首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contact sites between the corticotropin-releasing factor receptor type 1 (CRFR1), the sauvagine (SVG) radioligands [Tyr(0),Gln(1)]SVG ((125)I-YQS) and [Tyr(0),Gln(1), Leu(17)]SVG ((125)I-YQLS) were examined. (125)I-YQLS or (125)I-YQS was cross-linked to CRFR1 using the chemical cross-linker, disuccinimidyl suberate (DSS), which cross-links the epsilon amino groups of lysine residues that have a molecular distance of 11.4 A. DSS specifically and efficiently cross-linked (125)I-YQLS and (125)I-YQS to CRFR1. CRFR1 contains 5 putative extracellular lysine residues (Lys(110), Lys(111), Lys(113), Lys(257), and Lys(262)) that can cross-link to the 4 lysine residues (Lys(16), Lys(22), Lys(25), and Lys(27)) of the radioligands. Identification of the CNBr-cleaved fragments of CRFR1 cross-linked to (125)I-YQLS or (125)I-YQS established that the second extracellular loop of CRFR1 cross-links to Lys(16) of YQS. Additionally, site-directed mutagenesis (changing Lys to Arg in CRFR1 individually and in combination) revealed that Lys(257) in the second extracellular loop of CRFR1 is an important cross-linking site. In conclusion, it was shown that in SVG-bound CRFR1, Lys(257) of CRFR1 lies in close proximity (11.4 A) to Lys(16) of SVG.  相似文献   

2.
We have investigated receptor structural components responsible for ligand-dependent inverse agonism in a constitutively active mutant of the human parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor type 1 (hP1R). This mutant receptor, hP1R-H223R (hP1R(CAM-HR)), was originally identified in Jansen's chondrodysplasia and is altered in transmembrane domain (TM) 2. We utilized the PTHrP analog, [Bpa(2),Ile(5),Trp(23),Tyr(36)]PTHrP-(1-36)-amide (Bpa(2)-PTHrP-(1-36)), which has valine 2 replaced by p-benzoyl-l-phenylalanine (Bpa); this substitution renders the peptide a photoreactive inverse agonist at hP1R(CAM-HR). This analog cross-linked to hP1R(CAM-HR) at two contiguous receptor regions as follows: the principal cross-link site (site A) was between receptor residues Pro(415)-Met(441), spanning the TM6/extracellular loop three boundary; the second cross-link site (site B) was within the TM4/TM5 region. Within the site A interval, substitution of Met(425) to Leu converted Bpa(2)-PTHrP-(1-36) from an inverse agonist to a weak partial agonist; this conversion was accompanied by a relative shift of cross-linking from site A to site B. The functional effect of the M425L mutation was specific for Bpa(2)-containing analogs, as inverse agonism of Bpa(2)-PTH-(1-34) was similarly eliminated, whereas inverse agonism of [Leu(11),d-Trp(12)]PTHrP-(5-36) was not affected. Overall, our data indicate that interactions between residue 2 of the ligand and the extracellular end of TM6 of the hP1R play an important role in modulating the conversion between active and inactive receptor states.  相似文献   

3.
The nonselective human corticotropin-releasing factor (hCRF) receptor 1 (hCRFR1) and the ligand-selective Xenopus CRFR1 (xCRFR1), xCRFR2, and hCRFR2alpha were compared. To understand the interactions of hCRF, ovine CRF (oCRF), rat urocortin (rUcn), and sauvagine, ligands with different affinities for type 1 and type 2 CRFRs, chimeric and mutant receptors of hCRFR1, xCRFR1, hCRFR2alpha, and xCRFR2 were constructed. In cyclic AMP stimulation and CRF-binding assays, it was established that different extracellular regions of CRFR1 and CRFR2 conferred their ligand selectivities. The ligand selectivity of xCRFR1 resided in five N-terminal amino acids, whereas the N-terminus of both CRFR2 proteins did not contribute to their ligand selectivities. Chimeric receptors in which the first extracellular domain of hCRFR1 replaced that of hCRFR2alpha or xCRFR2 showed a similar pharmacological profile to the two parental CRFR2 molecules. Chimeric receptors carrying the N-terminal domain of xCRFR1 linked to hCRFR2alpha or xCRFR2 displayed a novel pharmacological profile. hCRF, rUcn, and sauvagine were bound with high affinity, whereas oCRF was bound with low affinity. Furthermore, when three or five residues of xCRFR1 (Gln76, Gly81, Val83, His88, Leu89; or Gln76, Gly81, Val83) were introduced into receptor chimeras carrying the N-terminus of hCRFR1 linked to xCRFR2, the same novel pharmacology was observed. These data indicate a compensation mechanism of two differentially selecting regions located in different domains of both xCRFR1 and CRFR2.  相似文献   

