首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yersinia pseudotuberculosis binds host cells and modulates the mammalian Rac1 guanosine triphosphatase (GTPase) at two levels. Activation of Rac1 results from integrin receptor engagement, while misregulation is promoted by translocation of YopE and YopT proteins into target cells. Little is known regarding how these various factors interplay to control Rac1 dynamics. To investigate these competing processes, the localization of Rac1 activation was imaged microscopically using fluorescence resonance energy transfer. In the absence of translocated effectors, bacteria induced activation of the GTPase at the site of bacterial binding. In contrast, the entire cellular pool of Rac1 was inactivated shortly after translocation of YopE RhoGAP. Inactivation required membrane localization of Rac1. The translocated protease YopT had very different effects on Rac1. This protein, which removes the membrane localization site of Rac1, did not inactivate Rac1, but promoted entry of cleaved activated Rac1 molecules into the host cell nucleus, allowing Rac1 to localize with nuclear guanosine nucleotide exchange factors. As was true for YopE, membrane-associated Rac1 was the target for YopT, indicating that the two translocated effectors may compete for the same pool of target protein. Consistent with the observation that YopE inactivation requires membrane localization of Rac1, the presence of YopT in the cell interfered with the action of the YopE RhoGAP. As a result, interaction of target cells with a strain that produces both YopT and YopE resulted in two spatially distinct pools of Rac1: an inactive cytoplasmic pool and an activated nuclear pool. These studies demonstrate that competition between bacterial virulence factors for access to host substrates is controlled by the spatial arrangement of a target protein. In turn, the combined effects of translocated bacterial proteins are to generate pools of a single signaling molecule with distinct localization and activation states in a single cell.  相似文献   

2.
Rho family GTPases are important regulators of the actin cytoskeleton. Activation of these proteins can be promoted by guanine nucleotide exchange factors containing Dbl and Pleckstrin homology domains resulting in membrane insertion of a Rho family member, whereas the inactive GDP-bound form is sequestered primarily in the cytoplasm, bound to the guanosine dissociation inhibitor RhoGDI. Dominant interfering variants of Rac1, but not Cdc42, inhibit beta1 integrin-promoted uptake of Yersinia pseudotuberculosis. Unexpectedly, we found that the Rac1(W56F) guanine nucleotide exchange factors specificity switch mutant blocked invasin-promoted uptake as well as Cdc42-dependent uptake of enteropathogenic Escherichia coli. Fluorescence resonance energy transfer experiments demonstrated that Rac1(W56F) retained the ability to be loaded with GTP, bind a downstream effector, and interact with RhoGDI. Mutational analyses of intragenic suppressors and coexpression studies demonstrated that binding of the Rac1(W56F) mutant to RhoGDI appeared to play a role in the inhibition of uptake. As RhoGDI inhibits RhoA, overactivation of RhoA may account for the uptake interference caused by Rac1(W56F). Consistent with this model, a dominant interfering form of RhoA restored significant uptake in the presence of the Rac1(W56F) mutant but had no effect on another interfering Rac1 form. Furthermore, the cellular GTP-RhoA level was elevated by the presence of Rac1(W56F) mutant protein. These data are consistent with the proposition that Rac1(W56F) blocks invasin-promoted uptake by preventing RhoGDI from inactivating RhoA. We conclude that RhoGDI allows cross-talk between Rho family members that promote potentially antagonistic processes, and disruption of this cross-talk can interfere with invasin-promoted uptake.  相似文献   

