首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regino Zamora 《Oecologia》1990,84(3):376-379
Summary The taxonomic composition and size of arthropods captured by Pinguicula nevadense, an endemic carnivorous plant of the high-mountain zone of the Sierra Nevada (southern Spain), are analysed. The actual prey of P. nevadense and the available arthropods trapped by mimic-traps are compared, in order to identify the capture constraints of the plant. The results show that P. nevadense captures various arthropod taxa. Winged insects, especially Nematocera, make up the main component of the diet. The range of prey sizes in all P. nevadense populations studied is similar. The taxonomic composition of arthropods trapped by the mimic-traps is similar to that of the actual prey of P. nevadense. However, the plant captures prey only below a specific size threshold. These size constraints appear to be the principal factor determining the actual prey of this carnivorous plant.  相似文献   

2.
Uptake of nitrogen from prey and substrate and partitioning of prey-derived nitrogen were studied in the carnivorous plant species Pinguicula alpina, P. villosa, P. vulgaris and Drosera rotundifolia in a subarctic environment. Efficiency in nitrogen uptake from prey was evaluated by tracing 15N from 15N-enriched Drosophila flies fed to the plants. The in situ uptake efficiency differed somewhat between species and ranged from 29 to 41% of prey N. This efficiency was not affected by different feeding levels or plant reproductive status (flowering or non-flowering). A test of the amount of N absorbed from prey caught on flower stalks of Pinguicula villosa and P. vulgaris showed that both species took up little of what was available in prey (2.5% or less). The uptake efficiency found in greenhouse grown plants was higher than in plants in situ (40–50% vs. 30–40% respectively). This could probably best be explained by the absence of rain and a higher temperature in the greenhouse. The prey-derived 15N was traced to reproductive organs and winter buds. Non-flowering individuals allocated 58–97% of the N derived from prey to their winter buds. Flowering individuals allocated 17–43% of the N income from prey to reproduction, while 34–71% were allocated to buds. Root uptake of nitrogen was stimulated by increased prey capture. This increase in uptake of nitrogen from the substrate was larger than the potential direct uptake of nitrogen from captured prey.  相似文献   

3.
Abstract: All natural populations fluctuate in abundance and age structure through time; understanding why they do so is a critical step towards their effective management and conservation. However, the long‐term data sets needed for such an understanding are rarely available, especially for tropical organisms. A 17‐year capture‐mark–recapture study yielded detailed information on the demography of water pythons (Liasis fuscus) and their main prey, the dusky rat (Rattus colletti), on the Adelaide River flood plain in tropical Australia. The link between annual rainfall patterns and rat demography was highly non‐linear. Rat numbers were low during years with low and high rainfall at the end of the wet season (April). Numbers of both predators and prey fluctuated considerably among years. Annual fluctuations in rat numbers generated a corresponding variation in rates of female python reproduction, python body condition and survival. Although variation in recruitment, survival and prey abundance all had a significant impact on annual fluctuations in python numbers, our analyses suggest that recruitment constituted the main determinant in driving the population dynamics of these large tropical predators. In combination with our other studies on this system, the data show that population dynamics of the water python population is ultimately driven by annual variation in rainfall, mediated via shifts in prey availability. The water pythons and the dusky rats of the Adelaide River flood plain thus demonstrate an unusually clear and direct link between an abiotic factor (rainfall) and predator–prey population dynamics.  相似文献   

