首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defects in the human XPV/POLH gene result in the variant form of the disease xeroderma pigmentosum (XP-V). The gene encodes DNA polymerase eta (Poleta), which catalyzes translesion synthesis (TLS) past UV-induced cyclobutane pyrimidine dimers (CPDs) and other lesions. To further understand the roles of Poleta in multicellular organisms, we analyzed phenotypes caused by suppression of Caenorhabditis elegans POLH (Ce-POLH) by RNA interference (RNAi). F1 and F2 progeny from worms treated by Ce-POLH-specific RNAi grew normally, but F1 eggs laid by worms treated by RNAi against Ce-POLD, which encodes Poldelta did not hatch. These results suggest that Poldelta but not Poleta is essential for C. elegans embryogenesis. Poleta-targeted embryos UV-irradiated after egg laying were only moderately sensitive. In contrast, Poleta-targeted embryos UV-irradiated prior to egg laying exhibited severe sensitivity, indicating that Poleta contributes significantly to damage tolerance in C. elegans in early embryogenesis but only modestly at later stages. As early embryogenesis is characterized by high levels of DNA replication, Poleta may confer UV resistance in C. elegans, perhaps by catalyzing TLS in early embryogenesis.  相似文献   

2.
Chicken B lymphocyte precursors and DT40 cells diversify their immunoglobulin-variable (IgV) genes through homologous recombination (HR)-mediated Ig gene conversion. To identify DNA polymerases that are involved in Ig gene conversion, we created DT40 clones deficient in DNA polymerase eta (poleta), which, in humans, is defective in the variant form of xeroderma pigmentosum (XP-V). Poleta is an error-prone translesion DNA synthesis polymerase that can bypass UV damage-induced lesions and is involved in IgV hypermutation. Like XP-V cells, poleta-disrupted (poleta) clones exhibited hypersensitivity to UV. Remarkably, poleta cells showed a significant decrease in the frequency of both Ig gene conversion and double-strand break-induced HR when compared to wild-type cells, and these defects were reversed by complementation with human poleta. Our findings identify a DNA polymerase that carries out DNA synthesis for physiological HR and provides evidence that a single DNA polymerase can play multiple cellular roles.  相似文献   

3.
Xeroderma pigmentosum variant and error-prone DNA polymerases   总被引:4,自引:0,他引:4  
Kannouche P  Stary A 《Biochimie》2003,85(11):1123-1132
Replicative DNA synthesis is a faithful event which requires undamaged DNA and high fidelity DNA polymerases. If unrepaired damage remains in the template DNA during replication, specialised low fidelity DNA polymerases synthesises DNA past lesions (translesion synthesis, TLS). Current evidence suggests that the polymerase switch from replicative to translesion polymerases might be mediated by post-translational modifications involving ubiquitination processes. One of these TLS polymerases, polymerase eta carries out TLS past UV photoproducts and is deficient in the variant form of xeroderma pigmentosum (XP-V). The dramatic proneness to skin cancer of XP-V individuals highlights the importance of this DNA polymerase in cancer avoidance. The UV hypermutability of XP-V cells suggests that, in the absence of a functional poleta, UV-induced lesions are bypassed by inaccurate DNA polymerase(s) which remain to be identified.  相似文献   

4.
In humans, inactivation of the DNA polymerase eta gene (pol eta) results in sunlight sensitivity and causes the cancer-prone xeroderma pigmentosum variant syndrome (XP-V). Cells from XP-V individuals have a reduced capacity to replicate UV-damaged DNA and show hypermutability after UV exposure. Biochemical assays have demonstrated the ability of pol eta to bypass cis-syn-cyclobutane thymine dimers, the most common lesion generated in DNA by UV. In most cases, this bypass is error-free. To determine the actual requirement of pol eta in vivo, XP-V cells (XP30RO) were complemented by the wild type pol eta gene. We have used two pol eta-corrected clones to study the in vivo characteristics of mutations produced by DNA polymerases during DNA synthesis of UV-irradiated shuttle vectors transfected into human host cells, which had or had not been exposed previously to UV radiation. The functional complementation of XP-V cells by pol eta reduced the mutation frequencies both at CG and TA base pairs and restored UV mutagenesis to a normal level. UV irradiation of host cells prior to transfection strongly increased the mutation frequency in undamaged vectors and, in addition, especially in the pol eta-deficient XP30RO cells at 5'-TT sites in UV-irradiated plasmids. These results clearly show the protective role of pol eta against UV-induced lesions and the activation by UV of pol eta-independent mutagenic processes.  相似文献   

