首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The family of calcium binding proteins called KChIPs associates with Kv4 family K(+) channels and modulates their biophysical properties. Here, using mutagenesis and X-ray crystallography, we explore the interaction between Kv4 subunits and KChIP1. Two regions in the Kv4.2 N terminus, residues 7-11 and 71-90, are necessary for KChIP1 modulation and interaction with Kv4.2. When inserted into the Kv1.2 N terminus, residues 71-90 of Kv4.2 are also sufficient to confer association with KChIP1. To provide a structural framework for these data, we solved the crystal structures of Kv4.3N and KChIP1 individually. Taken together with the mutagenesis data, the individual structures suggest that that the Kv4 N terminus is required for stable association with KChIP1, perhaps through a hydrophobic surface interaction, and that residues 71-90 in Kv4 subunits form a contact loop that mediates the specific association of KChIPs with Kv4 subunits.  相似文献   

2.
KChIP proteins regulate Shal, Kv4.x, channel expression by binding to a conserved sequence at the N terminus of the subunit. The binding of KChIP facilitates a redistribution of Kv4 protein to the cell surface, producing a large increase in current along with significant changes in channel gating kinetics. Recently we have shown that mutants of Kv4.2 lacking the ability to bind an intersubunit Zn(2+) between their T1 domains fail to form functional channels because they are unable to assemble to tetramers and remain trapped in the endoplasmic reticulum. Here we find that KChIPs are capable of rescuing the function of Zn(2+) site mutants by driving the mutant subunits to assemble to tetramers. Thus, in addition to known trafficking effects, KChIPs play a direct role in subunit assembly by binding to monomeric subunits within the endoplasmic reticulum and promoting tetrameric channel assembly. Zn(2+)-less Kv4.2 channels expressed with KChIP3 demonstrate several distinct kinetic changes in channel gating, including a reduced time to peak and faster entry into the inactivated state as well as extending the time to recover from inactivation by 3-4 fold.  相似文献   

3.
Association of Kv channel-interacting proteins (KChIPs) with Kv4 channels leads to modulation of these A-type potassium channels (An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000) Nature 403, 553-556). We cloned a KChIP2 splice variant (KChIP2.2) from human ventricle. In comparison with KChIP2.1, coexpression of KChIP2.2 with human Kv4 channels in mammalian cells slowed the onset of Kv4 current inactivation (2-3-fold), accelerated the recovery from inactivation (5-7-fold), and shifted Kv4 steady-state inactivation curves by 8-29 mV to more positive potentials. The features of Kv4.2/KChIP2.2 currents closely resemble those of cardiac rapidly inactivating transient outward currents. KChIP2.2 stimulated the Kv4 current density in Chinese hamster ovary cells by approximately 55-fold. This correlated with a redistribution of immunoreactivity from perinuclear areas to the plasma membrane. Increased Kv4 cell-surface expression and current density were also obtained in the absence of KChIP2.2 when the highly conserved proximal Kv4 N terminus was deleted. The same domain is required for association of KChIP2.2 with Kv4 alpha-subunits. We propose that an efficient transport of Kv4 channels to the cell surface depends on KChIP binding to the Kv4 N-terminal domain. Our data suggest that the binding is necessary, but not sufficient, for the functional activity of KChIPs.  相似文献   

4.
KChIPs are a family of Kv4 K(+) channel ancillary subunits whose effects usually include slowing of inactivation, speeding of recovery from inactivation, and increasing channel surface expression. We compared the effects of the 270 amino acid KChIP2b on Kv4.3 and a Kv4.3 inner pore mutant [V(399, 401)I]. Kv4.3 showed fast inactivation with a bi-exponential time course in which the fast time constant predominated. KChIP2b expressed with wild-type Kv4.3 slowed the fast time constant of inactivation; however, the overall rate of inactivation was faster due to reduction of the contribution of the slow inactivation phase. Introduction of [V(399, 401)I] slowed both time constants of inactivation less than 2-fold. Inactivation was incomplete after 20s pulse durations. Co-expression of KChIP2b with Kv4.3 [V(399, 401)I] slowed inactivation dramatically. KChIP2b increased the rate of recovery from inactivation 7.6-fold in the wild-type channel and 5.7-fold in Kv4.3 [V(399,401)I]. These data suggest that inner pore structure is an important factor in the modulatory effects of KChIP2b on Kv4.3 K(+) channels.  相似文献   