4.
1.?Input of external subsidies in the Arctic may have substantial effects on predator populations that otherwise would have been limited by low local primary productivity. 2.?We explore life-history traits, age-specific fecundity, litter sizes and survival, and the population dynamics of an Arctic fox (Vulpes lagopus) population to explore the influence of the spatial distribution and temporal availability of its main prey; including both resident and migrating (external) prey resources. 3.?This study reveals that highly predictable cross-boundary subsidies from the marine food web, acting through seasonal access to seabirds, sustain larger local Arctic fox populations. Arctic fox dens located close to the coast in Svalbard were found to have higher occupancy rates, as expected from both high availability and high temporal and spatial predictability of prey resources (temporally stable external subsidies). Whereas the occupancy rate of inland dens varied between years in relation to the abundance of reindeer carcasses (temporally varying resident prey). 4.?With regard to demography, juvenile Arctic foxes in Svalbard have lower survival rates and a high age of first reproduction compared with other populations. We suggest this may be caused by a lack of unoccupied dens and a saturated population.  相似文献   

5.
Predators influence prey populations both by consuming individual prey, and by inducing changes in prey behaviour that limit reproduction and survival. Because prey trade-off predation risk for forageing gains, the magnitude of predators' non-consumptive effects should depend on resource availability. Studies of non-consumptive effects generally adopt either of two strategies: (i) maintaining a static ration of the prey's resources; and (ii) using resource populations that vary dynamically in response to prey behaviour. Contrasting these experimental designs using meta-analysis, we evaluated whether resource dynamics influence the magnitude of non-consumptive effects on prey growth, survival, fecundity, population density, forageing rate and habitat use. Predators had a more negative effect on prey demography in dynamic- vs. static-resource experiments. Our results highlight the importance of resource dynamics in mediating the magnitude of non-consumptive effects of predators on prey, and illustrate the often-unintended impacts of experimental design on estimates of effect size in ecological interactions.  相似文献   

6.
Habitat degradation is one of the greatest threats to biodiversity worldwide and the main contributor to the decline of many carnivorous plant species. For carnivorous plants in the southeastern United States, including many Pinguicula species (butterwort, Lentibulariaceae), degradation via altered fire regime has been implicated in their decline. Despite this decline, limited empirical research has been conducted examining the influence of habitat structural changes (through natural succession or human management) on reproduction and prey capture by carnivorous plants. The objectives of our study were to compare reproduction and prey capture for Pinguicula lutea (yellow butterwort) in habitats with different vegetation structures in the Florida Panhandle, where differences were largely due to management history. Pinguicula lutea is a self-compatible carnivorous plant that inhabits fire-dependent longleaf pine savannas of the southeastern United States and is threatened in the state of Florida. In 2014 and 2015, 13 sites were identified occupying three different habitat structures: maintained (intermittently mowed), grassy (dominated by Aristida stricta var. beyrichiana), and woody (encroachment by Hypericum and Ilex). Reproductive output was determined by assessing fruit set and ovule fertilization rate at each site. Additionally, prey availability and prey capture were assessed at each habitat site. In general, there were no differences in either measure of reproduction across habitat structure types. There were differences in prey abundance of Collembola, Diptera, and total arthropods both in terms of availability and capture. Total arthropod availability and prey capture were lowest in grassy sites compared to maintained habitat sites and woody habitat sites. Microclimatic conditions associated with each habitat structure and leaf morphology or physiology could explain the observed arthropod abundance and prey capture patterns. This study is the first ecological assessment of plant–insect interactions for Pinguicula species of the southeastern US and highlights the importance of habitat quality and management for this understudied group of carnivorous plants.  相似文献   

7.
Among both ecologists and the wider community there is a tacit assumption that predators regulate populations of their prey. But there is evidence from a wide taxonomic and geographic range of studies that predators that are adapted to co-evolved prey generally do not regulate their prey. This is because predators either cannot reproduce as fast as their prey and/or are inefficient hunters unable to catch enough prey to sustain maximum reproduction. The greater capacity of herbivores to breed successfully is, however, normally restricted by a lack of enough food of sufficient quality to support reproduction. But whenever this shortage is alleviated by a large pulse of food, herbivores increase their numbers to outbreak levels. Their predators are unable to contain this increase, but their numbers, too, surge in response to this increase in food. Eventually both their populations will crash once the food supply runs out, first for the herbivores and then for the predators. Then an “over-run” of predators will further depress the already declining prey population, appearing to be controlling its abundance. This latter phenomenon has led many ecologists to conclude that predators are regulating the numbers of their prey. However, it is the same process that is revealed during outbreaks that limits populations of both predator and prey in “normal” times, although this is usually not readily apparent. Nevertheless, as all the diverse cases discussed here attest, the abundance of predators and their co-evolved prey are both limited by their food: the predators are passengers, not drivers.  相似文献   

