首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Harikumar KG  Gao F  Pinon DI  Miller LJ 《Biochemistry》2008,47(36):9574-9581
Fluorescence resonance energy transfer (FRET) represents a powerful tool to establish relative distances between donor and acceptor fluorophores. By utilizing several donors situated in distinct positions within a docked full agonist ligand and several acceptors distributed at distinct sites within its receptor, multiple interdependent dimensions can be determined. These can provide a unique method to establish or confirm three-dimensional structure of the molecular complex. In this work, we have utilized full agonist analogues of cholecystokinin (CCK) with Aladan distributed throughout the pharmacophore in positions 24, 29, and 33, along with receptor constructs derivatized with Alexa (546) at positions 94, 102, 204, and 341 in the helical bundle and first, second, and third extracellular loops, respectively. These provided 12 FRET distances to overlay on working models of the CCK-occupied receptor. These established that the carboxyl terminus of CCK resides at the external surface of the lipid bilayer, adjacent to the receptor amino-terminal tail, rather than being inserted into the helical bundle. They also provide important experimentally derived constraints for understanding spatial relationships between the docked ligand and the flexible extracellular loop regions. Multidimensional FRET provides a new independent method to establish and refine structural insights into ligand-receptor complexes.  相似文献   

2.
Evidence that indole to phenolate energy transfer causes the decrease in beta-trypsin fluorescence with increasing alkalinity is obtained indirectly from viscosity, lifetime, wavelength dependence and chemical modification studies which either exclude or minimize the involvement of other possible mechanisms.  相似文献   

3.
K He  S J Ludtke  Y Wu    H W Huang 《Biophysical journal》1993,64(1):157-162
We demonstrate a technique for measuring x-ray (or neutron) scattering with the momentum transfer confined in the plane of membrane, for the purpose of studying lateral organization of proteins and peptides in membrane. Unlike freeze-fracture electron microscopy or atomic force microscopy which requires the membrane to be frozen or fixed, in-plane x-ray scattering can be performed with the membrane maintained in the liquid crystalline state. As an example, the controversial question of whether gramicidin forms aggregates in membrane was investigated. We used dilauroylphosphatidylcholine (DLPC) bilayers containing gramicidin in the molar ratio of 10:1. Very clear scattering curves reflecting gramicidin channel-channel correlation were obtained, even for the sample containing no heavy atoms. Thallium ions bound to gramicidin channels merely increase the magnitude of the scattering curve. Analysis of the data shows that the channels were randomly distributed in the membrane, similar to a computer simulation of freely moving disks in a plane. We suggest that oriented proteins may provide substantial x-ray contrast against the lipid background without requiring heavy-atom labeling. This should open up many possible new experiments.  相似文献   

4.
Gramicidin S (GS) is a cyclic decapeptide of primary structure [cyclo-(Val-Orn-Leu-D-Phe-Pro)(2)] secreted by Bacillus brevis. It is a powerful antimicrobial agent with potent cidal action on a wide variety of Gram-negative and Gram-positive bacteria as well as on several pathogenic fungi. Unfortunately, however, GS is rather non-specific in its actions and also exhibits a high hemolytic activity, limiting its use as an antibiotic to topical applications. In a wide variety of environments, the GS molecule exists as a very stable amphiphilic antiparallel beta-sheet structure with a polar and a non-polar surface. Moreover, the large number of structure-activity studies of GS analogs which have been carried out indicate that this 'sidedness' structure is required for its antimicrobial action. In this review, we summarize both published and unpublished biophysical studies of the interactions of GS with lipid bilayer model and with biological membranes. In general, these studies show that GS partitions strongly into liquid-crystalline lipid bilayers in both model and biological membranes, and seems to be located primarily in the glycerol backbone region below the polar headgroups and above the hydrocarbon chains. The presence of GS appears to perturb lipid packing in liquid-crystalline bilayers and GS can induce the formation of inverted cubic phases at lower temperatures in lipids capable of forming such phases at higher temperature in the absence of peptide. The presence of GS at lower concentrations also increases the permeability of model and biological membranes and at higher concentrations causes membrane destabilization. There is good evidence from studies of the interaction of GS with bacterial cells that the destruction of the integrity of the lipid bilayer of the inner membrane is the primary mode of the antimicrobial action of this peptide. The considerable lipid specificity of GS for binding to and destabilization of lipid bilayer model membranes indicates that the design of GS analogs with an improved antimicrobial potency and a markedly decreased toxicity for eukaryotic cell plasma membranes should be possible.  相似文献   