5.
K channelinteracting proteins (KChIPs) enhance functional expression of Kv4 channels by binding to an N‐terminal regulatory region located in the first 40 amino acids of Kv4.2 that we call the functional expression regulating N‐terminal (FERN) domain. Mutating two residues in the FERN domain to alanines, W8A and F11A, disrupts KChIP binding and regulation of Kv4.2 without eliminating the FERN domain's control of basal expression level or regulation by DPP6. When Kv4.2(W8A,F11A) is co‐expressed with wild type Kv4.2 and KChIP3 subunits, a dominant negative effect is seen where the current expression is reduced to levels normally seen without KChIP addition. The dominant negative effect correlates with heteromultimeric channels remaining on intracellular membranes despite KChIP binding to non‐mutant Kv4.2 subunits. In contrast, the deletion mutant Kv4.2(Δ1‐40), eliminating both KChIP binding and the FERN domain, has no dominant negative effect even though the maximal conductance level is 5x lower than seen with KChIP3. The 5x increased expression seen with KChIP integration into the channel is fully apparent even when a reduced number of KChIP subunits are incorporated as long as all FERN domains are bound. Our results support the hypothesis that KChIPs enhances Kv4.2 functional expression by a 1 : 1 suppression of the N‐terminal FERN domain and by producing additional positive regulatory effects on functional channel expression.  相似文献   

6.
Kv channel-interacting proteins (KChIPs) and neuronal calcium sensor-1 (NCS-1) have been shown to interact with Kv4 channel alpha-subunits to regulate the expression and/or gating of these channels. Here we examine the specificity and sites of these proteins for interaction with Kv channel proteins. Immunoprecipitation and green fluorescent protein imaging show that KChIPs (but not NCS-1) effectively bind to Kv4.3 protein and localize at the plasma membrane when channel proteins are coexpressed. Analysis with chimeric proteins between KChIP2 and NCS-1 reveals that the three regions of KChIP2 (the linker between the first and second EF hands, the one between the third and fourth EF hands, and the C-terminal peptide after the fourth EF hand) are necessary and sufficient for its effective binding to Kv4.3 protein. The chimera with these three KChIP2 portions slowed inactivation and facilitated recovery from inactivation of Kv4.3 current. These results indicate that the sequence difference in these three regions between KChIPs and NCS-1 determines the specificity and affinity for interaction with Kv4 protein. Because the three identified regions surround the large hydrophobic crevice based on the NCS-1 crystal structure, this crevice may be the association site of KChIPs for the channel protein.  相似文献   

7.
Potassium channel-interacting proteins (KChIPs) are EF-hand calcium-binding proteins of the recoverin/neuronal calcium sensor 1 family that co-assemble with the pore-forming Kv4 alpha-subunits and thus control surface trafficking of the voltage-gated potassium channels mediating the neuronal I(A) and cardiac I(to) currents. Different from the other KChIPs, KChIP4a largely reduces surface expression of the Kv4 channel complexes. Using solution NMR we show that the unique N terminus of KChIP4a forms a 6-turn alpha-helix that is connected to the highly conserved core of the KChIP protein via a solvent-exposed linker. As identified by chemical shift changes, N-terminal alpha-helix and core domain of KChIP4a interact with each other through the same hydrophobic surface pocket that is involved in intermolecular interaction between the N-terminal helix of Kv4alpha and KChIP in Kv4-KChIP complexes. Electrophysiological recordings and biochemical interaction assays of complexes formed by wild-type and mutant Kv4alpha and KChIP4a proteins suggest that competition of these two helical domains for the surface groove is responsible for the reduced trafficking of Kv4-KChIP4a complexes to the plasma membrane. Surface expression of Kv4 complexes may thus be controlled by an auto-inhibitory domain in the KChIP subunit.  相似文献   