4.
Molecular models for the interaction of substance P (SP) with its G protein-coupled receptor, the neurokinin-1 receptor (NK-1R), have been developed. The ligand.receptor complex is based on experimental data from a series of photoaffinity labeling experiments and spectroscopic structural studies of extracellular domains of the NK-1R. Using the ligand/receptor contact points derived from incorporation of photolabile probes (p-benzoylphenylalanine (Bpa)) into SP at positions 3, 4, and 8 and molecular dynamics simulations, the topological arrangement of SP within the NK-1R is explored. The model incorporates the structural features, determined by high resolution NMR studies, of the second extracellular loop (EC2), containing contact points Met(174) and Met(181), providing important experimentally based conformational preferences for the simulations. Extensive molecular dynamics simulations were carried out to probe the nature of the two contact points identified for the Bpa(3)SP analogue (Bremer, A. A., Leeman, S. E., and Boyd, N. D. (2001) J. Biol. Chem. 276, 22857-22861), examining modes of ligand binding in which the contact points are fulfilled sequentially or simultaneously. The resulting ligand.receptor complex has the N terminus of SP projecting toward transmembrane helix (TM) 1 and TM2, exposed to the solvent. The C terminus of SP is located in proximity to TM5 and TM6, deeper into the central core of the receptor. The central portion of the ligand, adopting a helical loop conformation, is found to align with the helices of the central regions EC2 and EC3, forming important interactions with both of these extracellular domains. The model developed here allows for atomic insight into the biochemical data currently available and guides targeting of future experiments to probe specific ligand/receptor interactions and thereby furthers our understanding of the functioning of this important neuropeptide system.  相似文献   

5.
Interaction of natural peptide ligands with class 2 GPCRs, which are targets of biologically important hormones such as glucagon, secretin, and corticotropin-releasing factor (CRF), occurs with a common orientation, in that the ligand C-terminus binds to the extracellular receptor N-terminus, whereas the ligand N-terminus binds to the receptor juxtamembrane domain. N-Terminal truncation, by eight amino acids in the case of CRF, leads to antagonists, suggesting those residues constitute the receptor activating sequence. Here, we identified by photoaffinity cross-linking using p-benzoyl-l-phenylalanine (Bpa) analogues of urocortin (Ucn) the most affine CRF receptor agonist, interaction domains of CRF(1) receptor with Bpa residues at exclusive positions. Specific cleavage patterns of the corresponding ligand-receptor complexes, obtained using several cleavage methods in combination with SDS-PAGE for fragment size determination, showed that a Bpa group located N-terminally or in position 12 binds at the second and such in position 17 or 22 at the first extracellular receptor loop. Our results indicate that the very N-terminal ligand residues (1-11), which are responsible for receptor activation, are oriented to the juxtamembrane domain by interaction of amino acid residues 12, 17, and 22. Our findings contradict a recently proposed interaction model derived from ligand interaction with a soluble receptor N-terminus, indicating that conclusions drawn from such a reduced system may be of limited value to understand the interaction with the full-length receptor.  相似文献   

6.
We have identified two basic residues that are important for the recognition of secretin and vasoactive intestinal peptide (VIP) by their respective receptors. These two peptides containing an Asp residue at position 3 interacted with an arginine residue in transmembrane helix 2 (TM2) of the receptor, and the lysine residue in extracellular loop 1 (ECL1) stabilized the active receptor conformation induced by the ligand. The glucagon receptor possesses a Lys instead of an Arg in TM2, and an Ile instead of Lys in ECL1; it markedly prefers a Gln side chain in position 3 of the ligand. Our results suggested that, in the wild-type receptor, the Ile side chain prevented access to the TM2 Lys side chain, but oriented the glucagon Gln(3) side chain to its proper binding site. In the double mutant, the ECL1 Lys allowed an interaction between negatively charged residues in position 3 of glucagon and the TM2 Arg, resulting in efficient receptor activation by [Asp(3)]glucagon as well as by glucagon.  相似文献   