5.
Two types of chromophoric amphiphiles were synthesized: one of them possesses a molecular structure of N,N-dialkyl aromatic amino acid (5X18 type, where X is A or Cz), and the other alpha,gamma-dialkylglutamate connected to aromatic amino acid (mXG12 type, where m is an integer). 5-N-Ethylcarbazolyl and 9-anthryl groups were chosen as the chromophore, and introduced to each amino acid derivative. All the amphiphiles formed assembly showing gel-liquid crystalline phase transition. The phase-transition temperature of the assembly composed of mXG12-type amphiphile was higher than that of 5X18-type amphiphile. Absorption and CD spectra of 6-(trimethylammonium)hexanoyl-L-3-(5-N-ethylcarbazolyl) alanine N,N-dioctadecylamide bromide (5Cz18) in the assembly indicated the absence of strong ground-state interactions between the carbazolyl groups, while those of 6-(trimethylammonium)hexanoyl-L-3-(5-N-ethylcarbazolyl)alanyl-L-gl utamic acid alpha,gamma-didodecyl ester (5CzG12) or 11-(trimethylammonium)undecanoyl-L-3-(5-N-ethylcarbazolyl)al anyl-L-glutamic acid alpha,gamma-didodecyl ester (10CzG12) indicated the ground-state interactions based on dimer or higher aggregates. Fluorescence spectra of 5Cz18 showed very weak excimer emission, while excimer and/or excited dimer or higher aggregates were observed in the assembly of 5CzG12 or 10CzG12. Similar results were obtained for amphiphiles (mAG12) with anthryl and hydroxyethyldimethylammonium groups in places respectively of carbazolyl and trimethylammonium groups of 5CzG12 and 10CzG12. Taking these results together into consideration, the molecular packing of mXG12 in the assembly should be tighter than that of 5X18. In the binary assembly of 6-(trimethylammonium)hexanoyl-L-3-(9-anthryl) alanine N,N-dioctadecylamide bromide (5A18)/5Cz18 (1/99 mol/mol), about 60% of photoenergy absorbed by the carbazolyl groups was transferred to the anthryl groups, indicating an efficient energy migration along the two-dimensional array of carbazolyl chromophores of 5Cz18. On the other hand, in the mCzG12/mAG12 binary assembly, the energy-transfer efficiency was much lower due to the formation of dimer or the higher aggregates acting as energy-dissipating sites.  相似文献   

6.
Fluorescence quenching by a series of spin-labelled fatty acids is used to map the transverse disposition of tryptophan residues in bacteriorhodopsin (the sole protein in the purple membranes of Halobacterium halobium). A new method of data analysis is employed which takes into account differences in the uptake of the quenchers into the membrane. Energy transfer from tryptophan to a set of n-(9-anthroyloxy) fatty acids is used as a second technique to confirm the transverse map of tryptophan residues revealed by the quenching experiments. The relative efficiencies of quenching and energy transfer obtained experimentally are compared with those predicted on the basis of current models of bacteriorhodopsin structure. Most of the tryptophan fluorescence is located near the surface of the purple membrane. When the retinal chromophore of bacteriorhodopsin is removed, tryptophan residues deep in the membrane become fluorescent. These results indicate that the deeper residues transfer their energy to retinal in the native membrane. The retinal moiety is therefore located deep within the membrane rather than at the membrane surface.  相似文献   

7.
We describe a new method for calculating the efficiency of fluorescence energy transfer on labeled macromolecules using steady-state measurements. A single estimation of the efficiency value is obtained by a global analysis of all the measurement data sets (absorption, emission and excitation spectra) using non-linear least-squares. The method was tested on simulated and experimental data obtained from three simple model compounds: an equimolar mixture of tryptophan-tyrosine and two peptides, Trp-Tyr and Trp-Gly-Gly-Tyr, in which transfer efficiencies are respectively nearly 100% and 50%. The method was found to be reliable and provides methodological and quantitative advantages in regard to the sequential methods currently used.  相似文献   

