首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron paramagnetic resonance (EPR) analyses (g = 2 region) and optical spectrophotometric analyses of P680+ were made of NH2OH-extracted photosystem II (PSII) membranes after various durations of weak-light photoinhibition, in order to identify the sites of damage responsible for the observed kinetic components of the loss of electron transport [Blubaugh, D.J., & Cheniae, G.M. (1990) Biochemistry 29, 5109-5118]. The EPR spectra, recorded in the presence of K3Fe(CN)6, gave evidence for rapid (t1/2 = 2-3 min) and slow (t1/2 = 3-4) losses of formation of the tyrosyl radicals YZ+ and YD+, respectively, and the rapid appearance (t1/2 = 0.8 min) of a 12-G-wide signal, centered at g = 2.004, which persisted at 4 degrees C in subsequent darkness in rather constant abundance (approximately 1/2 spin per PSII). This latter EPR signal is correlated with quenching of the variable chlorophyll a fluorescence yield and is tentatively attributed to a carotenoid (Car) cation. Exogenous reductants (NH2OH greater than or equal to NH2NH2 greater than DPC much greater than Mn2+) were observed to reduce the quencher, but did not reverse other photoinhibition effects. An additional 10-G-wide signal, tentatively attributed to a chlorophyll (Chl) cation, is observed during illumination of photoinhibited membranes and rapidly decays following illumination. The amplitude of formation of the oxidized primary electron donor, P680+, was unaffected throughout 120 min of photoinhibition, indicating no impairment of charge separation from P680, via pheophytin (Pheo), to the first stable electron acceptor, QA. However, a 4-microsecond decay of P680+, reflecting YZ----P680+, was rapidly (t1/2 = 0.8 min) replaced by an 80-140 microsecond decay, presumably reflecting QA-/P680+ back-reaction. Photoinhibition caused no discernible decoupling of the antenna chlorophyll from the reaction center complex. We conclude that the order of susceptibility of PSII components to photodamage when O2 evolution is impaired is Chl/Car greater than YZ greater than YD much greater than P680, Pheo, QA.  相似文献   

2.
Electron paramagnetic resonance (EPR) measurements were performed on photosystem II (PSII) membranes that were treated with 2 M NaCl to release the 17- and 23-kilodalton (kDa) polypeptides. By using 75 microM 3-(3,4-dichlorophenyl)-1,1-dimethylurea to limit the photosystem II samples to one stable charge separation in the temperature range of 77-273 K, we have quantitated the EPR signals of the several electron donors and acceptors of photosystem II. It was found that removal of the 17- and 23-kDa polypeptides caused low potential cytochrome b559 to become fully oxidized during the course of dark adaptation. Following illumination at 77-130 K, one chlorophyll molecule per reaction center was oxidized. Between 130 and 200 K, both a chlorophyll molecule and the S1 state were photooxidized and, together, accounted for one oxidation per reaction center. Above 200 K, the chlorophyll radical was unstable. Oxidation of the S1 state gave rise to the S2-state multiline EPR signal, which arises from the Mn site of the O2-evolving center. The yield of the S2-state multiline EPR signal in NaCl-washed PSII membranes was as high as 93% of the control, untreated PSII membranes, provided that both Ca2+ and Cl- were bound. Furthermore, the 55Mn nuclear hyperfine structure of the S2-state multiline EPR signal was unaltered upon depletion of the 17- and 23-kDa polypeptides. In NaCl-washed PSII samples where Ca2+ and/or Cl- were removed, however, the intensity of the S2-state multiline EPR signal decreased in parallel with the fraction of PSII lacking bound Ca2+ and Cl-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Effects of eight differently substituted 1,4-benzoquinones (BQs) on the quantum yield of photoactivation of oxygen evolution (reconstitution of the Mn cluster) were examined with wheat photosystem II (PSII) membranes depleted of the Mn cluster by treatment with 1.0 mM NH2OH. Illumination with 10 flashes at 0.25-s intervals of the PSII membranes in the presence of 2.0 mM Mn2+, 20 mM Ca2+, and 1.2 M Cl- restored 14% of oxygen-evolving activity destroyed by the NH2OH treatment. Among the benzoquinones tested, DBMIB (2,5-dibromo-3-methyl-6-isopropyl-BQ) and tetramethyl-BQ did not enhance the activity recovery, but all the others doubled the recovery when present at their optimal concentrations during illumination. The order of effectiveness was tetrabromo-, phenyl-, and 2,6-dichloro-BQs greater than or equal to 2,5-dichloro-BQ greater than tetrachloro-BQ greater than 2,5-dimethyl-BQ, though the differences were small. This order reflects their efficiencies as electron acceptors of PSII. This finding, together with others, suggests that the enhancement of activity recovery results from rapid oxidation by the benzoquinones of the reduced form of the quinone acceptors in PSII, QA- and QB-, which cause loss of an oxidized intermediate through charge-recombination reaction with Mn3+. The flash-number dependence of the recovery of oxygen-evolving activity indicated that the activity was not restored after one flash but recovered significantly after illumination with two flashes and then further increased upon additional flashes. This provides direct evidence that the minimum quantum requirement for photoactivation is two.  相似文献   