5.
Individuals with Xeroderma pigmentosum (XP) syndrome have a genetic predisposition to sunlight-induced skin cancer. Genetically different forms of XP have been identified by cell fusion. Cells of individuals expressing the classical form of XP (complementation groups A through G) are deficient in the nucleotide excision repair (NER) pathway. In contrast, the cells belonging to the variant class of XP (XPV) are NER-proficient and are only slightly more sensitive than normal cells to the killing action of UV light radiation. The XPV fibroblasts replicate damaged DNA generating abnormally short fragments either in vivo [A.R. Lehmann, The relationship between pyramidine dimers and replicating DNA in UV-irradiated human fibroblasts, Nucleic Acids Res. 7 (1979) 1901-1912; S.D. Park, J.E. Cleaver, Postreplication repair: question of its definition and possible alteration in Xeroderma pigmentosum cell strains, Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 3927-3931.] or in vitro [S.M. Cordeiro, L.S. Zaritskaya, L.K. Price, W.K. Kaufmann, Replication fork bypass of a pyramidine dimer blocking leading strand DNA synthesis, J. Biol. Chem. 272 (1997) 13945-13954; D.L. Svoboda, L.P. Briley, J.M. Vos, Defective bypass replication of a leading strand cyclobutane thymine dimer in Xeroderma pigmentosum variant cell extracts, Cancer Res. 58 (1998) 2445-2448; I. Ensch-Simon, P.M. Burgers, J.S. Taylor, Bypass of a site-specific cis-syn thymine dimer in an SV40 vector during in vitro replication by HeLa and XPV cell-free extracts, Biochemistry 37 (1998) 8218-8226.], suggesting that in XPV cells, replication has an increased probability of being blocked at a lesion. Furthermore, extracts from XPV cells were found to be defective in translesion synthesis [A. Cordonnier, A.R. Lehmann, R.P.P. Fuchs, Impaired translesion synthesis in Xeroderma pigmentosum variant extracts, Mol. Cell. Biol. 19 (1999) 2206-2211.]. Recently, Masutani et al. [C. Masutani, M. Araki, A. Yamada, R. Kusomoto, T. Nogimori, T. Maekawa, S. Iwai, F. Hanaoka, Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity, EMBO J. 18 (1999) 3491-3501.] have shown that the XPV defect can be corrected by a novel human DNA polymerase, homologue to the yeast DNA polymerase eta, which is able to replicate past cyclobutane pyrimidine dimers in DNA templates. This review focuses on our current understanding of translesion synthesis in mammalian cells whose defect, unexpectedly, is responsible for the hypermutability of XPV cells and for the XPV pathology.  相似文献   

6.
Ultraviolet (UV)-induced DNA damage causes an efficient block of elongating replication forks. The checkpoint kinase, CHK1 has been shown to stabilize replication forks following hydroxyurea treatment. Therefore, we wanted to test if the increased UV sensitivity caused by the unspecific kinase inhibitor caffeine-inhibiting ATM and ATR amongst other kinases-is explained by inability to activate the CHK1 kinase to stabilize replicative structures. For this, we used cells deficient in polymerase η (Polη), a translesion synthesis polymerase capable of properly bypassing the UV-induced cis-syn TT pyrimidine dimer, which blocks replication. These cells accumulate gaps behind progressing replication forks after UV exposure. We demonstrate that both caffeine and CHK1 inhibition, equally retards continuous replication fork elongation after UV treatment. Interestingly, we found more pronounced UV-sensitization by caffeine than with the CHK1 inhibitor in clonogenic survival experiments. Furthermore, we demonstrate an increased collapse of replicative structures after caffeine treatment, but not after CHK1 inhibition, in UV-irradiated cells. This demonstrates that CHK1 activity is not required for stabilization of gaps induced during replication of UV-damaged DNA. These data suggest that elongation and stabilization of replicative structures at UV-induced DNA damage are distinct mechanisms, and that CHK1 is only involved in replication elongation.  相似文献   