8.
Rapidly activating and inactivating somatodendritic voltage-gated K(+) (Kv) currents, I(A), play critical roles in the regulation of neuronal excitability. Considerable evidence suggests that native neuronal I(A) channels function in macromolecular protein complexes comprising pore-forming (α) subunits of the Kv4 subfamily together with cytosolic, K(+) channel interacting proteins (KChIPs) and transmembrane, dipeptidyl peptidase 6 and 10 (DPP6/10) accessory subunits, as well as other accessory and regulatory proteins. Several recent studies have demonstrated a critical role for the KChIP subunits in the generation of native Kv4.2-encoded channels and that Kv4.2-KChIP complex formation results in mutual (Kv4.2-KChIP) protein stabilization. The results of the experiments here, however, demonstrate that expression of DPP6 in the mouse cortex is unaffected by the targeted deletion of Kv4.2 and/or Kv4.3. Further experiments revealed that heterologously expressed DPP6 and DPP10 localize to the cell surface in the absence of Kv4.2, and that co-expression with Kv4.2 does not affect total or cell surface DPP6 or DPP10 protein levels. In the presence of DPP6 or DPP10, however, cell surface Kv4.2 protein expression is selectively increased. Further addition of KChIP3 in the presence of DPP10 markedly increases total and cell surface Kv4.2 protein levels, compared with cells expressing only Kv4.2 and DPP10. Taken together, the results presented here demonstrate that the expression and localization of the DPP accessory subunits are independent of Kv4 α subunits and further that the DPP6/10 and KChIP accessory subunits independently stabilize the surface expression of Kv4.2.  相似文献   

9.
In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K+ channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1–4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12–17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19–21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.  相似文献   

10.
Kv4 potassium channels regulate action potentials in neurons and cardiac myocytes. Co-expression of EF hand-containing Ca2+-binding proteins termed KChIPs with pore-forming Kv4 alpha subunits causes changes in the gating and amplitude of Kv4 currents (An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000) Nature 403, 553-556). Here we show that KChIPs profoundly affect the intracellular trafficking and molecular properties of Kv4.2 alpha subunits. Co-expression of KChIPs1-3 causes a dramatic redistribution of Kv4.2, releasing intrinsic endoplasmic reticulum retention and allowing for trafficking to the cell surface. KChIP co-expression also causes fundamental changes in Kv4.2 steady-state expression levels, phosphorylation, detergent solubility, and stability that reconstitute the molecular properties of Kv4.2 in native cells. Interestingly, the KChIP4a isoform, which exhibits unique effects on Kv4 channel gating, does not exert these effects on Kv4.2 and negatively influences the impact of other KChIPs. We provide evidence that these KChIP effects occur through the masking of an N-terminal Kv4.2 hydrophobic domain. These studies point to an essential role for KChIPs in determining both the biophysical and molecular characteristics of Kv4 channels and provide a molecular basis for the dramatic phenotype of KChIP knockout mice.  相似文献   

11.
To prove heteromeric assembly of KChIP proteins, the present study is carried out. The results of chemical crosslinking and pull down assay revealed that KChIP1, KChIP2.1, and KChIP2.2 could form homo- as well as hetero-oligomer, and this oligomerization exhibited a Ca(2+)-dependent manner. Moreover, homomeric and heteromeric assembly of KChIPs did not perturb their interaction with Kv4.2 K(+) channel, indicating that the region associated with oligomerization of KChIPs was distinct from that for binding with Kv4.2. Together with previous findings that the net effects of KChIP proteins on the molecular properties and trafficking of Kv channel were different, these observations open a fascinating possibility that the electrophysiological properties of Kv channel may be differently regulated by homomeric and heteromeric assembly of KChIPs.  相似文献   