4.
The dark reaction of tris(hydroxymethyl)aminomethane (Tris) with the O2-evolving center of photosystem II (PSII) in the S1 state causes irreversible inhibition of O2 evolution. Similar inhibition is observed for several other amines: NH3, CH3NH2, (CH3)2NH, ethanolamine, and 2-amino-2-ethyl-1,3-propanediol. In PSII membranes, both depleted of the 17- and 23-kDa polypeptides and undepleted, the rate of reaction of Tris depends inversely upon the Cl- concentration. However, the rate of reaction of Tris is about 2-fold greater with PSII membranes depleted of the 17- and 23-kDa polypeptides than with undepleted PSII membranes. We have used low-temperature electron paramagnetic resonance (EPR) spectroscopy to study the effect of Tris on the oxidation state of the Mn complex in the O2-evolving center, to monitor the electron-donation reactions in Tris-treated samples, and to observe any loss of the Mn complex (forming Mn2+ ions) after Tris treatment. We find that Tris treatment causes loss of electron-donation ability from the Mn complex at the same rate as inhibition of O2 evolution and that Mn2+ ions are released. We conclude that Tris reduces the Mn complex to labile Mn2+ ions, without generating any kinetically stable, partially reduced intermediates, and that the reaction occurs at the Cl(-)-sensitive site previously characterized in studies of the reversible inhibition of O2 evolution by amines.  相似文献   

5.
6.
J Tso  M Sivaraja  J S Philo  G C Dismukes 《Biochemistry》1991,30(19):4740-4747
A new intermediate in the water-oxidizing reaction has been observed in spinach photosystem II (PSII) membranes that are depleted of Ca2+ from the site which is conformationally coupled to the manganese cluster comprising the water-oxidizing complex (WOC). It gives rise to a recently identified EPR signal (symmetric line shape with width 163 +/- 5 G, g = 2.004 +/- 0.005), which forms in samples inhibited either by depletion of Ca2+ [Boussac, A., Zimmerman, J.-L., & 28, 8984-8989; Sivaraja, M., Tso, J., & Dismukes, G.C. (1989) Biochemistry 28 9459-9464] or by substitution of Cl- by F- (Baumgarten, Philo, and Dismukes, submitted for publication). Further characterization of this EPR signal has revealed the following: (1) it forms independently of the local structure of the PSII acceptors; (2) it arises from photooxidation of a PSII species that donates an electron to Tyr-Z+ or to the Mn cluster in competition with an exogenous donor (DPC); (3) the Curie temperature dependence of the intensity suggests an isolated doublet ground state, attributable to a spin S = 1/2 radical; (4) the electron spin orientation relaxes 1000-fold more rapidly than typical for a free radical, exhibiting a strong temperature dependence of P1/2 (half-saturation power approximately T3.4) and a broad inhomogeneous line width; (5) it yields an undetectable change in the magnetic susceptibility upon formation by a laser flash; (6) it disappears in parallel with release of Mn during reduction with NH2OH, indicating that it forms only in the presence of the modified Mn cluster. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Photoinhibition of PSII occurs at the same quantum efficiency from very low to very high light, which raises a question about how important is the rate of photosynthetic electron transfer in photoinhibition. We modulated electron transfer rate and light intensity independently of each other in lincomycin-treated pea leaves and in isolated thylakoids, in order to elucidate the specific effects of light and PSII electron transport on photoinhibition. Major changes in the rate of electron transport caused only small changes in the rate of photoinhibition, suggesting the existence of a significant photoinhibitory pathway that contains an electron-transfer-independent phase. We compared the action spectrum of photoinhibition with absorption spectra of PSII components that could function as photoreceptors of the electron-transfer-independent phase of photoinhibition and found that the absorption spectra of Mn(III) and Mn(IV) compounds resemble the action spectrum of photoinhibition, showing a steep decrease from UV-C to blue light and a low visible-light tail. Our results show that the release of a Mn ion to the thylakoid lumen is the earliest detectable step of both UV- and visible-light-induced photoinhibition. After Mn release from the oxygen-evolving complex, oxidative damage to the PSII reaction center occurs because the Mn-depleted oxygen-evolving complex cannot reduce P680+ normally.  相似文献   