7.
Xeroderma pigmentosum variant (XP-V) represents one of the most common forms of this cancer-prone DNA repair syndrome. Unlike classical XP cells, XP-V cells are normal in nucleotide excision repair but defective in post-replication repair. The precise molecular defect in XP-V is currently unknown, but it appears to be a protein involved in translesion synthesis. Here we established a sensitive assay system using an SV40 origin-based plasmid to detect XP-V complementation activity. Using this system, we isolated a protein from HeLa cells capable of complementing the defects in XP-V cell extracts. The protein displays novel DNA polymerase activity which replicates cyclobutane pyrimidine dimer-containing DNA templates. The XPV polymerase activity was dependent on MgCl2, sensitive to NEM, moderately sensitive to KCl, resistant to both aphidicolin and ddTTP, and not stimulated by PCNA. In glycerol density gradients, the activity co-sedimented with a 54 kDa polypeptide at 3.5S, indicating that the monomeric form of this polypeptide was responsible for the activity. The protein factor corrected the translesion defects of extracts from three XPV cell strains. Bypass DNA synthesis by the XP-V polymerase occurred only in the presence of dATP, indicating that it can incorporate only dATP to bypass a di-thymine lesion.  相似文献   

8.
Nagasawa H  Little JB 《Mutation research》2002,510(1-2):121-129
Ultraviolet (UV) irradiation produces DNA photoproducts that are blocks to DNA replication by normal replicative polymerases. A specialized, damage-specific, distributive polymerase, Pol H or Pol h, that is the product of the hRad30A gene, is required for replication past these photoproducts. This polymerase is absent from XP variant (XP-V) cells that must employ other mechanisms to negotiate blocks to DNA replication. These mechanisms include the use of alternative polymerases or recombination between sister chromatids. Replication forks arrested by UV damage in virus transformed XP-V cells degrade into DNA double strand breaks that are sites for recombination, but in normal cells arrested forks may be protected from degradation by p53 protein. These breaks are sites for binding a protein complex, hMre11/hRad50/Nbs1, that colocalizes with H2AX and PCNA, and can be visualized as immunofluorescent foci. The protein complexes need phosphorylation to activate their DNA binding capacity. Incubation of UV irradiated XP-V cells with the irreversible kinase inhibitor wortmannin, however, increased the yield of Mre11 focus-positive cells. One interpretation of this observation is that two classes of kinases are involved after UV irradiation. One would be a wortmannin-resistant kinase that phosphorylates the Mre11 complex. The other would be a wortmannin-sensitive kinase that phosphorylates and activates the p53/large T in SV40 transformed XP-V cells. The sensitive class corresponds to the PI3-kinases of ATM, ATR, and DNA-PK, but the resistant class remains to be identified. Alternatively, the elevated yield of Mre11 foci positive cells following wortmannin treatment may reflect an overall perturbation to the signaling cascades regulated by wortmannin-sensitive PI3 related kinases. In this scenario, wortmannin could compromise damage inducible-signaling pathways that maintain the stability of stalled forks, resulting in a further destabilization of stalled forks that then degrade, with the formation of DNA double strand breaks.  相似文献   