7.
The methionine residues in Tyr-corticotropin-releasing factor (CRF) and Tyr-sauvagine radioligands are subject to oxidation, which renders them biologically inactive. Therefore [Tyr(0,) Gln(1,) Leu(17)]sauvagine (YQLS), in which the methionine was replaced with leucine was synthesized and labeled with (125)Iodine using chloramine-T. Mass spectroscopy revealed that chloramine-T-treatment did not oxidize YQLS. (125)I-YQLS bound with high affinity to cells expressing the murine CRF receptor 1 (CRFR1), CRF receptor 2 (CRFR2), and the mouse brain regions known to express both CRF receptors. (125)I-YQLS chemically cross-linked to CRFR1. In conclusion, (125)I-YQLS is oxidation-resistant, high affinity radioligand that can be chemically cross-linked to the CRF receptors.  相似文献   

8.
An angiotensin II (AngII) peptidic analogue in which the third residue (valine) was substituted with the photoreactive p-benzoyl-L-phenylalanine (Bpa) was used to identify ligand-binding sites of the human AT(1) receptor. High-affinity binding of the analogue, (125)I-[Bpa(3)]AngII, to the AT(1) receptor heterologously expressed in COS-7 cells enabled us to efficiently photolabel the receptor. Chemical and enzymatic digestions of the (125)I-[Bpa(3)]AngII-AT(1) complex were performed, and receptor fragments were analyzed in order to define the region of the receptor with which the ligand interacts. Results show that CNBr hydrolysis of the photolabeled receptor gave a glycosylated fragment which, after PNGase-F digestion, migrated as a 11.4 kDa fragment, circumscribing the labeled domain between residues 143-243 of the AT(1) receptor. Digestion of the receptor-ligand complex with Endo Lys-C or trypsin followed by PNGase-F treatment yielded fragments of 7 and 4 kDa, defining the labeling site of (125)I-[Bpa(3)]AngII within residues 168-199 of the AT(1) receptor. Photolabeling of three mutant receptors in which selected residues adjacent to residue 168 were replaced by methionine within the 168-199 fragment (I172M, T175M, and I177M) followed by CNBr cleavage revealed that the bound photoligand (125)I-[Bpa(3)]AngII forms a covalent bond with the side chain of Met(172) of the second extracellular loop of the AT(1) receptor. These data coupled with previously obtained results enable us to propose a model whereby AngII adopts an extended beta-strand conformation when bound to the receptor and would orient itself within the binding domain by having its N-terminal portion interacting with the second extracellular loop and its C-terminus interacting with residues of the seventh transmembrane domain.  相似文献   

9.
Henry LK  Khare S  Son C  Babu VV  Naider F  Becker JM 《Biochemistry》2002,41(19):6128-6139
Saccharomyces cerevisiae haploid cells communicate with their opposite mating type through peptide pheromones (alpha-factor and a-factor) that activate G protein-coupled receptors (GPCRs). S. cerevisiaewas used as a model system for the study of peptide-responsive GPCRs. Here, we detail the synthesis and characterization of a number of alpha-factor (Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr) pheromone analogues containing the photo-cross-linkable group 4-benzoyl-L-phenylalanine (Bpa). Following characterization, one analogue, [Bpa(1), Tyr(3), Arg(7), Phe(13)]alpha-factor, was radioiodinated and used as a probe for Ste2p, the GPCR for alpha-factor. Binding of the di-iodinated probe was saturable (K(d) = 200 nM) and competable by alpha-factor. Cross-linking into Ste2p was specific for this receptor and reversed by the wild-type pheromone. Chemical and enzymatic cleavage of the receptor/radioprobe complex indicated that cross-linking occurred on a portion of Ste2p spanning residues 251-294 which encompasses transmembrane domain 6, the extracellular loop between transmembrane domains 6 and 7, and transmembrane domain 7. This fragment was verified using T7-epitope-tagged Ste2p and a biotinylated, photoactivatable alpha-factor. After cross-linking with the biotinylated photoprobe and trypsin cleavage, the cross-linked receptor fragment was revealed by both an anti T7-epitope antibody and a biotin probe. This is the first determination of a specific contact region between a Class IV GPCR and its ligand. The results demonstrate that Bpa alpha-factor probes are useful in determining contacts between alpha-factor and Ste2p and initiate mapping of the ligand binding site of this GPCR.  相似文献   