8.
Semin BK  Ghirardi ML  Seibert M 《Biochemistry》2002,41(18):5854-5864
The donation of electrons by Mn(II) and Fe(II) to Y(Z*) through the high-affinity (HA(Z)) site in Mn-depleted photosystem II (PSII) membranes has been studied by flash-probe fluorescence yield measurements. Mn(II) and Fe(II) donate electrons to Y(Z*) with about the same efficiency, saturating this reaction at the same concentration (ca. 5 microM). However, following a short incubation of the membranes with 5 microM Fe(II), but not with Mn(II) in room light, added Mn(II) or Fe(II) can no longer be photooxidized by Y(Z)(*). This blocking effect is caused by specifically bound, photooxidized Fe [> or =Fe(III)] and is accompanied by a delay in the fluorescence yield decay kinetics attributed to the slowing down of the charge recombination rate between Q(a-) and Y(Z*). Exogenously added Fe(III), on the other hand, does not donate electrons to Y(Z*), does not block the donation of electrons by added Mn(II) and Fe(II), and does not change the kinetics of the decay of the fluorescence yield. These results demonstrate that the light-dependent oxidation of Fe(II) by Y(Z*) creates an Fe species that binds at the HA(Z) site and causes the blocking effect. The pH dependence of Mn(II) electron donation to Y(Z*) via the HA(Z) site and of the Fe-blocking effect is different. These results, together with sequence homologies between the C-terminal ends of the D1 and D2 polypeptides of the PSII reaction center and several diiron-oxo enzymes, suggest the involvement of two or perhaps more (to an upper limit of four to five) bound iron cations per reaction center of PSII in the blocking effect. Similarities in the interaction of Fe(II) and Mn(II) with the HA(Z) Mn site of PSII during the initial steps of the photoactivation process are discussed. The Fe-blocking effect was also used to investigate the relationship between the HA(Z) Mn site and the HA sites on PSII for diphenylcarbazide (DPC) and NH2OH oxidation. Blocking of the HA(Z) site with specifically bound Fe leads to the total inhibition of electron donation to Y(Z*) by DPC. Since DPC and Mn(II) donation to PSII is noncompetitive [Preston, C., and Seibert, M. (1991) Biochemistry 30, 9615-9624], the Fe bound to the HA(Z) site can also block the DPC donation site. On the other hand, electron donation by NH2OH to PSII still occurs in Fe-blocked membranes. Since hydroxylamine does not reduce the Fe [> or =Fe(III)] specifically bound to the HA(Z) site, NH2OH must donate to Y(Z*) through its own site or directly to P680+.  相似文献   