9.
Benzo[a]pyrene is a polycyclic aromatic hydrocarbon (PAH) associated with potent carcinogenic activity. Mutagenesis induced by benzo[a]pyrene DNA adducts is believed to involve error-prone translesion synthesis opposite the lesion. However, the DNA polymerase involved in this process has not been clearly defined in eukaryotes. Here, we provide biochemical evidence suggesting a role for DNA polymerase eta (Poleta) in mutagenesis induced by benzo[a]pyrene DNA adducts in cells. Purified human Poleta predominantly inserted an A opposite a template (+)- and (-)-trans-anti-BPDE-N2-dG, two important DNA adducts of benzo[a]pyrene. Both lesions also dramatically elevated G and T mis-insertion error rates of human Poleta. Error-prone nucleotide insertion by human Poleta was more efficient opposite the (+)-trans-anti-BPDE-N2-dG adduct than opposite the (-)-trans-anti-BPDE-N2-dG. However, translesion synthesis by human Poleta largely stopped opposite the lesion and at one nucleotide downstream of the lesion (+1 extension). The limited extension synthesis of human Poleta from opposite the lesion was strongly affected by the stereochemistry of the trans-anti-BPDE-N2-dG adducts, the nucleotide opposite the lesion, and the sequence context 5' to the lesion. By combining the nucleotide insertion activity of human Poleta and the extension synthesis activity of human Polkappa, effective error-prone lesion bypass was achieved in vitro in response to the (+)- and (-)-trans-anti-BPDE-N2-dG DNA adducts.  相似文献   

10.
Telomerase-immortalized lines of diploid xeroderma pigmentosum variant (XP-V) fibroblasts (XP115LO and XP4BE) were complemented for constitutive or regulated expression of wild-type human DNA polymerase eta (hpol eta). The ectopic gene was expressed from a retroviral LTR at a population average of 34- to 59-fold above the endogenous (mutated) mRNA and high levels of hpol eta were detected by immunoblotting. The POLH cDNA was also cloned downstream from an ecdysone-regulated promoter and transduced into the same recipient cells. Abundance of the wild-type mRNA increased approximately 10-fold by addition of ponasterone to the culture medium. Complemented cell lines acquired normal resistance to the cytotoxic effects of UVC, even in the presence of 1mM caffeine. They also tolerated higher levels of UVC-induced template lesions during nascent DNA elongation when compared to normal fibroblasts (NHF). UVC-induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus were measured in the XP115LO+XPV cell line overproducing hpol eta constitutively (E. Bassett, N.M. King, M.F. Bryant, S. Hector, L. Pendyala, S.G. Chaney, M. Cordeiro-Stone, The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts, Cancer Res. 64 (2004) 6469-6475). Induced mutation frequencies were significantly reduced, even below those observed in NHF; however, the average mutation frequency in untreated cultures was about three-fold higher than in the isogenic vector-control cell line. In this study, spontaneous HPRT mutation frequencies were measured at regular intervals, as isogenic fibroblasts either lacking or overproducing hpol eta were expanded for 100 population doublings. The mutation rates estimated from these results were not significantly increased in XP115LO cells expressing abnormal levels of hpol eta, relative to the cells lacking this specialized polymerase. These findings suggest that diploid human fibroblasts with normal DNA repair capacities and intact checkpoints are well protected against the potential mutagenic outcome of overproducing hpol eta, while still benefiting from accurate translesion synthesis of UV-induced pyrimidine dimers.  相似文献   

11.
Defects in the human gene XPV result in the variant form of the genetic disease xeroderma pigmentosum (XP-V). XPV encodes DNA polymerase η, a novel DNA polymerase that belongs to the UmuC/DinB/Rad30 superfamily. This polymerase catalyzes the efficient and accurate translesion synthesis of DNA past cis-syn cyclobutane di-thymine lesions. In this report we present the cDNA sequence and expression profiles of the mouse XPV gene and demonstrate its ability to complement defective DNA synthesis in XP-V cells. The mouse XPV protein shares 80.3% amino acid identity and 86.9% similarity with the human XPV protein. The recombinant mouse XPV protein corrected the inability of XP-V cell extracts to carry out DNA replication, by bypassing thymine dimers on template DNA. Transfection of the mouse or human XPV cDNA into human XP-V cells corrected UV sensitivity. Northern blot analysis revealed that the mouse XPV gene is expressed ubiquitously, but at a higher level in testis, liver, skin and thymus compared to other tissues. Although the mouse XPV gene was not induced by UV irradiation, its expression was elevated ~4-fold during cell proliferation. These results suggest that DNA polymerase η plays a role in DNA replication, though the enzyme is not essential for viability.  相似文献   