8.
Predator foraging may be affected by previous prey capture, but it is unknown how nutrient balance affects foraging behaviour. Here, we use a trap-building predator to test whether nutrients from previous prey captures affect foraging behaviour. We fed orb-weaving spiders (Zygiella x-notata) prey flies of different nutrient composition and in different amounts during their first instar and measured the subsequent frequency of web building and aspects of web architecture. We found that both the likelihood of web building and the number of radii in the web were affected by prey nutrient composition while prey availability affected capture area and mesh height. Our results show that both the balance of nutrients in captured prey and the previous capture rate may affect future foraging behaviour of predators.  相似文献   

9.
Summary I developed a model for seed size variation among plants assuming that the pollen captured per flower depends on both the allocation to pollen capture mechanisms per flower and the number of flowers on each plant. I showed that the optimal seed size increases with (1) the total resource allocation to reproduction, (2) decreasing outcross pollen availability, (3) decreasing probability of seedling establishment and (4) decreasing selfing rate. However, optimal seed size does not depend on the total resource allocation if the total number of pollen grains captured by a plant increases linearly with its flower number. In addition, the optimal seed size is not always positively correlated with the optimal resource allocation to pollen capture mechanisms per flower. I discussed implications of the results for seasonal decline in seed size and seed size variations among populations, such as alutitudinal variation.  相似文献   

10.
Predator–prey relationships are important ecological interactions, affecting biotic community composition and energy flow through a system, and are of interest to ecologists and managers. Morphological diet analysis has been the primary method used to quantify the diets of predators, but emerging molecular techniques using genetic data can provide more accurate estimates of relative diet composition. This study used sequences from the 18S V9 rRNA barcoding region to identify prey items in the gastrointestinal (GI) tracts of predatory fishes. Predator GI samples were taken from the Black River, Cheboygan Co., MI, USA (n = 367 samples, 12 predator species) during periods of high prey availability, including the larval stage of regionally threatened lake sturgeon (Acipenser fulvescens Rafinesque 1817) in late May/early June of 2015 and of relatively lower prey availability in early July of 2015. DNA was extracted and sequenced from 355 samples (96.7%), and prey DNA was identified in 286 of the 355 samples (80.6%). Prey were grouped into 33 ecologically significant taxonomic groups based on the lowest taxonomic level sequences that could be identified using sequences available on GenBank. Changes in the makeup of diet composition, dietary overlap, and predator preference were analyzed comparing the periods of high and low prey abundance. Some predator species exhibited significant seasonal changes in diet composition. Dietary overlap was slightly but significantly higher during the period of high prey abundance; however, there was little change in predator preference. This suggests that change in prey availability was the driving factor in changing predator diet composition and dietary overlap. This study demonstrates the utility of molecular diet analysis and how temporal variability in community composition adds complexity to predator–prey interactions.  相似文献   

