首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《朊病毒》2013,7(2):91-96
Glucantransferase Bgl2p is a major conserved cell wall constituent described for a wide range of yeast species. In the baker’s yeast Saccharomyces cerevisiae it is the only non-covalently bound cell wall protein that cannot be released from cell walls by sequential SDS and trypsin treatment. It contains 7 amyloidogenic determinants. Circular dichroism analysis and fluorescence spectroscopy with thioflavin T indicate the presence of β-sheet structures in Bgl2p isolates. Bgl2p forms fibrils, a process that is enforced in the presence of other cell wall components. Thus the data obtained is the first evidence for amyloid-like properties of yeast cell wall protein – glucantransferase Bgl2p.  相似文献   

2.
Proteins binding thioflavin T leading to its specific fluorescence were discovered in a fraction of noncovalently bound Saccharomyces cerevisiae yeast cell wall mannoproteins. Thioflavin-binding proteins display high resistance to trypsin digestion in solution. These data are the first experimental evidence for the presence of proteins whose properties are characteristic of amyloids in yeast cell wall, except for data on glucanotransferase Bgl2p that has amyloid properties. Our data suggest the anchoring of these proteins in the cell wall by a trypsin-sensitive part of the protein molecule. Experiments with a mutant strain devoid of the BGL2 gene suggest the compensation of absent amyloid-like protein Bgl2p by increase in contents of thioflavin-binding proteins in the cell wall.  相似文献   

3.
Deletion of the gene encoding the cell-wall glucanotransferase Bgl2p in Saccharomyces cerevisiae decreases the number of dead cells in the yeast culture incubated in a liquid nutrient medium for more than two days. After storage for three months, only 32% of the wild-type cells were found to be able to produce colonies, whereas all cells with the inactivated BGL2 gene retained this ability. It is suggested that the glucanotransferase Bgl2p plays an important role in the limitation of the reproductive life span of aging yeast cells.  相似文献   

4.
The hemiascomycetes yeast Yarrowia lipolytica is a dimorphic yeast with alternating yeast and mycelia forms. Bioinformatic analysis revealed the presence of three putative chitinase genes, YlCTS1, YlCTS2, and YlCTS3, in the Y. lipolytica genome. Here, we demonstrated that the protein of YlCTS1 (YlCts1p), which contains an N-terminal secretion signal peptide, a long C-terminal Ser/Thr-rich domain, and a chitin-binding domain, is a homologue to Saccharomyces cerevisiae chitinase 1 (ScCts1p). Deletion of YlCTS1 remarkably reduced extracellular endochitinase activity in the culture supernatant of Y. lipolytica and enhanced cell aggregation, suggesting a role of YlCts1p in cell separation as ScCts1p does in S. cerevisiae. However, loss of YlCts1p function did not affect hyphal formation induced by fetal bovine serum addition. The mass of YlCts1p was dramatically decreased by jack bean α-mannosidase digestion but not by PNGase F treatment, indicating that YlCts1p is modified only by O-mannosylation without N-glycosylation. Moreover, the O-glycan profile of YlCts1p was identical to that of total cell wall mannoproteins, supporting the notion that YlCts1p can be used as a good model for studying O-glycosylation in this dimorphic yeast.  相似文献   

5.
Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg−1 protein for Kre1/EstA/Cwp2p and 72 mU mg−1 protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg−1 protein for Kre1/EstA/Cwp2p and 1.27 U mg−1 protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.  相似文献   

6.
The cell wall of a yeast cell forms a barrier for various proteinaceous and nonproteinaceous molecules. Nisin, a small polypeptide and a well-known preservative active against gram-positive bacteria, was tested with wild-type Saccharomyces cerevisiae. This peptide had no effect on intact cells. However, removal of the cell wall facilitated access of nisin to the membrane and led to cell rupture. The roles of individual components of the cell wall in protection against nisin were studied by using synchronized cultures. Variation in nisin sensitivity was observed during the cell cycle. In the S phase, which is the phase in the cell cycle in which the permeability of the yeast wall to fluorescein isothiocyanate dextrans is highest, the cells were most sensitive to nisin. In contrast, the cells were most resistant to nisin after a peak in expression of the mRNA of cell wall protein 2 (Cwp2p), which coincided with the G2 phase of the cell cycle. A mutant lacking Cwp2p has been shown to be more sensitive to cell wall-interfering compounds and Zymolyase (J. M. Van der Vaart, L. H. Caro, J. W. Chapman, F. M. Klis, and C. T. Verrips, J. Bacteriol. 177:3104–3110, 1995). Here we show that of the single cell wall protein knockouts, a Cwp2p-deficient mutant is most sensitive to nisin. A mutant with a double knockout of Cwp1p and Cwp2p is hypersensitive to the peptide. Finally, in yeast mutants with impaired cell wall structure, expression of both CWP1 and CWP2 was modified. We concluded that Cwp2p plays a prominent role in protection of cells against antimicrobial peptides, such as nisin, and that Cwp1p and Cwp2p play a key role in the formation of a normal cell wall.  相似文献   