12.
Treatment of Saccharomyces cerevisiae cells with DNA-damaging agents elicits lysine 164-linked PCNA monoubiquitination by Rad6-Rad18. Recently, a number of ubiquitin (Ub) binding domains (UBDs) have been identified in translesion synthesis (TLS) DNA polymerases and it has been proposed that the UBD in a TLS polymerase affects its binding to Ub on PCNA and that this binding mode is indispensable for a TLS polymerase to access PCNA at the site of a stalled replication fork. To evaluate the contribution of the binding of UBDs to the Ub moiety on PCNA in TLS, we have examined the effects of mutations in the C2H2 zinc binding motif and in the conserved D570 residue that lies in the alpha-helix portion of the UBZ domain of yeast Poleta. We find that mutations in the C2H2 motif have no perceptible effect on UV sensitivity or UV mutagenesis, whereas a mutation of the D570 residue adversely affects Poleta function. The stimulation of DNA synthesis by Poleta with PCNA or Ub-PCNA was not affected by mutations in the C2H2 motif or the D570 residue. These observations lead us to suggest that the binding of Ub on PCNA via its UBZ domain is not a necessary requirement for the ability of polymerase eta to function in TLS during replication.  相似文献   

13.
Xie Z  Zhang Y  Guliaev AB  Shen H  Hang B  Singer B  Wang Z 《DNA Repair》2005,4(12):159-1409
Benzene is a human leukemia carcinogen, resulting from its cellular metabolism. A major benzene metabolite is p-benzoquinone (pBQ), which can damage DNA by forming the exocyclic base adducts pBQ-dC, pBQ-dA, and pBQ-dG in vitro. To gain insights into the role of pBQ in benzene genotoxicity, we examined in vitro translesion synthesis and in vivo mutagenesis of these pBQ adducts. Purified REV1 and Polkappa were essentially incapable of translesion synthesis in response to the pBQ adducts. Opposite pBQ-dA and pBQ-dC, purified human Poliota was capable of error-prone nucleotide insertion, but was unable to perform extension synthesis. Error-prone translesion synthesis was observed with Poleta. However, DNA synthesis largely stopped opposite the lesion. Consistent with in vitro results, replication of site-specifically damaged plasmids was strongly inhibited by pBQ adducts in yeast cells, which depended on both Polzeta and Poleta. In wild-type cells, the majority of translesion products were deletions at the site of damage, accounting for 91%, 90%, and 76% for pBQ-dA, pBQ-dG, and pBQ-dC, respectively. These results show that the pBQ-dC, pBQ-dA, and pBQ-dG adducts are strong blocking lesions, and are highly mutagenic by predominantly inducing deletion mutations. These results are consistent with the lesion structures predicted by molecular dynamics simulation. Our results led to the following model. Translesion synthesis normally occurs by directly copying the lesion site through base insertion and extension synthesis. When the lesion becomes incompatible in accommodating a base opposite the lesion in DNA, translesion synthesis occurs by a less efficient lesion loop-out mechanism, resulting in avoiding copying the damaged base and leading to deletion.  相似文献   

