progression and inhibition of AD. For multiple reasons, however, their roles in AD, especially in neuronal death, remain elusive and a unified concept for their roles has not yet been established. Recently, it has been found that APP functions normally as a neuronal surface transmembrane protein. In this article, we review the molecular mechanisms of neuronal cell death by these APP-relevant insults and discuss the functions of APP in regard to intracellular signal transducers, including c-Jun N-terminal kinase. We also revise the roles of Abeta in neuronal death and survival.  相似文献   

18.
19.
Amyloid precursor protein (APP) is a member of the APP family of proteins, and different enzymatic processing leads to the production of several derivatives that are shown to have distinct biological functions. APP is involved in the pathology of Alzheimer’s disease (AD), the most common neurodegenerative disorder causing dementia. Furthermore, it is believed that individuals with Down syndrome (DS) have increased APP expression, due to an extra copy of chromosome 21 (Hsa21), that contains the gene for APP. Nevertheless, the physiological function of APP remains unclear. It is known that APP plays an important role in neural growth and maturation during brain development, possibly by influencing proliferation, cell fate specification and neurogenesis of neural stem cells (NSCs). Proteolytic cleavage of APP occurs mainly via two mutually exclusive pathways, the non-amyloidogenic pathway or the amyloidogenic pathway. Other alternative pathways (η-secretase, δ-secretase and meprin pathways) have also been described for the physiological processing of APP. The different metabolites generated from these pathways, including soluble APPα (sAPPα), soluble APPβ (sAPPβ), β-amyloid (Aβ) peptides and the APP intracellular domain (AICD), have different functions determined by their structural differences, equilibrium and concentration with respect to other fragments derived from APP. This review discusses recent observations regarding possible functions of APP and its proteolytic derivatives in the biology and phenotypic specification of NSCs. This can be important for a better understanding of the pathogenesis and the development of future therapeutic applications for AD and/or DS, diseases in which alterations in neurogenesis have been described.  相似文献   

20.
gamma-Secretase-dependent regulated intramembrane proteolysis of amyloid precursor protein (APP) releases the APP intracellular domain (AICD). The question of whether this domain, like the Notch intracellular domain, is involved in nuclear signalling is highly controversial. Although some reports suggest that AICD regulates the expression of KAI1, glycogen synthase kinase-3beta, Neprilysin and APP, we found no consistent effects of gamma-secretase inhibitors or of genetic deficiencies in the gamma-secretase complex or the APP family on the expression levels of these genes in cells and tissues. Finally, we demonstrate that Fe65, an important AICD-binding protein, transactivates a wide variety of different promoters, including the viral simian virus 40 promoter, independent of AICD coexpression. Overall, the four currently proposed target genes are at best indirectly and weakly influenced by APP processing. Therefore, inhibition of APP processing to decrease Abeta generation in Alzheimer's disease will not interfere significantly with the function of these genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号