7.
Biotinylation of intact Saccharomyces cerevisiae cells with a nonpermeant reagent (Sulfo-NHS-LC-Biotin) allowed the identification of seven cell wall proteins that were released from intact cells by dithiothreitol (DTT). By N-terminal sequencing, three of these proteins were identified as the known proteins β-exoglucanase 1 (Exg1p), β-endoglucanase (Bgl2p), and chitinase (Cts1p). One protein was related to the PIR protein family, whereas the remaining three (Scw3p, Scw4p, and Scw10p [for soluble cell wall proteins]) were found to be related to glucanases. Single knockouts of these three potential glucanases did not result in dramatic phenotypes. The double knockout of SCW4 and the homologous gene SCW10 resulted in slower growth, significantly increased release of proteins from intact cells by DTT, and highly decreased mating efficiency when these two genes were disrupted in both mating types. The synergistic behavior of the disruption of SCW4 and SCW10 was partly antagonized by the disruption of BGL2. The data are discussed in terms of a possible counterplay of transglucosidase and glucosidase activities.  相似文献   

8.
The regeneration of the yeast cell-wall was studied using 5-fluorouracil and yeast protoplasts. Protein synthesis in yeast cells (Saccharomyces cerevisiae) was kept reduced in the presence of this inhibitor at a rate corresponding to that before inhibition and was independent on the concentration of the inhibitor (10 or 100 μg/ml). The inhibition of the RNA synthesis was incomplete and dependent on the concentration of the inhibitor. Synthesis of thymidine and DNA was not inhibited as indicated by the growth tests. On the basis of the obtained data it may be concluded that fluorouracil inhibits only thede novo and the induced protein synthesis while permitting protein synthesis that has already been started before inhibition. Fluorouracil was then applied during the regeneration of yeast protoplasts. The results obtained have shown that fluorouracil does not inhibit the synthesis of the yeast cell wall but that the normal course of cell division is impaired by fluorouracil. The low efficiency of the fluorouracil inhibition of the cell wall synthesis indicates that processes leading to the regeneration of the cell wall are in fact only a continuation of those taking place under normal growth conditions.  相似文献   

9.
10.
Although the plasma membrane is the terminal destination for glycosylphosphatidylinositol (GPI) proteins in higher eukaryotes, cell wall-attached GPI proteins (GPI-CWPs) are found in many fungal species. In yeast, some of the cis-requirements directing localization of GPI proteins to the plasma membrane or cell wall are now understood. However, it remains to be determined how Aspergillus fumigatus, an opportunistic fungal pathogen, signals, and sorts GPI proteins to either the plasma membrane or the cell wall. In this study, chimeric green fluorescent proteins (GFPs) were constructed as fusions with putative C-terminal GPI signal sequences from A. fumigatus Mp1p, Gel1p, and Ecm33p, as well as site-directed mutations thereof. By analyzing cellular localization of chimeric GFPs using Western blotting, electron microscopy, and fluorescence microscopy, we showed that, in contrast to yeast, a single Lys residue at the ω-1 or ω-2 site alone could retain GPI-anchored GFP in the plasma membrane. Although the signal for cell wall distribution has not been identified yet, it appeared that the threonine/serine-rich region at the C-terminal half of AfMp1 was not required for cell wall distribution. Based on our results, the cis-requirements directing localization of GPI proteins in A. fumigatus are different from those in yeast.  相似文献   