10.
The corticotropin releasing factor receptor 1 (CRFR1) belongs to the superfamily of G-protein coupled receptors. Though CRF is involved in the aetiology of several stress-related disorders, including depression and anxiety, details of CRFR1 regulation such as internalization remain uncharacterized. In the present study, agonist-induced internalization of CRFR1 in HEK293 cells was visualized by confocal microscopy and quantified using the radioligand 125I-labelled sauvagine. Recruitment of beta-arrestin 1 in response to receptor activation was demonstrated by confocal microscopy. The extent of 125I-labelled sauvagine stimulated internalization was significantly impaired by sucrose, indicating the involvement of clathrin-coated pits. No effect on the extent of internalization was observed in the presence of the second messenger dependent kinase inhibitors H-89 and staurosporine, indicating that cAMP-dependent protein kinase and protein kinase C are not prerequisites for CRFR1 internalization. Surprisingly, deletion of all putative phosphorylation sites in the C-terminal tail, as well as a cluster of putative phosphorylation sites in the third intracellular loop, did not affect receptor internalization. However, these mutations almost abolished the recruitment of beta-arrestin 1 following receptor activation. In conclusion, we demonstrate that CRFR1 internalization is independent of phosphorylation sites in the C-terminal tail and third intracellular loop, and the degree of beta-arrestin 1 recruitment.  相似文献   

11.
Recent functional studies have suggested that position 19 in PTH interacts with the portion of the PTH-1 receptor (P1R) that contains the extracellular loops and seven transmembrance helices (TMs) (the J domain). We tested this hypothesis using the photoaffinity cross-linking approach. A PTHrP(1-36) analog and a conformationally constrained PTH(1-21) analog, each containing para-benzoyl-l-phenylalanine (Bpa) at position 19, each cross-linked efficiently to the P1R expressed in COS-7 cells, and digestive mapping analysis localized the cross-linked site to the interval (Leu232-Lys240) at the extracellular end of TM2. Point mutation analysis identified Ala234, Val235, and Lys240 as determinants of cross-linking efficiency, and the Lys240-->Ala mutation selectively impaired the binding of PTH(1-21) and PTH(1-19) analogs, relative to that of PTH(1-15) analogs. The findings support the hypothesis that residue 19 of the receptor-bound ligand contacts, or is close to, the P1R J domain-specifically, Lys240 at the extracellular end of TM2. The findings also support a molecular model in which the 1-21 region of PTH binds to the extracellular face of the P1R J domain as an alpha-helix.  相似文献   

12.
Substance P (SP) belongs to the tachykinin family of bioactive peptides and exerts its many biological effects through functional interaction with its cell-surface, G protein-coupled neurokinin-1 receptor (NK-1R). Previous studies from our laboratory have shown that (125)I-Bolton-Hunter reagent-labeled p-benzoylphenylalanine(8)-SP (Bpa(8)SP) covalently attaches to Met(181), whereas (125)I-Bolton-Hunter reagent-labeled Bpa(4)SP covalently attaches to Met(174), both of which are located on the second extracellular loop (EC2) of the NK-1R. In this study, evidence has been obtained that at equilibrium, the photoreactive SP analogue (125)I-[D-Tyr(0)]Bpa(3)SP covalently labels residues in two distinct extracellular regions of the NK-1R. One site of (125)I-[D-Tyr(0)]Bpa(3)SP photoinsertion is located on EC2 within a segment of the receptor extending from residues 173 to 177; a second site of (125)I-[D-Tyr(0)]Bpa(3)SP photoinsertion is located on the extracellular N terminus within a segment of the receptor extending from residues 11 to 21, a sequence that contains both potential sites for N-linked glycosylation. Since competition binding data presented in this study do not suggest the existence of multiple peptide.NK-1R complexes, it is reasonable to assume that the receptor sequences within EC2 and N terminus identified by peptide mapping are in close proximity in the equilibrium complex.  相似文献   