3.
We observed evolutionary conservation of canonical nuclear localization signal sequences (K(K/R)X(K/R)) in the C-terminal polybasic regions (PBRs) of some Rac and Rho isoforms. Canonical D-box sequences (RXXL), which target proteins for proteasome-mediated degradation, are also evolutionarily conserved near the PBRs of these small GTPases. We show that the Rac1 PBR (PVKKRKRK) promotes Rac1 nuclear accumulation, whereas the RhoA PBR (RRGKKKSG) keeps RhoA in the cytoplasm. A mutant Rac1 protein named Rac1 (pbrRhoA), in which the RhoA PBR replaces the Rac1 PBR, has greater cytoplasmic localization, enhanced resistance to proteasome-mediated degradation, and higher protein levels than Rac1. Mutating the D-box by substituting alanines at amino acids 174 and 177 significantly increases the protein levels of Rac1 but not Rac1(pbrRhoA). These results suggest that Rac1 (pbrRhoA) is more resistant than Rac1 to proteasome-mediated degradative pathways involving the D-box. The cytoplasmic localization of Rac1(pbrRhoA) provides the most obvious reason for its resistance to proteasome-mediated degradation, because we show that Rac1(pbrRhoA) does not greatly differ from Rac1 in its ability to stimulate membrane ruffling or to interact with SmgGDS and IQGAP1-calmodulin complexes. These findings support the model that nuclear localization signal sequences in the PBR direct Rac1 to the nucleus, where Rac1 participates in signaling pathways that ultimately target it for degradation.  相似文献   

4.
Williams CL 《Cellular signalling》2003,15(12):1071-1080
Many small GTPases in the Ras and Rho families have a C-terminal polybasic region (PBR) comprised of multiple lysines or arginines. The PBR controls diverse functions of these small GTPases, including their ability to associate with membranes, interact with specific proteins, and localize in subcellular compartments. Different signaling pathways mediated by Ras and Rho family members may converge when the small GTPases are directed by their PBRs to shared binding sites in specific proteins or at cell membranes. The PBR promotes the interactions of small GTPases with SmgGDS, which is a nucleocytoplasmic shuttling protein that stimulates guanine nucleotide exchange by small GTPases. The PBR of Rac1 was recently found to have a functional nuclear localization signal (NLS) sequence, which enhances the nuclear accumulation of protein complexes containing SmgGDS and Rac1. Sequence analysis demonstrates that canonical NLS sequences (K-K/R-x-K/R) are present in the PBRs of additional Ras and Rho family members, and are evolutionarily conserved across several phyla. These findings suggest that the PBR regulates the nucleocytoplasmic shuttling of some Ras and Rho family members when they are in protein complexes that are too large to diffuse through nuclear pores. These diverse functions of the PBR indicate its critical role in signaling by Ras and Rho family GTPases.  相似文献   

5.
The armadillo protein SmgGDS promotes guanine nucleotide exchange by small GTPases containing a C-terminal polybasic region (PBR), such as Rac1 and RhoA. Because the PBR resembles a nuclear localization signal (NLS) sequence, we investigated the nuclear transport of SmgGDS with Rac1 or RhoA. We show that the Rac1 PBR has significant NLS activity when it is fused to green fluorescent protein (GFP) or in the context of full-length Rac1. In contrast, the RhoA PBR has very poor NLS activity when it is fused to GFP or in the context of full-length RhoA. The nuclear accumulation of both Rac1 and SmgGDS is enhanced by Rac1 activation and diminished by mutation of the Rac1 PBR. Conversely, SmgGDS nuclear accumulation is diminished by interactions with RhoA. An SmgGDS nuclear export signal sequence that we identified promotes SmgGDS nuclear export. These results suggest that SmgGDS. Rac1 complexes accumulate in the nucleus because the Rac1 PBR has NLS activity and because Rac1 supplies the appropriate GTP-dependent signal. In contrast, SmgGDS.RhoA complexes accumulate in the cytoplasm because the RhoA PBR does not have NLS activity. This model may be applicable to other armadillo proteins in addition to SmgGDS, because we demonstrate that activated Rac1 and RhoA also provide stimulatory and inhibitory signals, respectively, for the nuclear accumulation of p120 catenin. These results indicate that small GTPases with a PBR can regulate the nuclear transport of armadillo proteins.  相似文献   