11.
The effect of Li+ ions as a transformation inducing agent on the yeast cell wall has been studied. Two Saccharomyces cerevisiae strains, p63-DC5 with a native cell wall, and strain XCY42-30D(mnn1) which contains structural changes in the mannan-protein complex, were used. Fourier transform infrared (FT-IR) spectroscopy has been used for the characterization of the yeast strains and for determination of the effect of lithium cations on the cell wall. A comparison of the carbohydrate absorption band positions in the 970–1185 cm?1 range, of Na+ and Li+ treated yeast cells has been estimated. Absorption band positions of the cell wall carbohydrates of p63-DC5 were not influenced by the studied ions. On the contrary, the treatment of XCY42-30D(mnn1) cells with Li+ ions shifted glucan band positions, implying that the cell wall structure of strain XCY42-30D(mnn1) is more sensitive to Li+ ion treatment.  相似文献   

12.
The pH-dependence of the ability of Bgl2p to form fibrils was studied using synthetic peptides with potential amyloidogenic determinants (PADs) predicted in the Bgl2p sequence. Three PADs, FTIFVGV, SWNVLVA and NAFS, were selected on the basis of combination of computational algorithms. Peptides AEGFTIFVGV, VDSWNVLVAG and VMANAFSYWQ, containing these PADs, were synthesized. It was demonstrated that these peptides had an ability to fibrillate at pH values from 3.2 to 5.0. The PAD-containing peptides, except for VDSWNVLVAG, could fibrillate also at pH values from pH 5.0 to 7.6. We supposed that the ability of Bgl2p to form fibrils most likely depended on the coordination of fibrillation activity of the PAD-containing areas and Bgl2p could fibrillate at mild acid and neutral pH values and lose the ability to fibrillate with the increasing of pH values. It was demonstrated that Bgl2p was able to fibrillate at pH value 5.0, to form fibrils of various morphology at neutral pH values and lost the fibrillation ability at pH value 7.6. The results obtained allowed us to suggest a new simple approach for the isolation of Bgl2p from Saccharomyces cerevisiae cell wall.  相似文献   

13.
The amino or carboxy-terminal regions of certain cell wall proteins are capable of anchoring foreign proteins or peptides on the cell wall of the yeast Saccharomyces cerevisiae. This possibility has resulted in the development of a methodology known as yeast display which has powerful applications in biotechnology, pharmacy, and medicine. This work describes the results of experiments in which the agglutinin Aga2p protein is used as an anchor and several leucine-based peptides have been introduced into its N-terminal or C-terminal position. We found that the sequence of these peptides can affect plasmid stability, growth kinetics, and levels of the fusion protein displayed, and we analyzed how the incubation conditions influence these parameters. Besides, we show that the introduction of these small peptides can modify the properties of cell cover; in particular, fusing five or ten leucine residues to the Aga2p protein results in greater hydrophobicity of the cell wall and also in increased resistance to the presence of the organic solvents acetonitrile and ethanol and to high salt concentrations. The introduction of the RLRLL sequence also results in higher resistance to the exposure of yeast cells to NaCl stress.  相似文献   

14.
A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix.  相似文献   

15.
Saccharomyces cerevisiae Sta1 glucoamylase and Saccharomycopsis fibuligera Bgl1 β-glucosidase, two relevant enzymes from a biotechnological point of view, are proteins with multidomain structure. Starting with homology-based structural models of Sta1 and Bgl1, we have constructed a series of hybrid enzymes by interchanging domains of the two proteins. The first purpose of these constructs was to check available hypotheses about the uncertain biological functions of two domains: the serine/threonine-rich domain (STRD) of Sta1 and a β-sandwich domain present in Bgl1 that we have designated fibronectin-like domain (FLD). While, according to the initial hypothesis, proteins carrying the FLD tend to adhere to the cell wall, our results argued against the idea of an involvement of the STRD in protein secretion that stemmed from the presence of similar domains in different proteins secreted by yeast. The second objective of this work was to increase the enzymatic repertoire by generating enzymes with new structural and functional properties.  相似文献   

16.
17.
β-Glucans are the main components of the fungal cell wall. Fission yeast possesses a family of β-glucan synthase-related genes. We describe here the cloning and characterization of bgs3+, a new member of this family. bgs3+ was cloned as a suppressor of a mutant hypersensitive to Echinocandin and Calcofluor White, drugs that interfere with cell wall biosynthesis. Disruption of the gene is lethal, and a decrease in Bgs3p levels leads to rounded cells with thicker walls, slightly reduces the amount of the β-glucan, and raises the amount of α-glucan polymer. These cells finally died. bgs3+ is expressed in vegetative cells grown in different conditions and during mating and germination and is not enhanced by stress situations. Consistent with the observed expression pattern, Bgs3-green fluorescence protein (GFP-Bgs3p) was found at the growing tips during interphase and at the septum prior to cytokinesis, always localized to growth areas. We also found GFP-Bgs3p in mating projections, during the early stages of zygote formation, and at the growing pole during ascospore germination. We conclude that Bgs3p localization is restricted to growth areas and that Bgs3p is a glucan synthase homologue required for cell wall biosynthesis and cell elongation in the fission yeast life cycle.  相似文献   