9.
R Mei  C F Yocum 《Biochemistry》1992,31(36):8449-8454
Calcium binding to photosystem II slows NH2OH inhibition of O2 evolution; Mn2+ is retained by the O2-evolving complex [Mei, R., & Yocum, C. F. (1991) Biochemistry 30, 7836-7842]. This Ca(2+)-induced stability has been further characterized using the large reductant hydroquinone. Salt-washed photosystem II membranes reduced by hydroquinone in the presence of Ca2+ retain 80% of steady-state O2 evolution activity and contain about 2 Mn2+/reaction center that can be detected at room temperature by electron paramagnetic resonance. This Mn2+ produces a weak enhancement of H2O proton spin-lattice relaxation rates, cannot be easily extracted by a chelator, and is reincorporated into the O2-evolving complex upon illumination. A comparison of the properties of Ca(2+)-supplemented photosystem II samples reduced by hydroquinone or NH2OH alone or in sequence reveals the presence of a subpopulation of manganese atoms at the active site of H2O oxidation that is not accessible to facile hydroquinone reduction. At least one of these manganese atoms can be readily reduced by NH2OH following a noninhibitory hydroquinone reduction step. Under these conditions, about 3 Mn2+/reaction center are lost and O2 evolution activity is irreversibly inhibited. We interpret the existence of distinct sites of reductant action on manganese as further evidence that the Ca(2+)-binding site in photosystem II participates in regulation of the organization of manganese-binding ligands and the overall structure of the O2-evolving complex.  相似文献   

10.
Hydroxyl radical generation by photosystem II   总被引:1,自引:0,他引:1  
The photogeneration of hydroxyl radicals (OH(*)) in photosystem II (PSII) membranes was studied using EPR spin-trapping spectroscopy. Two kinetically distinguishable phases in the formation of the spin trap-hydroxyl (POBN-OH) adduct EPR signal were observed: the first phase (t(1/2) = 7.5 min) and the second phase (t(1/2) = 30 min). The generation of OH(*) was found to be suppressed in the absence of the Mn-complex, but it was restored after readdition of an artificial electron donor (DPC). Hydroxyl radical generation was also lost in the absence of oxygen, whereas it was stimulated when the oxygen concentration was increased. The production of OH(*) during the first kinetic phase was sensitive to the presence of SOD, whereas catalase and EDTA diminished the production of OH(*) during the second kinetic phase. The POBN-OH adduct EPR signal during the first phase exhibits a similar pH-dependence as the ability to oxidize the non-heme iron, as monitored by the Fe(3+) (g = 8) EPR signal: both EPR signals gradually decreased as the pH value was lowered below pH 6.5 and were absent at pH 5. Sodium formate decreases the production of OH(*) in intact and Mn-deleted PSII membranes. Upon illumination of PSII membranes, both superoxide, as measured by EPR signal from the spin trap-superoxide (EMPO-OOH) adduct, and H(2)O(2), measured colormetrically, were generated. These results indicated that OH(*) is produced on the electron acceptor side of PSII by two different routes, (1) O(2)(*)(-), which is generated by oxygen reduction on the acceptor side of PSII, interacts with a PSII metal center, probably the non-heme iron, to form an iron-peroxide species that is further reduced to OH(*) by an electron from PSII, presumably via Q(A)(-), and (2) O(2)(*)(-) dismutates to form free H(2)O(2) that is then reduced to OH(*) via the Fenton reaction in the presence of metal ions, the most likely being Mn(2+) and Fe(2+) released from photodamaged PSII. The two different routes of OH(*) generation are discussed in the context of photoinhibition.  相似文献   

11.
Photosystem II (PSII)-enriched membrane particles were isolated from peas (Pisum sativum L.) and treated in several different ways to inhibit the water oxidation reactions, but not reaction center function itself, as judged by the light-induced rate of reduction of 2,6-dichlorophenol indophenol with and without the artificial electron donor, diphenyl carbazide. It was shown that such treatments increased the susceptibility of the PSII-enriched membranes to photoinhibition. This trend was further observed if 2,6-dichlorophenol indophenol was present during the illumination with photoinhibitory light. On the other hand, protection against the enhanced photoinhibition was found when the water-splitting activity was reconstituted or when the artificial electron donor diphenyl carbazide was present during the preillumination. The results indicate that irreversible photodamage occurred within the PSII reaction center as a consequence of illumination with strong light and that the rate of this damage was enhanced under conditions that are expected to give rise to a photoaccumulation of oxidizing species such as P680+ on the donor side of PSII. This mechanism of photoinhibitory damage occurred under both aerobic and anaerobic conditions.  相似文献   