11.
The hooded pitcher plant, Sarracenia minor, is a carnivorous facultative wetland species native to the southeastern USA and is listed as threatened by the state of Florida. Pitchers of S. minor possess white, semitranslucent spots (areoles), which have been hypothesized to aid in the capture of prey (= visual lures) by increasing the amount of light entering the back of the hood, which persuades insects to enter and fall into the base of the pitcher. In this study, the role of the areoles in prey capture abundance and diversity were experimentally investigated under variable lighting conditions in situ. Plants in two populations experiencing different light intensities, which varied in the amount of canopy cover and incident light reaching the plants, were experimentally manipulated by coloring varying percentages of areoles, ranging from 0 to 100 % (in increments of 25 %), with indelible ink. After 2 months, pitchers were collected and dissected to determine the number and identity of prey captured (approximately 18,000 prey were sampled). Although total prey abundance was approximately five times higher at McGirt’s Creek (sunny site) compared to UNF (shaded site), the effect of areoles on prey capture rates and biodiversity was site dependent. Reducing the number of visual lures of plants at the sunny site produced a significant decrease in the number of prey captured, but prey biodiversity (community composition) was unaffected. However, total prey capture was unaffected at the shaded site, while prey biodiversity was negatively correlated with the percent of areoles colored. Results from the current study suggest that areoles conditionally act as visual lures, but their overall importance is dependent on local environmental variables—especially canopy cover and the amount of incident sunlight reaching the plants.  相似文献   

12.
Most carnivorous plants utilize insects in two ways: the flowers attract insects as pollen vectors for sexual reproduction, and the leaves trap insects for nutrients. Feeding on insects has been explained as an adaptation to nutrient‐poor soil, and carnivorous plants have been shown to benefit from insect capture through increased growth, earlier flowering and increased seed production. Most carnivorous plant species seem to benefit from insect pollination, although many species autonomously self‐pollinate and some propagate vegetatively. However, assuming that outcross pollen is advantageous and is a more important determinant of reproductive success than the nutrients gained from prey, there should be a selective pressure on carnivorous plants not to feed on their potential pollen vectors. Therefore, it has been suggested that carnivorous plants are subject to a conflict, often called the pollinator‐prey conflict (PPC). The conflict results from a trade‐off of the benefits from feeding on potentially pollinating insects versus the need to use them as pollen vectors for sexual reproduction. In this review we analyze the conditions under which a PPC may occur, review the evidence for the existence of PPCs in carnivorous plants, and explore the mechanisms that may be in place to prevent or alleviate a PPC. With respect to the latter, we discuss how plant signals such as olfactory and visual cues may play a role in separating the functions of pollinator attraction and prey capture.  相似文献   

13.
Structural features of habitat are known to affect the density of predators and prey, and it is generally accepted that complexity provides some protection from the environment and predators but may also reduce foraging success. A next step in understanding these interactions is to decouple the impacts of both spatial and trophic ingredients of complexity to explicitly explore the trade-offs between the habitat, its effects on foraging success, and the competition that ensues as predator densities increase. We quantified the accumulation of spiders and their prey in habitat islands with different habitat complexities created in the field using natural plants, plant debris and plastic plant mimics. Spiders were observed at higher densities in the complex habitat structure composed of both live plants and thatch. However, the numerically dominant predator in the system, the wolf spider Pardosa milvina, was observed at high densities in habitat islands containing plastic mimics of plants and thatch. In a laboratory experiment, we examined the interactive effects of conspecific density and habitat on the prey capture of P. milvina. Thatch, with or without vertical plant structure, reduced prey capture, but the plastic fiber did not. Pairwise interactions among spiders reduced prey capture, but this effect was moderated by thatch. Taken together, these experiments highlight the flexibility of one important predator in the food web, where multiple environmental cues intersect to explain the role of habitat complexity in determining generalist predator accumulation.  相似文献   

14.
Predator/prey behavior has important consequences for individual survival and recruitment into fish populations, both of which can be affected by stressors such as environmental contaminants. The degree to which prey capture or predator avoidance abilities of a predator or prey species are affected will determine the direction in which the balance will be shifted. In a contaminated estuary we have studied, prey capure and predator avoidance of resident mummichogs, Fundulus heteroclitus, are impaired, which may account for individuals in that estuary having reduced growth and longevity compared with those from uncontaminated sites. Exposure to sediments, water, and grass shrimp from the contaminated site can impair the predatory abilities of mummichogs from a clean site. An important prey species, the grass shrimp, Palaemonetes pugio, has a greater population density and a greater proportion of large individuals at the polluted site, apparently because of reduced predation pressure. Mummichog larvae at the polluted site are initially more active and better at prey capture and predator avoidance than larvae from clean sites, but later they become poorer at both. Differences in predator vulnerability among larvae appear to be due to population differences in behavior, which may be due in part to both genetic and environmentally-caused factors. Conservation of fish populations should consider fish behavior and its interaction with contaminants.  相似文献   

