首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The c-myc proto-oncogene, which is crucial for the progression of many human cancers, has been implicated in key cellular processes in diverse cell types, including endothelial cells that line the blood vessels and are critical for angiogenesis. The de novo differentiation of endothelial cells is known as vasculogenesis, whereas the growth of new blood vessels from pre-existing vessels is known as angiogenesis. To ascertain the function of c-myc in vascular development, we deleted c-myc in selected cell lineages. Embryos lacking c-myc in endothelial and hematopoietic lineages phenocopied those lacking c-myc in the entire embryo proper. At embryonic day (E) 10.5, both mutant embryos were grossly normal, had initiated primitive hematopoiesis, and both survived until E11.5-12.5, longer than the complete null. However, they progressively developed defective hematopoiesis and angiogenesis. The majority of embryos lacking c-myc specifically in hematopoietic cells phenocopied those lacking c-myc in endothelial and hematopoietic lineages, with impaired definitive hematopoiesis as well as angiogenic remodeling. c-myc is required for embryonic hematopoietic stem cell differentiation, through a cell-autonomous mechanism. Surprisingly, c-myc is not required for vasculogenesis in the embryo. c-myc deletion in endothelial cells does not abrogate endothelial proliferation, survival, migration or capillary formation. Embryos lacking c-myc in a majority of endothelial cells can survive beyond E12.5. Our findings reveal that hematopoiesis is a major function of c-myc in embryos and support the notion that c-myc functions in selected cell lineages rather than in a ubiquitous manner in mammalian development.  相似文献   

3.
The ability of embryonic stem cells to differentiate into endothelium and form functional blood vessels has been well established and can potentially be harnessed for therapeutic angiogenesis. However, after almost two decades of investigation in this field, limited knowledge exists for directing endothelial differentiation. A better understanding of the cellular mechanisms regulating vasculogenesis is required for the development of embryonic stem cell-based models and therapies. In this study, we elucidated the mechanistic role of insulin-like growth factors (IGF1 and 2) and IGF receptors (IGFR1 and 2) in endothelial differentiation using an embryonic stem cell embryoid body model. Both IGF1 or IGF2 predisposed embryonic stem to differentiate towards a mesodermal lineage, the endothelial precursor germ layer, as well as increased the generation of significantly more endothelial cells at later stages. Inhibition of IGFR1 signaling using neutralizing antibody or a pharmacological inhibitor, picropodophyllin, significantly reduced IGF-induced mesoderm and endothelial precursor cell formation. We confirmed that IGF-IGFR1 signaling stabilizes HIF1α and leads to up-regulation of VEGF during vasculogenesis in embryoid bodies. Understanding the mechanisms that are critical for vasculogenesis in various models will bring us one step closer to enabling cell based therapies for neovascularization.  相似文献   

4.
5.
While recent findings have established that cells derived from the bone marrow can contribute to vasculogenesis in the adult, it is unclear whether an analogous population of cells in the embryo can also contribute to vasculogenesis. Using a retroviral labeling strategy, we demonstrate that circulating blood island-derived cells contribute to the genesis of both extra- and intraembryonic blood vessels in the early quail embryo. This finding establishes that vasculogenesis in the embryo is a composite of two processes: the direct in situ formation of blood vessels from mesodermally derived angioblasts and the incorporation and differentiation of circulating endothelial cell progenitors into forming embryonic blood vessels.  相似文献   

6.
胚胎的早期发育是在低氧条件下进行的,低氧环境在胚胎血管发生及造血发育中起着重要作用,低氧条件能促进胚胎干细胞在体外向内皮细胞和造血细胞的分化,但低氧条件对造血细胞产生的具体作用及相应机制尚不清楚.本研究利用人Es细胞向造血祖细胞定向分化体系,发现低氧环境可以促进CD31+TIE2+造血内皮祖细胞的产生,2天后造血内皮祖细胞开始表达终生造血基因.进一步研究发现,低氧能够上调Wnt5a的表达,干涉Wnt5a能够抑制低氧环境对生血内皮细胞分化的促进作用.在正常氧环境下加入Wnt5a产生促进生血内皮细胞分化的效应,该效应与低氧处理促进生血内皮细胞产生的作用相似.本研究首次证明了低氧通过上调Wnt5a的表达促进人Es细胞向生血内皮细胞的分化,为ES细胞向生血内皮细胞的分化及造血祖细胞分化的研究提供了新的线索.  相似文献   