13.
Efforts to elucidate the nature of the bimolecular interaction of parathyroid hormone (PTH) with its cognate receptor, the PTH receptor type 1 (PTHR1), have relied heavily on benzoylphenylalanine- (Bpa-) based photoaffinity cross-linking. However, given the flexibility, size, and shape of Bpa, the resolution at the PTH-PTHR1 interface appears to be reaching the limit of this technique. Here we employ a disulfide-trapping approach developed by others primarily for use in screening compound libraries to identify novel ligands. In this method, cysteine substitutions are introduced into a specific site within the ligand and a region in the receptor predicted to interact with each other. Upon ligand binding, if these cysteines are in close proximity, they form a disulfide bond. Since the geometry governing disulfide bond formation is more constrained than Bpa cross-linking, this novel approach can be employed to generate a more refined molecular model of the PTH-PTHR1 complex. Using a PTH analogue containing a cysteine at position 1, we probed 24 sites and identified 4 in PTHR1 to which cross-linking occurred. Importantly, previous photoaffinity cross-linking studies using a PTH analogue with Bpa at position 1 only identified a single interaction site. The new sites identified by the disulfide-trapping procedure were used as constraints in molecular dynamics simulations to generate an updated model of the PTH-PTHR1 complex. Mapping by disulfide trapping extends and complements photoaffinity cross-linking. It is applicable to other peptide-receptor interfaces and should yield insights about yet unknown sites of ligand-receptor interactions, allowing for generation of more refined models.  相似文献   

14.
Fish-like calcitonins (CTs), such as salmon CT (sCT), are widely used clinically in the treatment of bone-related disorders; however, the molecular basis for CT binding to its receptor, a class II G protein-coupled receptor, is not well defined. In this study we have used photoaffinity labeling to identify proximity sites between CT and its receptor. Two analogues of the antagonist sCT(8-32) containing a single photolabile p-benzoyl-l-phenylalanine (Bpa) residue in position 8 or 19 were used. Both analogues retained high affinity for the CT receptor and potently inhibited agonist-induced cAMP production. The [Bpa(19)]sCT(8-32) analogue cross-linked to the receptor at or near the equivalent cross-linking site of the full-length peptide, within the fragment Cys(134)-Lys(141) (within the amino terminus of the receptor, adjacent to transmembrane 1) (Pham, V., Wade, J. D., Purdue, B. W., and Sexton, P. M. (2004) J. Biol. Chem. 279, 6720-6729). In contrast, proteolytic mapping and mutational analysis identified Met(49) as the cross-linking site for [Bpa(8)]sCT(8-32). This site differed from the previously identified cross-linking site of the agonist [Bpa(8)]human CT (Dong, M., Pinon, D. I., Cox, R. F., and Miller, L. J. (2004) J. Biol. Chem. 279, 31177-31182) and may provide evidence for conformational differences between interaction with active and inactive state receptors. Molecular modeling suggests that the difference in cross-linking between the two Bpa(8) analogues can be accounted for by a relatively small change in peptide orientation. The model was also consistent with cooperative interaction between the receptor amino terminus and the receptor core.  相似文献   

15.
Using the structure of ET-1 as a template, a series of photosensitive analogs were developed to investigate the binding domain of ETA and ETB receptors. Accordingly, a p-benzoyl-l-phenylalanine (Bpa) residue was introduced into the peptide chain following a pattern aiming at scanning N- to C-terminal portions of the molecule. Among the analogs, those containing a Bpa amino acid in position 7 ([L-Bpa7, Tyr(125I)13]hET-1) or 12 ([Nle7, L-Bpa12, Tyr(125I)13]hET-1) exhibited the capacity to activate both receptors, thus showing that residues Met-7 and Val-12 of ET-1 do not play a key role in the activation process. The binding capacity of the probes was also evaluated on transfected CHO cells overexpressing either ETA or ETB receptors. Subsequently, these photoprobes were used to label ETA and ETB receptors overexpressed in transfected CHO cells. Enzymatic digestions and chemical cleavages were then performed on ligand-receptor complexes and fragments produced by the lysis were analyzed to point out putative interaction areas on the receptors. Results showed that Phe147-Lys166, covering the second segment of EC I and the top part of TM III, contains a contact point for [Nle7, L-Bpa12, Tyr(125I)13]hET-1 on ETA receptors whereas Ile292-Trp319, spanning from the second half of the intracellular loop III up to the middle turns of TM VI, includes a residue that can interact with [L-Bpa7, Tyr(125I)13]hET-1. Moreover, upon binding of [Nle7, L-Bpa12, Tyr(125I)13]hET-1, it was observed that Thr263-Met266 (EC II) of the ETB receptor would come close with the ligand.  相似文献   