15.
Among populations of the same species, the diet composition varies depending on the environment, given the variation in diversity and abundance of available prey. Since Thoropa miliaris is a habitat specialist in reproduction, we tested the hypothesis that this specialization is also verified in its diet. We carried out the work in 10 localities in Serra do Mar and Serra da Mantiqueira, south-eastern Brazil, where we collected frogs and evaluated prey availability. The environment did not provide significant variation in the diet of T. miliaris, and Formicidae was the prey category selectively consumed in greater volume, frequency and abundance in both mountain ranges. Therefore, we can state that T. miliaris has a selective diet on ants.  相似文献   

16.
There is evidence for both positive and negative effects of generalist predators on pest populations and the various reasons for these contrasting observations are under debate. We studied the influence of a generalist predator, Pardosa lugubris (Walckenaer) (Araneae: Lycosidae), on an aphid pest species, Rhopalosiphum padi (L.) (Hemiptera: Aphididae; low food quality for the spider), and its host plant wheat, Triticum spec. (Poaceae). We focused on the role of spider density and the availability of alternative prey, Drosophila melanogaster Meigen (Diptera: Drosophilidae; high food quality). The presence of spiders significantly affected plant performance and aphid biomass. Alternative prey and spider density strongly interacted in affecting aphids and plants. High spider density significantly improved plant performance but also at low spider density plants benefited from spiders especially in the presence of alternative prey. The results suggest that generalist arthropod predators may successfully reduce plant damage by herbivores. However, their ability to control prey populations varies with predator nutrition, the control of low-quality prey being enhanced if alternative higher-quality prey is available.  相似文献   

17.
Direct benefits accrued from securing a territory of sufficient quality are important determinants of individual fitness and population persistence. Food supply is one of the main factors of animal territory quality, with spatial and temporal variation in prey availability largely dictating reproductive output and thus population dynamics. In a Swiss hoopoe population, molecrickets Gryllotalpa gryllotalpa, the most profitable prey locally, can constitute most of the food biomass delivered to chicks by parents. We first investigated the impact of molecricket prey on hoopoes' fitness‐related traits by quantifying the spatial variation in the food allocation pattern of both male and female parents to chicks across the whole population range; and second, analysed the impact of this prey on current reproduction and, using a 11 yr dataset, on the temporal occupancy rate of each territory. We found considerable but spatially repeatable variation, over the years, of molecricket biomass in the diet provisioned to chicks. This spatial heterogeneity in chicks' diet composition was mirrored both in the history of territory occupancy (2002–2012) and in current reproductive success (2012). Territories with a greater biomass of molecrickets in chicks' diet produced more fledglings in better body condition. Yet, these effects on current reproduction were exclusively demonstrated for male parents, corroborating that paternal provisioning patterns play a predominant role in hoopoe reproductive success. This study demonstrates how a single, very profitable prey species might affect spatial variation in territory settlement and individual reproductive success in a regionally endangered bird species, with potential consequences for its population dynamics and persistence.  相似文献   