6.
Small GTPase Rac is a crucial regulator of actin cytoskeletal rearrangement, and it plays an important role in cell spreading, migration, mitogenesis, phagocytosis, superoxide generation, and axonal growth. It is generally accepted that Rac activity is regulated by the guanosine triphosphate (GTP)/guanosine diphosphate (GDP) cycle. But, it is suggested that in addition to Rac-GTP loading, membrane localization is required for the initiation of downstream effector signaling. However, the molecular mechanisms that control the targeting of GTP-Rac to the plasma membrane remain largely unknown. Here, we have uncovered a signaling pathway linking phospholipase D (PLD) to the localized functions of Rac1. We show that PLD product phosphatidic acid (PA) acts as a membrane anchor of Rac1. The C-terminal polybasic motif of Rac1 is responsible for direct interaction with PA, and Rac1 mutated in this region is incapable of translocating to the plasma membrane and of activating downstream target p21-activated kinase upon integrin activation. Finally, we show that PA induces dissociation of Rho-guanine nucleotide dissociation inhibitor from Rac1 and that PA-mediated Rac1 localization is important for integrin-mediated lamellipodia formation, cell spreading, and migration. These results provide a novel molecular mechanism for the GTP-Rac1 localization through the elevating PLD activity, and they suggest a general mechanism for diverse cellular functions that is required localized Rac activation.  相似文献   

7.
Yersinia pseudotuberculosis binds to beta1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity to induce cellular changes that control pore formation and effector translocation. Inhibition of actin polymerization decreased pore formation and YopE translocation in HeLa cells infected with Y. pseudotuberculosis. Inactivation of Rho, Rac, and Cdc42 by treatment with Clostridium difficile toxin B inhibited pore formation and YopE translocation in infected HeLa cells. Expression of a dominant negative form of Rac did not reduce the uptake of membrane impermeable dyes in HeLa cells infected with a pore forming strain YopEHJT(-). Similarly, the Rac inhibitor NSC23766 did not decrease pore formation or translocation, although it efficiently hindered Rac-dependent bacterial uptake. In contrast, C. botulinum C3 potently reduced pore formation and translocation, implicating Rho A, B, and/or C in the control of the Yop delivery. An invasin mutant (Y. pseudotuberculosis invD911E) that binds to beta1 integrins, but inefficiently transduces signals through the receptors, was defective for YopE translocation. Interfering with the beta1 integrin signaling pathway, by inhibiting Src kinase activity, negatively affected YopE translocation. Additionally, Y. pseudotuberculosis infection activated Rho by a mechanism that was dependent on YopB and on high affinity bacteria interaction with beta1 integrin receptors. We propose that Rho activation, mediated by signals triggered by the YopB/YopD translocon and from engagement of beta1 integrin receptors, stimulates actin polymerization and activates the translocation process, and that once the Yops are translocated, the action of YopE or YopT terminate delivery of Yops and prevents pore formation.  相似文献   

8.
Efficient uptake of Yersinia pseudotuberculosis into cultured mammalian cells is the result of high-affinity binding of invasin to beta1 chain integrins. We demonstrate here that uptake requires Rac1 and Arp 2/3 function. Bacterial uptake was stimulated by GTPgammaS, but was inhibited in mammalian cells transfected with the interfering Rac1-N17 derivative. Rac1 was found to be activated in response to integrin engagement by invasin, whereas Rac1 and Arp 2/3 were found to be intensely localized around phagosomes bearing bacteria, indicating a specific role for Rac1 signalling from the nascent phagosome to downstream effectors. To determine whether the Arp 2/3 complex was a component of this proposed pathway, cells overproducing various derivatives of Scar1/WAVE1, an Arp 2/3-binding protein, were analysed. Sequestration of Arp 2/3 away from the phagocytic cup as a result of Scar1/WAVE1 overproduction dramatically inhibited uptake. To determine whether signalling from Rac1 to Arp 2/3 occurred via N-WASP, uptake was analysed in a cell line lacking expression of WASP and N-WASP. Uptake was unaffected by the absence of these proteins, indicating that beta1 integrin signalling from Rac1 to Arp 2/3 can occur in the absence of N-WASP function.  相似文献   