8.
In previous work, we have shown the utility of the “NMR technique” in locating intercalants within the lipid bilayer. We describe herein the development of a more sensitive and complementary “fluorescence technique” for this purpose and its application to liposomes, bioliposomes and erythrocyte ghosts. This technique is based on the observation in selected compounds of an excellent correlation between the emission wavelength (λem) and Dimroth–Reichardt ET(30) polarity parameter for the solvent in which the fluorescence emission spectrum was obtained.  相似文献   

9.
10.
Simultaneous studies were carried out of isotope and electric parameters of spheric bilayer membranes modified with gramicidin A and its analog O-pyromellithylgramicidin (PG) having three negative charges on the N-end of the molecule. The relationship between the electric coefficients of permeability and the isotope ones PG/P* = n was determined by two independent methods. It has been found that for the membranes modified with gramicidin A in RbCl concentrations from 2.2 x 10(-3) to 10(-1) M the value n is constant and approximates 2 and with RbCl concentration 1 M, n = 1.6. For the membranes modified with PG in 0.1 M solutions of PbCl n = 2. The results obtained in terms of the model of unilinear ion diffusion in a narrow pore indicate that in a gramicidin channel there are two sites of cation binding which are located near the channel mouth.  相似文献   

11.
The degree of dependence of a lipid bilayer's surface properties on its conformational state is still an unresolved question. Surface properties are functions of molecular organization in the complex interfacial region. In the past, they were frequently measured using fluorescence spectroscopy. Since a fluorescent probe provides information on its local environment, there is a need to estimate the effect caused by the probe itself. In this paper, we address this question by calculating how lipid head-group orientation effects the fluorescence intensity of Fluorescein-PE (a probe that is sensitive to surface potential). In the theoretical model assumed the lipid bilayer state and the interactions between the charged fluorescent probe and the surrounding lipid molecules was evaluated. The results of this theoretical analysis were compared with experimentally obtained data. A lipid bilayer formed from DPPC was chosen as the experimental system, since it exhibits all the major conformational states within a narrow temperature range of 30 degrees C-45 degrees C. Fluorescein-PE fluorescence intensity depends on local pH, which in turn is sensitive to local electrostatic potential in the probe's vicinity. This local electrostatic potential is generated by lipid head-group dipole orientation. We have shown that the effect of the probe on lipid bilayer properties is limited when the lipid bilayer is in the gel phase, whereas it is more pronounced when the membrane is liquid-crystalline. This implies that Fluorescein-PE is a good reporter of local electrostatic fields when the lipid bilayer is in the gel phase, and is a poor reporter when the membrane is in the liquid-crystalline state.  相似文献   

12.
The FAD-containing enzyme mercuric reductase has been studied by means of steady-state and time-resolved fluorescence spectroscopy. The fluorescence relaxation of the excited state of the isoalloxazine ring of FAD can be described by a sum of two exponential functions. The two lifetimes are not due to a different lifetime of each of the two FAD molecules of mercuric reductase. The FAD molecules are quenched dynamically by a quencher that is not sensitive to the solvent viscosity. In vitro activation induces a dynamic quenching of fluorescence, while upon binding of NADP+ the FAD molecules are both statically and dynamically quenched. Time-resolved fluorescence anisotropy experiments of mercuric reductase in water show that the isoalloxazine ring probably undergoes a rapid and restricted vibrational motion of small amplitude. Electronic energy transfer occurs between the two FAD molecules at a rate of about 3.4 x 10(7) s-1. The angle between the emission transition dipole of the donor and the absorption transition dipole of the acceptor is 137 +/- 2 degrees (or 43 +/- 2 degrees). From previous X-ray data of glutathione reductase we find that the corresponding angle is 160 degrees. This suggests that the isoalloxazine rings of mercuric reductase and glutathione reductase are mutually tilted in slightly different ways.  相似文献   