16.
The corticotropin-releasing factor (CRF) receptor type 1 (CRFR1) contains five potential N-glycosylation sites: N38, N45, N78, N90, and N98. Cells expressing CRFR1 were treated with tunicamycin to block receptor glycosylation. The nonglycosylated receptor did not bind the radioligand and had a decreased cAMP stimulation potency in response to CRF. To determine which of the polysaccharide chain(s) is/are involved in ligand interaction, the polysaccharide chains were deleted using site-directed mutagenesis of the glycosylation consensus, N-X-S/T. Two sets of mutations were performed for each glycosylation site: N to Q and S/T to A, respectively. The single mutants Q38, Q45, Q78, Q90, Q98, A40, A47, A80, A92, and A100 and the double mutants A40/A47 and A80/A100 were well expressed, bound CRF, sauvagine (SVG), and urotensin-I (UTS-I) with a normal affinity, and increased cAMP accumulation with a high efficiency. In contrast, the combined mutations A80/A92/A100, A40/A80/A92/A100, and A40/A47/A80/A92/A100 had low levels of expression, did not bind the radioligand, and had a decreased cAMP stimulation. These data indicate the requirement for three or more polysaccharide chains for normal CRFR1 function.  相似文献   

17.
The covalent attachment site of a substance P (SP) analogue containing the photoreactive amino acid p-benzoyl-l-phenylalanine (Bpa) in position 8 of the C-terminal portion of the peptide was identified previously as Met-181 on the neurokinin-1 (NK-1) receptor. In this study, a second photoreactive SP analogue, Bpa(4)-SP, in which the Bpa residue is located in the N-terminal portion of the peptide, was used to define further the peptide-receptor interface. The NK-1 receptor expressed in Chinese hamster ovary cells was specifically and efficiently photolabeled with a radioiodinated derivative of Bpa(4)-SP. Fragmentation analysis of the photolabeled receptor restricted the site of photoincorporation of Bpa(4)-SP to an amino acid within the sequence Thr-173 to Arg-177 located on the N-terminal side of the E2 loop. To identify the specific amino acid in this sequence that serves as the covalent attachment site for Bpa(4)-SP, a small photolabeled receptor fragment was generated by chemical cleavage with cyanogen bromide. Matrix-assisted laser desorption/ionization time of flight mass spectrometric analysis of the purified fragment identified a single protonated molecular ion with a molecular mass of 1801.3 +/- 1.8, indicating that upon irradiation, the bound photoligand covalently attaches to the terminal methyl group of a methionine residue. This result, taken together with the results of the peptide mapping studies, establishes that the site of Bpa(4)-SP covalent attachment to the NK-1 receptor is Met-174.  相似文献   

18.
The heptadecapeptide nociceptin, also known as orphanin FQ, is the endogenous agonist of the opioid receptor-like 1 (ORL1) G protein-coupled receptor. An affinity labeling approach has been implemented to probe the interactions of the neuropeptide with the receptor using the photolabile nociceptin derivative, [p-benzoyl-l-Phe(10),Tyr(14)]nociceptin ([Bpa(10),Tyr(14)]noc). In recombinant Chinese hamster ovary cells expressing the human ORL1 receptor, [Bpa(10),Tyr(14)]noc binds the receptor with high affinity (K(i) approximately 0.7 nm) and is as potent as nociceptin in the inhibition of forskolin-induced cAMP synthesis (EC(50) approximately 0.5 nm). UV irradiation at 365 nm of the complex formed by the ORL1 receptor and radioiodinated [Bpa(10),Tyr(14)]noc results in the irreversible labeling of a glycoprotein of approximately 65 kDa, determined by SDS-polyacrylamide gel electrophoresis. Complete digestion of the partially purified 65-kDa complex with kallikrein generates a single labeled fragment (approximately 6.5 kDa) that is readily cleaved by endoproteinase Glu-C to yield a labeled fragment of approximately 3.2 kDa. Kallikrein treatment of the photoaffinity cross-linked Glu(295) --> Asp mutant receptor also yields a single labeled fragment of approximately 6.5 kDa but is resistant to further cleavage by endoproteinase Glu-C. Based upon the expected proteolytic fingerprint of the labeled receptor, the photoreactive region can be identified as ORL1-(296-302; residues Thr-Ala-Val-Ala-Ile-Leu-Arg) spanning the C terminus of extracellular loop 3 and the N terminus of transmembrane helix VII. Molecular modeling of the ORL1 receptor complex with [Bpa(10)]noc suggests that reaction of the Bpa carbonyl group may occur with the side chain of Ile(300) within the experimentally identified photoreactive region.  相似文献   