18.
Resource seasonality and fish diets in an Illinois stream   总被引:3,自引:0,他引:3  
Synopsis The purpose of this study was to evaluate the intensity of competition for food among 9 species of stream fishes that primarily eat aquatic invertebrates. The taxonomic and size composition, and numerical abundance of aquatic invertebrates were monitored for one year using drift and benthic samples. Diet data were obtained from stomachs of fishes captured at the same time and place that invertebrate sampling was done. Diet characteristics examined included taxonomic and size composition, number of prey per fish, and diet breadth. Drifting invertebrates were more abundant early in the year (March–June) than later (July–January). The summer-early fall scarcity of invertebrates was especially notable among those>3.6 mm long, which comprised the bulk of prey found in fish stomachs. Average prey size eaten by a fish species was positively correlated with fish mouth size, but interspecific overlap in prey size was extensive. Cyprinids as a group (5 species) ate proportionally fewer small (< 3.6 mm long) prey from July to January than did the centrarchids and stonecat. Taxonomic compositions of available invertebrates and fish diets varied markedly among sampling dates, but the use of prey taxa by fishes was not correlated with the availability of those taxa. Use of aquatic prey taxa was generally similar among fish species, but cyprinids as a group ate proportionally more terrestrial prey from July to January than did the centrarchids and stonecat. Diet breadths for all species increased as food levels declined, indicating that these fishes experienced resource depression. Food scarcity was evidently more severe for cyprinids since their stomachs contained few prey through the summer and fall relative to the centrarchids and stonecat. Though the fish species studied probably compete for food in the summer and fall, this competition did not account for the community structure observed.  相似文献   

19.
We examined the arthropod community on eastern hemlock, Tsuga canadensis (L.) Carr, in the context of its role in providing potential prey items for hemlock-associated web-weaving spiders. Using sticky traps simulating spider webs, we evaluated what prey items are available to web-weaving spiders in eastern hemlock based on web orientation (horizontal versus vertical) and cardinal direction. We found that the overwhelming majority (>70%) of prey items available to spiders in hemlock canopies were Diptera. Psocoptera, Hymenoptera, and Hemiptera comprised most of the remaining potential prey. A significant direction × orientation interaction, and greater trap capture in some direction-orientation combinations, suggests that spiders might locate their webs in eastern hemlock canopies for thermoregulatory purposes, ultimately optimizing prey capture. We also evaluated these findings in the context of hemlock infestation by the invasive hemlock woolly adelgid, Adelges tsugae Annand. The adelgid is a sedentary insect with a mobile crawler stage that provides a readily available, easily obtained food source for predators in hemlock canopies. However, an abundance of alternative prey will affect within canopy spider distribution and the potential intensity with which spiders consume these prey. Understanding the response of spiders to potential prey availability is essential to understanding the trophic interactions involving these predators and their potential for influencing herbivore populations.  相似文献   

20.
Synopsis Black surfperch, Embiotoca jacksoni, and striped surfperch, Embiotoca lateralis, coexisted along steep sloping rocky habitats at Santa Cruz Island, California. The range of depths occupied (to 15 m) was characterized by a strong gradient in abundance of prey and a changing mosaic of substrate types from which surfperch harvested food. Availability of prey and diversity of benthic substrates were greatest in shallowest areas and both declined with increasing depth. Individuals of both surfperch species were residential within a narrow range of depths, with the result that different segments of their populations were consistently exposed to different foraging environments. These two phenomena (residential behavior combined with a gradient in availability of resources) resulted in variation in foraging behaviors and diets among individuals that resided at different depths. The pattern of within-population variation differed between the surfperch species. Black surfperch individuals achieved similar taxonomic diets and expended similar foraging effort at all depths, but deep-water foragers captured much less prey biomass per unit effort. The taxonomic composition of striped surfperch diets differed among depths, and although similar amounts of prey biomass were captured everywhere, individuals in deep areas expended much greater effort to obtain that level of food return. For both species, habitat profitability (food return to foraging effort) declined with depth. The difference in habitat profitability appeared to influence fitness components of both surfperches. Individuals occupying deep habitats were about 5% shorter in standard length than conspecifics of the same chronological age living in shallow areas; the disparity in body size resulted in an estimated difference in clutch size of 10–18%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号