12.
T Ono  Y Inoue 《Biochemistry》1991,30(25):6183-6188
Our previous experiments with a histidine modifier suggest that in Mn-depleted photosystem (PS) II a histidine residue is photooxidized and charge recombination between the oxidized histidine and QA-emits the thermoluminescence AT-band [Ono, T., & Inoue, Y. (1991) FEBS Lett. 278, 183-186]. By use of the AT-band as an index for histidine oxidation, and EPR signals IIf and IIs as indexes for tyrosine oxidation, we studied the role of this putative redox-active histidine in the photoactivation of the O2-evolving enzyme in NH2OH-treated PSII. The following results have been obtained. (i) Strong-light photoinhibition of NH2OH-treated PSII quickly impaired both capabilities of photoactivation and AT-band emission with almost the same half-inhibition time of 1-2 s, while signal IIf was well retained and signal IIs was not affected at all after complete loss of photoactivation capability. (ii) The capability of exogenous Mn2+ photooxidation was relatively sensitive to strong-light photoinhibition, but DPC was relatively sensitive to strong-light photoinhibition, but DPC photooxidation was highly resistant. (iii) Weak-light photoinhibition simultaneously impaired the capabilities of photoactivation, AT-band emission, and signal IIf with the same half-inhibition time of 1 min, leaving signal IIs unaffected. (iv) It was inferred that the putative redox-active histidine is essential for the photooxidation of coordinated Mn2+, the probable initial step of photoactivation, and its photodamage results in the loss of the capabilities of photoactivation and AT-band emission. Based on these, a scheme of electron transfer on the donor side of PSII involving histidine oxidation via Z+ is proposed.  相似文献   

13.
Oxygen consumption in Mn-depleted photosystem II (PSII) preparations under continuous and pulsed illumination is investigated. It is shown that removal of manganese from the water-oxidizing complex (WOC) by high pH treatment leads to a 6-fold increase in the rate of O2 photoconsumption. The use of exogenous electron acceptors and donors to PSII shows that in Mn-depleted PSII preparations along with the well-known effect of O2 photoreduction on the acceptor side of PSII, there is light-induced O2 consumption on the donor side of PSII (nearly 30% and 70%, respectively). It is suggested that the light-induced O2 uptake on the donor side of PSII is related to interaction of O2 with radicals produced by photooxidation of organic molecules. The study of flash-induced O2 uptake finds that removal of Mn from the WOC leads to O2 photoconsumption with maximum in the first flash, and its yield is comparable with the yield of O2 evolution on the third flash measured in the PSII samples before Mn removal. The flash-induced O2 uptake is drastically (by a factor of 1.8) activated by catalytic concentration (5-10 μM, corresponding to 2-4 Mn per RC) of Mn2+, while at higher concentrations (> 100 μM) Mn2+ inhibits the O2 photoconsumption (like other electron donors: ferrocyanide and diphenylcarbazide). Inhibitory pre-illumination of the Mn-depleted PSII preparations (resulting in the loss of electron donation from Mn2+) leads to both suppression of flash-induced O2 uptake and disappearance of the Mn-induced activation of the O2 photoconsumption. We assume that the light-induced O2 uptake in Mn-depleted PSII preparations may reflect not only the negative processes leading to photoinhibition but also possible participation of O2 or its reactive forms in the formation of the inorganic core of the WOC.  相似文献   

14.
The purpose of this study was to explore how the mitochondrial AOX (alternative oxidase) pathway alleviates photoinhibition in Rumex K-1 leaves. Inhibition of the AOX pathway decreased the initial activity of NADP-malate dehydrogenase (EC 1.1.1.82, NADP-MDH) and the pool size of photosynthetic end electron acceptors, resulting in an over-reduction of the photosystem I (PSI) acceptor side. The over-reduction of the PSI acceptor side further inhibited electron transport from the photosystem II (PSII) reaction centers to the PSII acceptor side as indicated by an increase in V(J) (the relative variable fluorescence at J-step), causing an imbalance between photosynthetic light absorption and energy utilization per active reaction center (RC) under high light, which led to the over-excitation of the PSII reaction centers. The over-reduction of the PSI acceptor side and the over-excitation of the PSII reaction centers enhanced the accumulation of reactive oxygen species (ROS), which inhibited the repair of the photodamaged PSII. However, the inhibition of the AOX pathway did not change the level of photoinhibition under high light in the presence of the chloroplast D1 protein synthesis inhibitor chloramphenicol, indicating that the inhibition of the AOX pathway did not accelerate the photodamage to PSII directly. All these results suggest that the AOX pathway plays an important role in the protection of plants against photoinhibition by minimizing the inhibition of the repair of the photodamaged PSII through preventing the over-production of ROS.  相似文献   