18.
Rho and Rab family GTPases play a key role in cytoskeletal organization and vesicular trafficking, but the exact mechanisms by which these GTPases regulate polarized cell growth are incompletely understood. A previous screen for genes that interact with CDC42, which encodes a Rho GTPase, found SWF1/PSL10. Here, we show Swf1p, a member of the DHHC-CRD family of palmitoyltransferases, localizes to actin cables and cortical actin patches in Saccharomyces cerevisiae. Deletion of SWF1 results in misorganization of the actin cytoskeleton and decreased stability of actin filaments in vivo. Cdc42p localization depends upon Swf1p primarily after bud emergence. Importantly, we revealed that the actin regulating activity of Swf1p is independent of its DHHC motif. A swf1 mutant, in which alanine substituted for the cysteine required for the palmitoylation activity of DHHC-CRD proteins, displayed wild-type actin organization and Cdc42p localization. Bgl2p-marked exocytosis was found wild type in this mutant, although invertase secretion was impaired. These data indicate Swf1p has at least two distinct functions, one of which regulates actin organization and Bgl2p-marked secretion. This report is the first to link the function of a DHHC-CRD protein to Cdc42p and the regulation of the actin cytoskeleton.  相似文献   

19.
Plant cell growth is limited by the extension of cell walls, which requires both the synthesis and rearrangement of cell wall components in a controlled fashion. The target of rapamycin (TOR) pathway is a major regulator of cell growth in eukaryotes, and inhibition of this pathway by rapamycin reduces cell growth. Here, we show that in plants, the TOR pathway affects cell wall structures. LRR-extensin1 (LRX1) of Arabidopsis thaliana is an extracellular protein involved in cell wall formation in root hairs, and lrx1 mutants develop aberrant root hairs. rol5 (for repressor of lrx1) was identified as a suppressor of lrx1. The functionally similar ROL5 homolog in yeast, Ncs6p (needs Cla4 to survive 6), was previously found to affect TOR signaling. Inhibition of TOR signaling by rapamycin led to suppression of the lrx1 mutant phenotype and caused specific changes to galactan/rhamnogalacturonan-I and arabinogalactan protein components of cell walls that were similar to those observed in the rol5 mutant. The ROL5 protein accumulates in mitochondria, a target of the TOR pathway and major source of reactive oxygen species (ROS), and rol5 mutants show an altered response to ROS. This suggests that ROL5 might function as a mitochondrial component of the TOR pathway that influences the plant''s response to ROS.  相似文献   

20.

Background

The formation of the cell wall in Schizosaccharomyces pombe requires the coordinated activity of enzymes involved in the biosynthesis and modification of β-glucans. The β(1,3)-glucan synthase complex synthesizes linear β(1,3)-glucans, which remain unorganized until they are cross-linked to other β(1,3)-glucans and other cell wall components. Transferases of the GH72 family play important roles in cell wall assembly and its rearrangement in Saccharomyces cerevisiae and Aspergillus fumigatus. Four genes encoding β(1,3)-glucanosyl-transferases -gas1+, gas2+, gas4+ and gas5+- are present in S. pombe, although their function has not been analyzed.

Methodology/Principal Findings

Here, we report the characterization of the catalytic activity of gas1p, gas2p and gas5p together with studies directed to understand their function during vegetative growth. From the functional point of view, gas1p is essential for cell integrity and viability during vegetative growth, since gas1Δ mutants can only grow in osmotically supported media, while gas2p and gas5p play a minor role in cell wall construction. From the biochemical point of view, all of them display β(1,3)-glucanosyl-transferase activity, although they differ in their specificity for substrate length, cleavage point and product size. In light of all the above, together with the differences in expression profiles during the life cycle, the S. pombe GH72 proteins may accomplish complementary, non-overlapping functions in fission yeast.

Conclusions/Significance

We conclude that β(1,3)-glucanosyl-transferase activity is essential for viability in fission yeast, being required to maintain cell integrity during vegetative growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号