13.
An important consideration in the design of oligonucleotide probes for homogeneous hybridization assays is the efficiency of energy transfer between the fluorophore and quencher used to label the probes. We have determined the efficiency of energy transfer for a large number of combinations of commonly used fluorophores and quenchers. We have also measured the quenching effect of nucleotides on the fluorescence of each fluorophore. Quenching efficiencies were measured for both the resonance energy transfer and the static modes of quenching. We found that, in addition to their photochemical characteristics, the tendency of the fluorophore and the quencher to bind to each other has a strong influence on quenching efficiency. The availability of these measurements should facilitate the design of oligonucleotide probes that contain interactive fluorophores and quenchers, including competitive hybridization probes, adjacent probes, TaqMan probes and molecular beacons.  相似文献   

14.
We have utilized Fourier transform infrared spectroscopy to study the interaction of the antimicrobial peptide gramicidin S (GS) with lipid micelles and with lipid monolayer and bilayer membranes as a function of temperature and of the phase state of the lipid. Since the conformation of GS does not change under the experimental conditions employed in this study, we could utilize the dependence of the frequency of the amide I band of the central beta-sheet region of this peptide on the polarity and hydrogen-bonding potential of its environment to probe GS interaction with and location in these lipid model membrane systems. We find that the GS is completely or partially excluded from the gel states of all of the lipid bilayers examined in this study but strongly partitions into lipid micelles, monolayers, or bilayers in the liquid-crystalline state. Moreover, in general, the penetration of GS into zwitterionic and uncharged lipid bilayer coincides closely with the gel to liquid-crystalline phase transition of the lipid. However, GS begins to penetrate into the gel-state bilayers of anionic phospholipids prior to the actual chain-melting phase transition, while in cationic lipid bilayers, GS does not partition strongly into the liquid-crystalline bilayer until temperatures well above the chain-melting phase transition are reached. In the liquid-crystalline state, the polarity of the environment of GS indicates that this peptide is located primarily at the polar/apolar interfacial region of the bilayer near the glycerol backbone region of the lipid molecule. However, the depth of GS penetration into this interfacial region can vary somewhat depending on the structure and charge of the lipid molecule. In general, GS associates most strongly with and penetrates most deeply into more disordered bilayers with a negative surface charge, although the detailed chemical structure of the lipid molecule and physical organization of the lipid aggregate (micelle versus monolayer versus bilayer) also have minor effects on these processes.  相似文献   

15.
Studies were carried out of temperature quenching of self-fluorescence of cytochrome P-450 in solution and liposomes from natural phosphatidylcholine, dimiristoylphosphatidylcholine, dipalmitoylphosphatidylcholine. The fluorescence spectrum of cytochrome P-450 is a superposition of triptophane and tyrosine components. During protein incorporation into liposomes a significant short-wave shift of the emission spectrum takes place. Temperature dependence of the intensity of cytochrome P-450 self-fluorescence in solution has bends at 30, 45 and 50 degrees C. When protein is incorporated into liposomes the location of bends depends on individual properties of lipids forming the bilayer. Effect of lipid surrounding on temperature conformational rearrangements of cytochrome P-450 molecule is discussed.  相似文献   

16.
When 5(6)-carboxyfluorescein (6CF) is encapsulated in liposomes at 0.2 M, 97-98% of the fluorescence is quenched. We have studied the mechanism of this effect. The dye-liposome system is a special case of concentration quenching of dyes, a phenomenon recognized for 100 years. Absorption spectra of encapsulated dye show that 6CF dimerizes, and the dimer is nonfluorescent. The dimerization constant was estimated, and it was concluded that dimerization can account for only part of the quenching. In 6CF solutions, the fluorescence lifetime decreased drastically as concentration was changed over the narrow range 0.02-0.05 M, a finding which was attributed to energy transfer to dimers. Inhibition of dimerization by propylene glycol also inhibited the shortening of lifetime. F?rster critical transfer distances were calculated to be 51 and 57 A for monomer-monomer and monomer-dimer transfer, respectively. Monomer-monomer transfer was demonstrated directly by steady-state or time-resolved anisotropy experiments, while transfer to dimer was modeled by using sulforhodamine B, which has a critical transfer distance like that for the dimer and also quenches 6CF emission. No direct evidence for collisional self-quenching of 6CF could be found, although a model compound, salicylate, did quench weakly. For xanthene dyes, the rate of energy transfer is much faster than that for quenching collisions, implying that collisional quenching in the usual 6CF-liposome system is insignificant. The reason why 6CF is not 100% quenched in liposomes is attributed to dye interaction with lipid as evidenced by (i) multiexponential decay of 6CF in liposomes with a long component of 3-4 ns, (ii) inhibition of dimerization in liposomes, (iii) partial protection of dye from quenching by KI, (iv) differing amounts of dimerization in liposomes made from different kinds of phospholipid, and (v) enhancement of fluorescence lifetime in the presence of Triton X-100.  相似文献   