7.
In vitro studies suggest intact endothelial cells and their released growth factors are required for optimal growth and differentiation of hematopoietic cells in culture. Conversely, processes that damage endothelium might, therefore, suppress hematopoiesis. We have studied mechanisms by which stimulated inflammatory cells, particularly granulocytes, damage endothelium and suggest these studies may provide new insights into the hematopoietic suppression of inflammatory diseases. We demonstrate that the granulocyte lysosomal constituent, lactoferrin, which has independently been shown to inhibit in-vitro hematopoiesis, may act by amplifying granulocyte-mediated toxic oxidant damage to endothelium. Its deleterious effects are twofold: 1) it releases iron that catalyses the Haber-Weiss reaction, thereby producing highly toxic hydroxyl radicals; and 2) its highly positive charge facilitates its absorption to target membranes that traffics oxygen-radical damage directly to endothelium. In addition, we demonstrate that another granulocyte lysosomal component, elastase, also perturbs endothelium--not so much by direct lytic effect, but by proteolysing matrix proteins that serve to attach endothelium to its substratum. Thus, elastase promotes endothelial lift-off. Plasma alpha-1-antiproteinase, a potent antielastase, should be protective, but is inactivated by the same granulocyte oxidants that directly lyse endothelial cells. However, antielastase activity can be preserved by antioxidants and a novel, innocuous one--methionine--is described. It is oxidized as a surrogate for the critical-site methionine of alpha-1-proteinase inhibitor, preserving in the process antielastase activity. Our results suggest that strategies to reduce production of inflammatory cell toxic oxygen radicals with reagents such as antilactoferrin antibody or iron chelators might be useful adjuncts in maintaining in vitro hematopoiesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Endothelial progenitor cells: A source for therapeutic vasculogenesis?   总被引:16,自引:0,他引:16  
Angiogenesis has been defined as sprouting of blood vessels from pre-existing vascular structures. Risau and co-workers defined the term vasculogenesis while studying the formation of new blood vessels in embryoid bodies. This process is characterized by the recruitment of endothelial progenitor cells (EPC) to sites of new vessel formation with subsequent differentiation of EPC into mature endothelial cells, extensively proliferating in situ. Data from recent years provided evidence that EPC also exist in the adult and contribute to new vessel formation, a process called post-natal vasculogenesis. The existence of EPC has been convincingly shown in both, animals and humans. They represent a perfect cellular progenitor cell population for the ex vivo generation of EC, which in turn serve as cellular source for therapeutic vasculogenesis or tumor targeting. This review provides an overview on this hot topic of cellular-based therapeutic concepts and the therapeutic potential of ex vivo generated EPC.  相似文献   

9.
The study of endothelial development has been intertwined with hematopoiesis since the early 20th century when a bi-potential cell (hemangioblast) was noted to produce both endothelial and hematopoietic cells. Since then, ideas regarding the nature of connection between the vascular and hematopoietic systems have ranged from a tenuous association to direct lineage origination. In this review, historical data that spans hematopoietic development is examined within the context of hemogenic endothelium. Hemogenic endothelium, a specialized endothelial population capable of hematopoiesis, is an emerging theory that has recently gained momentum. Evidence across species and decades are reviewed, as are the possible modulators of the phenomenon, which include pathways that specify definitive hematopoiesis (Runx1), arterial identity (Notch1), as well as physiological and developmental factors.  相似文献   