19.
Photoaffinity labeling is a powerful tool for the characterization of the molecular basis of ligand binding. We recently used this technique to demonstrate the proximity between a residue within the carboxyl-terminal half of a secretin-like ligand and the amino-terminal domain of the secretin receptor (Dong, M., Wang, Y., Pinon, D. I., Hadac, E. M., and Miller, L. J. (1999) J. Biol. Chem. 274, 903-909). In this work, we have developed another novel radioiodinatable secretin analogue ([Bpa6,Tyr10]rat secretin-27) that incorporates a photolabile p-benzoyl-L-phenylalanine (Bpa) residue into position 6 of the amino-terminal half of the ligand and used this to identify a specific receptor residue proximate to it. This probe specifically bound to the secretin receptor with high affinity (IC50 = 13.2 +/- 2.5 nM) and was a potent stimulant of cAMP accumulation in secretin receptor-bearing Chinese hamster ovary-SecR cells (EC50 = 720 +/- 230 pM). It covalently labeled the secretin receptor in a saturable and specific manner. Cyanogen bromide cleavage of this molecule yielded a single labeled fragment that migrated on an SDS-polyacrylamide gel at Mr = 19,000 that shifted to 10 after deglycosylation, most consistent with either of two glycosylated fragments within the amino-terminal tail. By immunoprecipitation with antibody directed to epitope tags incorporated into each of the two candidate fragments, the most distal fragment at the amino terminus was identified as the domain of labeling. The labeled domain was further refined to the first 16 residues by endoproteinase Lys-C cleavage and by cyanogen bromide cleavage of another receptor construct in which Val16 was mutated to Met. Radiochemical sequencing of photoaffinity-labeled secretin receptor fragments established that Val4 was the specific site of covalent attachment. This provides the first residue-residue contact between a secretin ligand and its receptor and will contribute substantially to the molecular understanding of this interaction.  相似文献   

20.
To identify ligand-binding domains of Angiotensin II (AngII) type 1 receptor (AT1), two different radiolabeled photoreactive AngII analogs were prepared by replacing either the first or the last amino acid of the octapeptide by p-benzoyl-L-phenylalanine (Bpa). High yield, specific labeling of the AT1 receptor was obtained with the 125I-[Sar1,Bpa8]AngII analog. Digestion of the covalent 125I-[Sar1,Bpa8]AngII-AT1 complex with V8 protease generated two major fragments of 15.8 kDa and 17.8 kDa, as determined by SDS-PAGE. Treatment of the [Sar1,Bpa8]AngII-AT1 complex with cyanogen bromide produced a major fragment of 7.5 kDa which, upon further digestion with endoproteinase Lys-C, generated a fragment of 3.6 kDa. Since the 7.5-kDa fragment was sensitive to hydrolysis by 2-nitro-5-thiocyanobenzoic acid, we circumscribed the labeling site of 125I-[Sar1,Bpa8]AngII within amino acids 285 and 295 of the AT1 receptor. When the AT1 receptor was photolabeled with 125I-[Bpa1]AngII, a poor incorporation yield was obtained. Cleavage of the labeled receptor with endoproteinase Lys-C produced a glycopeptide of 31 kDa, which upon deglycosylation showed an apparent molecular mass of 7.5 kDa, delimiting the labeling site of 125I-[Bpa1]AngII within amino acids 147 and 199 of the AT1 receptor. CNBr digestion of the hAT1 I165M mutant receptor narrowed down the labeling site to the fragment 166-199. Taken together, these results indicate that the seventh transmembrane domain of the AT1 receptor interacts strongly with the C-terminal amino acid of [Sar1, Bpa8]AngII interacts with the second extracellular loop of the AT1 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号