14.
Ultraviolet (UV)-induced DNA damage are removed by nucleotide excision repair (NER) or can be tolerated by specialized translesion synthesis (TLS) polymerases, such as Polη. TLS may act at stalled replication forks or through an S-phase independent gap-filling mechanism. After UVC irradiation, Polη-deficient (XP-V) human cells were arrested in early S-phase and exhibited both single-strand DNA (ssDNA) and prolonged replication fork stalling, as detected by DNA fiber assay. In contrast, NER deficiency in XP-C cells caused no apparent defect in S-phase progression despite the accumulation of ssDNA and a G2-phase arrest. These data indicate that while Polη is essential for DNA synthesis at ongoing damaged replication forks, NER deficiency might unmask the involvement of tolerance pathway through a gap-filling mechanism. ATR knock down by siRNA or caffeine addition provoked increased cell death in both XP-V and XP-C cells exposed to low-dose of UVC, underscoring the involvement of ATR/Chk1 pathway in both DNA damage tolerance mechanisms. We generated a unique human cell line deficient in XPC and Polη proteins, which exhibited both S- and G2-phase arrest after UVC irradiation, consistent with both single deficiencies. In these XP-C/PolηKD cells, UVC-induced replicative intermediates may collapse into double-strand breaks, leading to cell death. In conclusion, both TLS at stalled replication forks and gap-filling are active mechanisms for the tolerance of UVC-induced DNA damage in human cells and the preference for one or another pathway depends on the cellular genotype.  相似文献   

15.
16.
Rev1 is a deoxycytidyl transferase associated with DNA translesion synthesis (TLS). In addition to its catalytic domain, Rev1 possesses a so-called BRCA1 C-terminal (BRCT) domain. Here, we describe cells and mice containing a targeted deletion of this domain. Rev1B/B mice are healthy, fertile and display normal somatic hypermutation. Rev1B/B cells display an elevated spontaneous frequency of intragenic deletions at Hprt. In addition, these cells were sensitized to exogenous DNA damages. Ultraviolet-C (UV-C) light induced a delayed progression through late S and G2 phases of the cell cycle and many chromatid aberrations, specifically in a subset of mutant cells, but not enhanced sister chromatid exchanges (SCE). UV-C-induced mutagenesis was reduced and mutations at thymidine–thymidine dimers were absent in Rev1B/B cells, the opposite phenotype of UV-C-exposed cells from XP-V patients, lacking TLS polymerase η. This suggests that the enhanced UV-induced mutagenesis in XP-V patients may depend on error-prone Rev1-dependent TLS. Together, these data indicate a regulatory role of the Rev1 BRCT domain in TLS of a limited spectrum of endogenous and exogenous nucleotide damages during a defined phase of the cell cycle.  相似文献   

17.
In Saccharomyces cerevisiae, Rad18 functions in post-replication repair pathways, such as error-free damage bypass involving Rad30 (Poleta) and error-prone damage bypass involving Rev3/7 (Polzeta). Chicken DT40 RAD18(-/-) cells were found to be hypersensitive to camptothecin (CPT), while RAD30(-/-) and REV3(-/-) cells, which are defective in translesion DNA synthesis, were not. RAD18(-/-) cells also showed higher levels of H2AX phosphorylation and chromosomal aberrations, particularly chromosomal gaps and breaks, upon exposure to CPT. Detailed analysis by alkaline sucrose density gradient centrifugation revealed that RAD18(-/-) and wild type cells exhibited similar rates of elongation of newly synthesized DNA in the presence or absence of low concentrations of CPT but that DNA breaks frequently occurred on both parental and nascent strands within 1h after a brief exposure to an elevated concentration of CPT, with more breaks induced in RAD18(-/-) cells than in wild type cells. These data suggest a previously unanticipated role for Rad18 in dealing with replication forks upon encountering DNA lesions induced by CPT.  相似文献   

18.
Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase η, which is mutated in the variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase ζ by generating POLη−/−/POLζ−/− cells from the chicken DT40 cell line. POLζ−/− cells are hypersensitive to a very wide range of DNA damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polη plays a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption. The phenotypic analysis of POLη−/−/POLζ−/− cells shows that, unexpectedly, the loss of Polη significantly rescued all mutant phenotypes of POLζ−/− cells and results in the restoration of the DNA damage tolerance by a backup pathway including HR. Taken together, Polη contributes to a much wide range of TLS events than had been predicted by the phenotype of XP-V cells.  相似文献   