10.
Vascular endothelial cells are critical for the development and function of the mammalian circulatory system. We have analyzed the role of the endothelial cell-specific receptor tyrosine kinase TIE in the mouse vasculature. Mouse embryos homozygous for a disrupted Tie allele developed severe edema, their microvasculature was ruptured and they died between days 13.5 and 14.5 of gestation. The major blood vessels of the homozygous embryos appeared normal. Cells lacking a functional Tie gene were unable to contribute to the adult kidney endothelium in chimeric animals, further demonstrating the intrinsic requirement for TIE in endothelial cells. We conclude that TIE is required during embryonic development for the integrity and survival of vascular endothelial cells, particularly in the regions undergoing angiogenic growth of capillaries. TIE is not essential, however, for vasculogenesis, the early differentiation of endothelial cells.  相似文献   

11.
HoxA3 is an apical regulator of haemogenic endothelium   总被引:1,自引:0,他引:1  
  相似文献   

12.
Blood vessels form either by the assembly and differentiation of mesodermal precursor cells (vasculogenesis) or by sprouting from preexisting vessels (angiogenesis). Endothelial-specific receptor tyrosine kinases and their ligands are known to be essential for these processes. Targeted disruption of vascular endothelial growth factor (VEGF) or its receptor kdr (flk1, VEGFR2) in mouse embryos results in a severe reduction of all blood vessels, while the complete loss of flt1 (VEGFR1) leads to an increased number of hemangioblasts and a disorganized vasculature. In a large-scale forward genetic screen, we identified two allelic zebrafish mutants in which the sprouting of blood vessels is specifically disrupted without affecting the assembly and differentiation of angioblasts. Molecular cloning revealed nonsense mutations in flk1. Analysis of mRNA expression in flk1 mutant embryos showed that flk1 expression was severely downregulated, while the expression of other genes (scl, gata1, and fli1) involved in vasculogenesis or hematopoiesis was unchanged. Overexpression of vegf(121+165) led to the formation of additional vessels only in sibling larvae, not in flk1 mutants. We demonstrate that flk1 is not required for proper vasculogenesis and hematopoiesis in zebrafish embryos. However, the disruption of flk1 impairs the formation or function of vessels generated by sprouting angiogenesis.  相似文献   

13.
Ras proteins are small GTPases that regulate cellular growth and differentiation. Components of the Ras signaling pathway have been shown to be important during embryonic vasculogenesis and angiogenesis. Here, we report that Rasip1, which encodes a novel Ras-interacting protein, is strongly expressed in vascular endothelial cells throughout development, in both mouse and frog. Similar to the well-characterized vascular markers VEGFR2 and PECAM, Rasip1 is specifically expressed in angioblasts prior to vessel formation, in the initial embryonic vascular plexus, in the growing blood vessels during angiogenesis and in the endothelium of mature blood vessels into the postnatal period. Rasip1 expression is undetectable in VEGFR2 null embryos, which lack endothelial cells, suggesting that Rasip1 is endothelial specific. siRNA-mediated reduction of Rasip1 severely impairs angiogenesis and motility in endothelial cell cultures, and morpholino knockdown experiments in frog embryos demonstrate that Rasip1 is required for embryonic vessel formation in vivo. Together, these data identify Rasip1 as a novel endothelial factor that plays an essential role in vascular development.  相似文献   