9.
The Rho family of small GTPases are membrane-associated molecular switches involved in the control of a wide range of cellular activities, including cell migration, adhesion, and proliferation. Cdc42 GTPase-activating protein (CdGAP) is a phosphoprotein showing GAP activity toward Rac1 and Cdc42. CdGAP activity is regulated in an adhesion-dependent manner and more recently, we have identified CdGAP as a novel molecular target in signaling and an essential component in the synergistic interaction between TGFβ and Neu/ErbB-2 signaling pathways in breast cancer cells. In this study, we identified a small polybasic region (PBR) preceding the RhoGAP domain that mediates specific binding to negatively charged phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). In vitro reconstitution of membrane vesicles loaded with prenylated Rac1 demonstrates that the PBR is required for full activation of CdGAP in the presence of PI(3,4,5)P3. In fibroblast cells, the expression of CdGAP protein mutants lacking an intact PBR shows a significant reduced ability of the protein mutants to induce cell rounding or to mediate negative effects on cell spreading. Furthermore, an intact PBR is required for CdGAP to inactivate Rac1 signaling into cells, whereas it is not essential in an in vitro context. Altogether, these studies reveal that specific interaction between negatively charged phospholipid PI(3,4,5)P3 and the stretch of polybasic residues preceding the RhoGAP domain regulates CdGAP activity in vivo and is required for its cellular functions.  相似文献   

10.
The proper function of Rho GTPases requires precise spatial and temporal regulation of effector interactions. Integrin-mediated cell adhesion modulates the interaction of GTP-Rac with its effectors by controlling GTP-Rac membrane targeting. Here, we show that the translocation of GTP-Rac to membranes is independent of effector interactions, but instead requires the polybasic sequence near the carboxyl terminus. Cdc42 also requires integrin-mediated adhesion for translocation to membranes. A recently developed fluorescence resonance energy transfer (FRET)-based assay yields the surprising result that, despite its uniform distribution, the interaction of activated V12-Rac with a soluble, cytoplasmic effector domain is enhanced at specific regions near cell edges and is induced locally by integrin stimulation. This enhancement requires Rac membrane targeting. We show that Rho-GDI, which associates with cytoplasmic GTP-Rac, blocks effector binding. Release of Rho-GDI after membrane translocation allows Rac to bind to effectors. Thus, Rho-GDI confers spatially restricted regulation of Rac-effector interactions.  相似文献   

11.
Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated. Here we demonstrate that the PI3K-dependent Rac exchange factor, P-Rex1, enhances membrane ruffling in 3T3-L1 adipocytes and promotes GLUT4 trafficking to the plasma membrane at submaximal insulin concentrations. P-Rex1-facilitated GLUT4 trafficking requires a functional actin network and membrane ruffle formation and occurs in a PI3K- and Rac1-dependent manner. In contrast, expression of other Rho GTPases, such as Cdc42 or Rho, did not affect insulin-stimulated P-Rex1-mediated GLUT4 trafficking. P-Rex1 siRNA knockdown or expression of a P-Rex1 dominant negative mutant reduced but did not completely inhibit glucose uptake in response to insulin. Collectively, these studies identify a novel RacGEF in adipocytes as P-Rex1 that, at physiological insulin concentrations, functions as an insulin-dependent regulator of the actin cytoskeleton that contributes to GLUT4 trafficking to the plasma membrane.  相似文献   