19.
Host-cell reactivation (HCR) of UV-irradiated herpes simplex virus type 2 (HSV-2), capacity of UV-irradiated cells to support HSV-2 plaque formation and UV-enhanced reactivation (UVER) of UV-irradiated HSV-2 were examined in fibroblasts from 4 patients with Cockayne syndrome (CS), 5 with xeroderma pigmentosum and 5 normals. All UV-survival curves for HSV-2 plaque formation showed 2 components. HCR was similar to normal for the XP variant strain and the 2 CS strains tested, but substantially reduced in the 4 excision-deficient XP strains. The capacity of UV-irradiated fibroblasts to support HSV-2 plaque formation was determined by UV-irradiating fibroblast monolayers with various doses of UV and 48 h later, infecting the monolayers with unirradiated HSV-2. The D37 values for the delayed-capacity curves so obtained were in the range 8.6-12.4 J/m2 for the normal strains, 2.8-3.2 J/m2 for the CS strains, 6.7 J/m2 for an XP variant strain and between 0.3 and 1.5 for the XP excision-deficient strains tested. These results indicate that delayed capacity for HSV-2 plaque formation is a more sensitive assay than HCR in the detection of cellular DNA-repair deficiency for XP and CS. For the examination of UVER, fibroblasts were irradiated with various UV doses and subsequently infected with either unirradiated or UV-irradiated HSV and scored for plaque formation 2 days later. UVER expression was maximum when the delay between UV-irradiation of the cells and HSV infection was 48 h. The magnitude of UVER expression was also found to be dependent on the UV dose to the cells and increased with increasing UV dose to the virus. Using a UV dose to the virus resulting in a plaque survival of about 10(-2) on unirradiated cells, the the maximum UVER factor had a mean value of 1.3 for the normal strains following a dose of 15 J/m2 to the cells. Somewhat higher UVER values were found for all the patient strains tested and resulted from lower UV doses to the cells than for normal strains. Maximum UVER factors for the CS strains ranged from 2.2 to 3.3 at a dose of 5 J/m2 to the cells, for the XP excision-deficient strains; 2.1 to 2.6 at doses of 0.5 to 2.5 J/m2 to the cells and for the XP variant strain tested; 2.5 at UV dose of 10 J/m2 to the cells.  相似文献   

20.
Agents that interfere with DNA replication in Escherichia coli induce physiological adaptations that increase the probability of survival after DNA damage and the frequency of mutants among the survivors (the SOS response). Such agents also increase the survival rate and mutation frequency of irradiated bacteriophage after infection of treated bacteria, a phenomenon known as Weigle reactivation. In UV-irradiated single-stranded DNA phage, Weigle reactivation is thought to occur via induced, error-prone replication through template lesions (translesion synthesis [P. Caillet-Fauquet, M: Defais, and M. Radman, J. Mol. Biol. 117:95-112, 1977]). Weigle reactivation occurs with higher efficiency in double-stranded DNA phages such as lambda, and we therefore asked if another process, recombination between partially replicated daughter molecules, plays a major role in this case. To distinguish between translesion synthesis and recombinational repair, we studied the early replication of UV-irradiated bacteriophage lambda in SOS-induced and uninduced bacteria. To avoid complications arising from excision of UV lesions, we used bacterial uvrA mutants, in which such excision does not occur. Our evidence suggests that translesion synthesis is the primary component of Weigle reactivation of lambda phage in the absence of excision repair. The greater efficiency in Weigle reactivation of double-stranded DNA phage could thus be attributed to some inducible excision repair unable to occur on single-stranded DNA. In addition, after irradiation, lambda phage replication seems to switch prematurely from the theta mode to the rolling circle mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号