14.
The renal endothelium has been debated as arising from resident hemangioblast precursors that transdifferentiate from the nephrogenic mesenchyme (vasculogenesis) and/or from invading vessels (angiogenesis). While the Foxd1-positive renal cortical stroma has been shown to differentiate into cells that support the vasculature in the kidney (including vascular smooth muscle and pericytes) it has not been considered as a source of endothelial cell progenitors. In addition, it is unclear if Foxd1-positive mesenchymal cells in other organs such as the lung have the potential to form endothelium. This study examines the potential for Foxd1-positive cells of the kidney and lung to give rise to endothelial progenitors. We utilized immunofluorescence (IF) and fluorescence-activated cell sorting (FACS) to co-label Foxd1-expressing cells (including permanently lineage-tagged cells) with endothelial markers in embryonic and postnatal mice. We also cultured FACsorted Foxd1-positive cells, performed in vitro endothelial cell tubulogenesis assays and examined for endocytosis of acetylated low-density lipoprotein (Ac-LDL), a functional assay for endothelial cells. Immunofluorescence and FACS revealed that a subset of Foxd1-positive cells from kidney and lung co-expressed endothelial cell markers throughout embryogenesis. In vitro, cultured embryonic Foxd1-positive cells were able to differentiate into tubular networks that expressed endothelial cell markers and were able to endocytose Ac-LDL. IF and FACS in both the kidney and lung revealed that lineage-tagged Foxd1-positive cells gave rise to a significant portion of the endothelium in postnatal mice. In the kidney, the stromal-derived cells gave rise to a portion of the peritubular capillary endothelium, but not of the glomerular or large vessel endothelium. These findings reveal the heterogeneity of endothelial cell lineages; moreover, Foxd1-positive mesenchymal cells of the developing kidney and lung are a source of endothelial progenitors that are likely critical to patterning the vasculature.  相似文献   

15.
Both endothelial and erythroid cells are generated in the intermediate cell mass (ICM) during zebrafish embryogenesis, but the nature of the genes that contribute to the processes of erythrocyte maturation and blood vessel network formation is not fully understood. From our in situ-based screening, we have identified a novel factor, Vap (Vascular Associated Protein) that is predominantly expressed in the ICM, and subsequently enriched in endothelial cells. Vap expression in the ICM was drastically suppressed in the cloche mutant that has defects in both vasculogenesis and hematopoiesis, whereas Vap expression was not affected in the vlad tepes/gata1 mutant. Knockdown of Vap using anti-sense morpholinos (VAP-MO) not only resulted in decreased numbers of erythrocytes but also in the strong suppression of hemoglobin production. Further, we found that Vap knockdown caused the disorganization of the intersegmental vessels (ISVs), which show irregular branching. We propose that Vap plays an important role in the maturation of endothelial and erythroid cells in zebrafish.  相似文献   

16.
Two mechanisms account for the formation of blood vessels, vasculogenesis and angiogenesis. Unfortunately, the terms vasculogenesis and angiogenesis literally have the same meaning, i.e., the genesis of blood vessels, and thus do little to distinguish between the two processes. Despite the nomenclature, the two processes are clearly distinct. Vasculogenesis, the de novo formation of blood vessels from mesoderm, is driven by the recruitment of undifferentiated mesodermal cells to the endothelial lineage and the de novo assembly of such cells into blood vessels. Angiogenesis is the generation of new blood vessels from endothelial cells of existing blood vessels, a process driven by endothelial cell proliferation. Recent years have seen dramatic changes in our understanding of the process of vasculogenesis, expanding the scope of its occurrence beyond the earliest stages of development to include involvement in neovascular processes throughout development as well as in the adult. In this review, emphasis is placed on discussion of emerging perspectives on the process of vasculogenesis in both the embryo and the adult.  相似文献   

17.
Postnatal vasculogenesis   总被引:7,自引:0,他引:7  
It is generally accepted that vasculogenesis is limited to early embryogenesis and is believed not to occur in adult, whereas angiogenesis occurs in both the developing embryo and postnatal life. However, the distinction between them is not absolute, because both require endothelial cell proliferation and migration and three-dimensional reorganization of newly formed blood vessels, nor are they mutually exclusive, inasmuch as angioblasts can be incorporated into expanding pre-existing blood vessels. Recent observations indicate that vasculogenesis may not be restricted to early embryogenesis, but may also have a physiological role or contribute to the pathology of vascular diseases in adults. The major evidence in favor of this new view comes from: (i) demonstration of the presence of circulating endothelial cells and endothelial precursor cells; (ii) newly described mechanisms of blood vessel formation in tumor growth. The potential biomedical applications of endothelial precursor cells and the new opportunities for the development of new forms of tumor-targeted treatments are discussed.  相似文献   