17.
Fluorescence resonance energy transfer (FRET) is a sensitive and flexible method for studying protein-protein interactions. Here it is applied to the GroEL-GroES chaperonin system to examine the ATP-driven dynamics that underlie protein folding by this chaperone. Relying on the known structures of GroEL and GroES, sites for attachment of fluorescent probes are designed into the sequence of both proteins. Because these sites are brought close in space when GroEL and GroES form a complex, excitation energy can pass from a donor to an acceptor chromophore by FRET. While in ideal circumstances FRET can be used to measure distances, significant population heterogeneity in the donor-to-acceptor distances in the GroEL-GroES complex makes distance determination difficult. This is due to incomplete labeling of these large, oligomeric proteins and to their rotational symmetry. It is shown, however, that FRET can still be used to follow protein-protein interaction dynamics even in a case such as this, where distance measurements are either not practical or not meaningful. In this way, the FRET signal is used as a simple proximity sensor to score the interaction between GroEL and GroES. Similarly, FRET can also be used to follow interactions between GroEL and a fluorescently labeled substrate polypeptide. Thus, while knowledge of molecular structure aids enormously in the design of FRET experiments, structural information is not necessarily required if the aim is to measure the thermodynamics or kinetics of a protein interaction event by following changes in the binding proximity of two components.  相似文献   

18.
19.
The secondary structure of native and depalmitoylated porcine surfactant-associated protein C (SP-C) was studied by attenuated total reflection Fourier-transform infrared spectroscopy. Both forms of porcine SP-C adopt mainly an alpha-helical conformation. These two forms of the protein were reconstituted in a lipid bilayer. The insertion of the protein in a membrane is associated with an increase of the alpha-helical content. Dichroic measurements show that, in both cases, the long axis of the alpha-helix is oriented parallel to the lipid acyl chains.  相似文献   

20.
H W Huang 《Biophysical journal》1986,50(6):1061-1070
The deformation free energy of a lipid bilayer is presented based on the principle of a continuum theory. For small deformations, the free energy consists of a layer-compression term, a splay-distortion term, and a surface-tension term, equivalent to the elastic free energy of a two-layer smectic liquid crystal with surface tension. Minimization of the free energy leads to a differential equation that, with boundary conditions, determines the elastic deformation of a bilayer membrane. When a dimeric gramicidin channel is formed in a membrane of thickness greater than the length of the channel, the membrane deformation reduces the stability of the channel. Previously this effect was studied by comparing the variation of channel lifetime with the surface tension of bilayers (Elliott, J. R., D. Needham, J. P. Dilger, and D. A. Hayden, 1983, Biochim. Biophys. Acta, 735:95-103). The tension was assumed to pull a dimer for a distance z before the channel loses ion conductivity. To account for the data, z was found to be 18 A. With the deformation free energy, the data can be accounted for with z less than or approximately to 1 A, which is consistent with the breaking of hydrogen bonds in a dimer dissociation. Increasing the strength of lipid-protein interactions is not the only consequence of the complete free energy compared with the previous discussions. It also changes the shape of membrane deformation around an embedded channel from convex to concave, and increases the range of deformation from less than 10 A to greater than 20 A. Clearly these will be important factors in the general considerations of lipid-protein interactions and membrane-mediated interactions between proteins. In addition, thermal fluctuations of a membrane are calculated; in particular, we calculate the relations between the intrinsic thickness and the experimentally measured values. The experimental parameters of monoolein-squalene membranes are used for quantitative analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号