15.
When organisms that perform oxygenic photosynthesis are exposed to strong visible or UV light, inactivation of photosystem II (PSII) occurs. However, such organisms are able rapidly to repair the photoinactivated PSII. The phenomenon of photoinactivation and repair is known as photoinhibition. Under normal laboratory conditions, the rate of repair is similar to or faster than the rate of photoinactivation, preventing the detailed analysis of photoinactivation and repair as separate processes. We report here that, using strong UV-A light from a laser, we were able to analyze separately the photoinactivation and repair of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Very strong UV-A light at 364 nm and a photon flux density of 2600 micromol photons m(-2) s(-1) inactivated the oxygen-evolving machinery and the photochemical reaction center of PSII within 1 or 2 min before the first step in the repair process, namely, the degradation of the D1 protein, occurred. During subsequent incubation of cells in weak visible light, the activity of PSII recovered fully within 30 min and this process depended on protein synthesis. During subsequent incubation of cells in darkness for 60 min, the D1 protein of the photoinactivated PSII was degraded. Further incubation in weak visible light resulted in the rapid restoration of the activity of PSII. These observations suggest that very strong UV-A light is a useful tool for the analysis of the repair of PSII after photoinactivation.  相似文献   

16.
In weak yet optimal light intensity, complete photoactivation of the water-oxidizing enzyme in NH2OH-extracted wheat (Triticum aestivum, var Oasis) leaf segments could be obtained only after long dark preincubation. Photoactivation was not affected by ethylenediaminetetraacetate or inhibitors of photophosphorylation and protein synthesis, but was partially inhibited by a divalent cation ionophore. Complete photoactivation required ligation of ~4 Mn by the water oxidizing enzyme.

Without dark preincubation, photosystem II (PSII) was susceptible to weak light photoinhibition resulting in: (a) 50% maximum decrease in photooxidation of artificial electron donors by PSII: (b) increased times for the variable fluorescence rise (with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea): (c) abolishment of photoactivation: and (d) the imposition of sensitivity to inhibitors of photophosphorylation and 70S but not 80S protein synthesis on subsequent light-dependent recovery from photoinhibition and recovery of O2 evolution. Decrease in susceptibility to photoinhibition and increase in rates of photoactivation resulting from dark preincubations proved closely correlated. Neither protein synthesis nor increases in abundances of thylakoid Mn2+ and Ca2+ were required for escape from photoinhibition. However, photoactivation of the wateroxidizing enzyme in NH2OH-extracted Chlamydomonas occurred in absence of dark preincubation and protein synthesis. Results are discussed in the context of disassembly/reassembly/resynthesis of specific PSII polypeptides.

  相似文献   

17.
Abstract. The effect of photoinhibition on the activity of photosystem II (PSII) in spinach chloroplasts was investigated. Direct light-induced absorbance change measurements at 320 nm (Δ A 320) provided a measure of the PSII charge separation reaction and revealed that photoinhibition prevented the stable photoreduction of the primary quinone acceptor QA. Sensitivity to photoinhibition was substantially enhanced by treatment of thylakoids with NH2OH which extracts manganese from the H2O-splitting enzyme and prevents electron donation to the reaction centre. Incubation with 3-(3,4,-dichlorophenyl)-1,1-dimethylurea (DCMU) during light exposure did not affect the extent of photoinhibitory damage. The chlorophyll (Chl) b -less chlorina (2 mutant of barley displayed a significantly smaller light-harvesting antenna size of PSII (about 20% of that in wild type chloroplasts) and, simultaneously, a lower sensitivity to photoinhibition. These observations suggest that photoinhibition depends on the amount of light absorbed by PSII and that the process of photoinhibition is accelerated when electron donation to the reaction centre is prevented. It is postulated that the probability of photoinhibition is greater when excitation energy is trapped by P680+, the oxidized form of the PSII reaction centre. The results are discussed in terms of the D1/D2 heterodimer which contains the functional PSII components P680, pheophytin, QA and QB.  相似文献   