18.
Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies   总被引:48,自引:0,他引:48  
Embryonic stem cells (ESC) have been established previously from the inner cell mass cells of mouse blastocysts. In suspension culture, they spontaneously differentiate to blood-island-containing cystic embryoid bodies (CEB). The development of blood vessels from in situ differentiating endothelial cells of blood islands, a process which we call vasculogenesis, was induced by injecting ESC into the peritoneal cavity of syngeneic mice. In the peritoneum, fusion of blood islands and formation of an in vivo-like primary capillary plexus occurred. Transplantation of ESC and ESC-derived complex and cystic embryoid bodies (ESC-CEB) onto the quail chorioallantoic membrane (CAM) induced an angiogenic response, which was directed by nonyolk sac endoderm structures. Neither yolk sac endoderm from ESC-CEB nor normal mouse yolk sac tissue induced angiogenesis on the quail CAM. Extracts from ESC-CEB stimulated the proliferation of capillary endothelial cells in vitro. Mitogenic activity increase during in vitro culture and differentiation of ESC. Almost all growth factor activity was associated with the cells. The ESC-CEB derived endothelial cell growth factor bound to heparin-sepharose. The identification of acidic fibroblast growth factor (FGF)in heparin-sepharose-purified material was accomplished by immunoblot experiments involving antibodies against acidic and basic FGF. We conclude that vasculogenesis, the development of blood vessels from in situ differentiating endothelial cells, and angiogenesis, the sprouting of capillaries from preexisting vessels are very early events during embryogenesis which can be studied using ESC differentiating in vitro. Our results suggest that vasculogenesis and angiogenesis are differently regulated.  相似文献   

19.
Blood and vascular endothelial cells form in all vertebrates during gastrulation, a process in which the mesoderm of the embryo is induced and then patterned by molecules whose identity is still largely unknown. Blood islands' of primitive hematopoietic cell clusters surrounded by a layer of endothelial cells form in the yolk sac, external to the developing embryo proper. These lineages arise from a layer of extraembryonic mesoderm that is closely apposed with a layer of primitive (visceral) endoderm. Despite the identification of genes such as Flk1, SCL/tal-1, Cbfa2/Runx1/AML1 and CD34 that are expressed during the induction of primitive hematopoiesis and vasculogenesis, the early molecular and cellular events involved in these processes are not well understood. Recent work has demonstrated that extracellular signals secreted by visceral endoderm surrounding the embryo are essential for the initiation of these events. A member of the Hedgehog family of signaling molecules (Indian hedgehog) is produced by visceral endoderm, can induce formation of blood and endothelial cells in explant cultures and can reprogram prospective neurectoderm along hematopoietic and endothelial cell lineages. Hedgehog proteins also stimulate proliferation of definitive hematopoietic stem/progenitor cells. These findings may have important implications for regulating hematopoiesis and vascular development for therapeutic purposes in humans and for the development of new sources of stem cells for transplantation and gene therapy.  相似文献   

20.
The use of stem cells as a vehicle of therapeutic genes is an attractive approach for the development of new antitumoral strategies based on gene therapy. The aim of our study was to assess the potential of bone marrow-derived Multipotent Adult Progenitor Cells (rMAPCs) to differentiate in vitro and in vivo into endothelial cells and to be recruited to areas of tumor vasculogenesis. In vitro, rMAPCs obtained from Buffalo rats differentiated into cells expressing endothelial markers and demonstrated functional endothelial capacity. Intravenous injection of undifferentiated rMAPC transduced with a lentivirus expressing GFP in an orthotopic rat model of hepatocellular carcinoma, resulted in tumor recruitment of the injected cells and in vivo differentiation into endothelial cells in the tumor area with contribution to vasculogenesis. In summary, our results suggest that rMAPCs can be efficiently recruited by vascularized tumors and differentiate to endothelium and thus may represent a useful vehicle for delivery of therapeutic genes to sites of active tumor neovascularization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号