12.
Esufali S  Charames GS  Bapat B 《FEBS letters》2007,581(25):4850-4856
The Rac1 GTPase contains a functional nuclear localization signal (NLS) and destruction box sequence in the C-terminal polybasic region. It has been postulated that these two regulatory sequences may function together, enabling Rac1 to participate in nuclear signaling pathways that ultimately target it for degradation. We have previously shown that the NLS activity of Rac1 and the Rac1b splice variant is essential for Wnt pathway activation. In the present study, we demonstrate that suppression of nuclear Wnt signaling leads to stabilization of Rac1 protein. In addition, we show that Rac1b may be under proteasomal regulation. We propose that Rac1 and Rac1b levels are regulated by being targeted for degradation through a negative feedback loop initiated by Wnt signaling.  相似文献   

13.
The bacterial effector proteins IpgB(1) and IpgB(2) of Shigella and Map of Escherichia coli activate the Rho GTPases Rac1, RhoA and Cdc42, respectively, whereas YopE and YopT of Yersinia inhibit these Rho family GTPases. We established a Yersinia toolbox which allows to study the cellular effects of these effectors in different combinations in the context of Yersinia type 3 secretion system (Ysc)-T3SS-mediated injection into HeLa cells. For this purpose hybrid proteins were constructed by fusion of YopE with the effector protein of interest. As expected, injected hybrid proteins induced membrane ruffles and Yersinia uptake for IpgB(1) , stress fibres for IpgB(2) and microspikes for Map. By co-infection experiments we could demonstrate (i) IpgB(2) -mediated and ROCK-dependent inhibition of IpgB(1) -mediated Rac1 effects, (ii) YopT-mediated suppression of IpgB(1) -induced Yersinia invasion and (iii) failure of YopE-mediated suppression of IpgB(1) -induced Yersinia invasion, presumably due to preferential inhibition of RhoG by YopE GAP function. By infecting polarized MDCK cells we could demonstrate that Map or IpgB(1) but not IpgB(2) affects cell monolayer integrity. In summary, the Yersinia toolbox is suitable to study cellular effects of effector proteins of diverse bacterial species separately or in combination in the context of bacterial T3SS-mediated injection.  相似文献   

14.
The small GTPase RalA has been implicated in glucose uptake in insulin-stimulated adipocytes, although it remains unclear whether RalA has a similar role in insulin signaling in other types of cells. Recently, we have demonstrated that the Rho family GTPase Rac1 has a critical role in insulin-dependent glucose uptake in myoblast culture and mouse skeletal muscle. However, the mechanisms underlying Rac1-dependent glucose uptake, mostly mediated by the plasma membrane translocation of the glucose transporter GLUT4, remain largely unknown. The purpose of this study is to examine the involvement of RalA in Rac1 regulation of the translocation of GLUT4 to the plasma membrane in muscle cells. Ectopic expression of a constitutively activated RalA mutant indeed stimulated GLUT4 translocation, suggesting an important role of RalA also in muscle cells. GLUT4 translocation induced by constitutively activated mutation of Rac1 or more physiologically by upstream Rac1 regulators, such as phosphoinositide 3 kinase and the guanine nucleotide exchange factor FLJ00068, was abrogated when the expression of RalA was downregulated by RNA interference. The expression of constitutively activated Rac1, on the other hand, caused GTP loading and subcellular redistribution of RalA. Collectively, we propose a novel mechanism involving RalA for Rac1-mediated GLUT4 translocation in skeletal muscle cells.  相似文献   

15.
16.
K McGee  M Zettl  M Way  M F?llman 《FEBS letters》2001,509(1):59-65
Phagocytosis of Yersinia pseudotuberculosis occurs through interaction of the bacterial protein invasin with beta1-integrins. Here we report that N-WASP plays a role in internalisation of an invasin-expressing, avirulent strain of Y. pseudotuberculosis. Ectopic expression of N-WASP mutants, which affect recruitment of the Arp2/3 complex to the phagosome, reduces uptake of Yersinia. In addition, expression of the Cdc42/Rac-binding (CRIB) region of N-WASP has an inhibitory effect on uptake. Using GFP-tagged Rho GTPase mutants, we provide evidence that Rac1, but not Cdc42, is important for internalisation. Furthermore, activated Rac1 rescues Toxin B, CRIB and Src family kinase inhibitor PP2-mediated impairment of uptake. Our observations indicate that invasin-mediated phagocytosis occurs via a Src and WASP family-dependent mechanism(s), involving the Arp2/3 complex and Rac, but does not require Cdc42.  相似文献   