18.
Photoinhibition of photosynthesis was studied in Vitis berlandieri and Vitis rupestris leaves under controlled conditions (irradiation of detached leaves to about 1900 micromol m(-2) s(-1)). The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of PS2, Fv/Fm declined, Fo increased significantly in leaves of V. berlandieri, while Fo decreased in V. rupestris. In isolated thylakoids, the rate of whole chain and PS2 activity markedly decreased in high light irradiated more in leaves of V. berlandieri than in leaves of V. rupestris. A smaller inhibition of PS1 activity was also observed in both leaves. In the subsequent dark incubation, fast recovery was observed in both leaves and reached maximum PS2 efficiencies similar to those observed in non-photoinhibited leaves. The artificial exogenous electron donors DPC, NH2OH and Mn2+ failed to restore the high light induced loss of PS2 activity in V. berlandieri leaves, while DPC and NH2OH significantly restored in V. rupestris leaves. It is concluded that high light inactivates on the donor side of PS2 and acceptor side of PS2 in V. rupestris and V. berlandieri leaves, respectively. Quantification of the PS2 reaction center protein D1 and 33 kDa protein of water splitting complex following high light exposure of leaves showed pronounced differences between V. berlandieri and V. rupestris leaves. The marked loss of PS2 activity in high light irradiated leaves was due to the marked loss of D1 protein and 33 kDa protein in V. berlandieri and V. rupestris leaves, respectively.  相似文献   

19.
investigated through chlorophyll fluorescence parameters in morning glory (Ipomoea setosa) leaves, which were dipped into water, dithiothreitol (DTT) and lincomycin (LM), respectively. During the stress, both the xanthophyll cycle and D1 protein turnover could protect PSI from photoinhibition. In DTT leaves, non-photochemical quenching (NPQ) was inhibited greatly and the oxidation level of P700 (P700+) was the lowest one. However, the maximal photochemical efficiency of PSII (Fv/Fm) in DTT leaves was higher than that of LM leaves and was lower than that of control leaves. These results suggested that PSI was more sensitive to the loss of the xanthophyll cycle than PSII under high irradiance. In LM leaves, NPQ was partly inhibited, Fv/Fm was the lowest one among three treatments under high irradiance and P700+ was at a similar level as that of control leaves. These results implied that inactivation of PSII reaction centers could protect PSI from further photoinhibition. Additionally, the lowest of the number of active reaction centers to one inactive reaction center for a PSII cross-section (RC/CSo), maximal trapping rate in a PSII cross-section (TRo/CSo), electron transport in a PSII cross-section (ETo/CSo) and the highest of 1-qP in LM leaves further indicated that severe photoinhibition of PSII in LM leaves was mainly induced by inactivation of PSII reaction centers, which limited electrons transporting to PSI. However, relative to the LM leaves the higher level of RC/CSo, TRo/CSo, Fv/Fm and the lower level of 1-qP in DTT leaves indicated that PSI photoinhibition was mainly induced by the electron accumulation at the PSI acceptor side, which induced the decrease of P700+ under high irradiance.  相似文献   

20.
It is well established that bicarbonate stimulates electron transfer between the primary and secondary electron acceptors, Q(A) and Q(B), in formate-inhibited photosystem II; the non-heme Fe between Q(A) and Q(B) plays an essential role in the bicarbonate binding. Strong evidence of a bicarbonate requirement for the water-oxidizing complex (WOC), both O2 evolving and assembling from apo-WOC and Mn2+, of photosystem II (PSII) preparations has been presented in a number of publications during the last 5 years. The following explanations for the involvement of bicarbonate in the events on the donor side of PSII are considered: (1) bicarbonate serves as an electron donor (alternative to water or as a way of involvement of water molecules in the oxidative reactions) to the Mn-containing O2 center; (2) bicarbonate facilitates reassembly of the WOC from apo-WOC and Mn2+ due to formation of the complexes MnHCO3+ and Mn(HCO3)2 leading to an easier oxidation of Mn2+ with PSII; (3) bicarbonate is an integral component of the WOC essential for its function and stability; it may be considered a direct ligand to the Mn cluster; (4) the WOC is stabilized by bicarbonate through its binding to other components of PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号