17.
Rac GTPases control cell shape by regulating downstream effectors that influence the actin cytoskeleton. UNC-115, a putative actin-binding protein similar to human abLIM/limatin, has previously been implicated in axon pathfinding. We have discovered the role of UNC-115 as a downstream cytoskeletal effector of Rac signaling in axon pathfinding. We show that unc-115 double mutants with ced-10 Rac, mig-2 Rac or unc-73 GEF but not with rac-2/3 Rac displayed synthetic axon pathfinding defects, and that loss of unc-115 function suppressed the formation of ectopic plasma membrane extensions induced by constitutively-active rac-2 in neurons. Furthermore, we show that UNC-115 can bind to actin filaments. Thus, UNC-115 is an actin-binding protein that acts downstream of Rac signaling in axon pathfinding.  相似文献   

18.
The invasin protein encoded by enteropathogenic Yersinia allows entry of bacteria into intestinal M cells by binding to integrin receptors. In cultured cells, invasin-mediated uptake requires proteins involved in endocytosis and signaling to the cell cytoskeleton. At least four different factors have been demonstrated to play a role in regulating the efficiency of invasin-promoted uptake. These include receptor-ligand affinity, receptor clustering, signaling through focal adhesion kinase, and stimulation of cytoskeletal rearrangements by small GTP binding proteins.  相似文献   

19.
Dersch P  Isberg RR 《The EMBO journal》1999,18(5):1199-1213
Invasin allows efficient entry into mammalian cells by Yersinia pseudotuberculosis. It has been shown that the C-terminal 192 amino acids of invasin are essential for binding of beta1 integrin receptors and subsequent uptake. By analyzing the internalization of latex beads coated with invasin derivatives, an additional domain of invasin was shown to be required for efficient bacterial internalization. A monomeric derivative encompassing the C-terminal 197 amino acids was inefficient at promoting entry of latex beads, whereas dimerization of this derivative by antibody significantly increased uptake. By using the DNA-binding domain of lambda repressor as a reporter for invasin self-interaction, we have demonstrated that a region of the invasin protein located N-terminal to the cell adhesion domain of invasin is able to self-associate. Chemical cross-linking studies of purified and surface-exposed invasin proteins, and the dominant-interfering effect of a non-functional invasin derivative are consistent with the presence of a self-association domain that is located within the region of invasin that enhances bacterial uptake. We conclude that interaction of homomultimeric invasin with multiple integrins establishes tight adherence and receptor clustering, thus providing a signal for internalization.  相似文献   

20.
Rac1 plays a key role in neurite outgrowth via reorganization of the actin cytoskeleton. The molecular mechanisms underlying Rac1-mediated actin dynamics in the cytosol and plasma membrane have been intensively studied, but the nuclear function of Rac1 in neurite outgrowth has not yet been addressed. Using subcellular fractionation and immunocytochemistry, we sought to explore the role of nuclear Rac1 in neurite outgrowth. bFGF, a strong agonist for neurite outgrowth in PC12 cells, stimulated the nuclear accumulation of an active form of Rac1. Rac1-PBR (Q) mutant, in which six basic residues in the polybasic region at the C-terminus were replaced by glutamine, didn’t accumulate in the nucleus. In comparison with control cells, cells expressing this mutant form of Rac1 displayed a marked defect in extending neurites that was concomitant with reduced expression of MAP2 and MEK-1. These results suggest that Rac1 translocation to the nucleus functionally correlates with bFGF-induced neurite outgrowth. [BMB Reports 2013; 46(12): 617-622]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号