12.
DPP10 is an inactivation modulatory protein of Kv4.3 and Kv1.4   总被引:3,自引:0,他引:3  
Voltage-gated K+ channels exist in vivo as multiprotein complexes made up of pore-forming and ancillary subunits. To further our understanding of the role of a dipeptidyl peptidase-related ancillary subunit, DPP10, we expressed it with Kv4.3 and Kv1.4, two channels responsible for fast-inactivating K+ currents. Previously, DPP10 has been shown to effect Kv4 channels. However, Kv1.4, when expressed with DPP10, showed many of the same effects as Kv4.3, such as faster time to peak current and negative shifts in the half-inactivation potential of steady-state activation and inactivation. The exception was recovery from inactivation, which is slowed by DPP10. DPP10 expressed with Kv4.3 caused negative shifts in both steady-state activation and inactivation of Kv4.3, but no significant shifts were detected when DPP10 was expressed with Kv4.3 + KChIP2b (Kv channel interacting protein). DPP10 and KChIP2b had different effects on closed-state inactivation. At –60 mV, KChIP2b nearly abolishes closed-state inactivation in Kv4.3, whereas it developed to a much greater extent in the presence of DPP10. Finally, expression of a DPP10 mutant consisting of its transmembrane and cytoplasmic 58 amino acids resulted in effects on Kv4.3 gating that were nearly identical to those of wild-type DPP10. These data show that DPP10 and KChIP2b both modulate Kv4.3 inactivation but that their primary effects are on different inactivation states. Thus DPP10 may be a general modulator of voltage-gated K+ channel inactivation; understanding its mechanism of action may lead to deeper understanding of the inactivation of a broad range of K+ channels. potassium channel inactivation; potassium channel ancillary subunits; closed-state inactivation; voltage-gated potassium channels  相似文献   

13.
Ping Liang 《Biophysical journal》2010,98(12):2867-2876
KChIP4a shows a high homology with other members of the family of Kv channel-interacting proteins (KChIPs) in the conserved C-terminal core region, but exhibits a unique modulation of Kv4 channel gating and surface expression. Unlike KChIP1, the KChIP4 splice variant KChIP4a has been shown to inhibit surface expression and function as a suppressor of channel inactivation of Kv4. In this study, we sought to determine whether the multitasking KChIP4a modulates Kv4 function in a clamping fashion similar to that shown by KChIP1. Injection of Kv4.3 T1 zinc mutants into Xenopus oocytes resulted in the nonfunctional expression of Kv4.3 channels. Coexpression of Kv4.3 zinc mutants with WT KChIP4a gave rise to the functional expression of Kv4.3 current. Oocyte surface labeling results confirm the correlation between functional rescue and enhanced surface expression of zinc mutant proteins. Chimeric mutations that replace the Kv4.3 N-terminus with N-terminal KChIP4a or N-terminal deletion of KChIP4a further demonstrate that the functional rescue of Kv4.3 channel tetramerization mutants depends on the KChIP4a core region, but not its N-terminus. Structure-guided mutation of two critical residues of core KChIP4a attenuated functional rescue and tetrameric assembly. Moreover, size exclusion chromatography combined with fast protein liquid chromatography showed that KChIP4a can drive zinc mutant monomers to assemble as tetramers. Taken together, our results show that KChIP4a can rescue the function of tetramerization-defective Kv4 monomers. Therefore, we propose that core KChIP4a functions to promote tetrameric assembly and enhance surface expression of Kv4 channels by a clamping action, whereas its N-terminus inhibits surface expression of Kv4 by a mechanism that remains elusive.  相似文献   

14.
Enhanced Trafficking of Tetrameric Kv4.3 Channels by KChIP1 Clamping   总被引:1,自引:0,他引:1  
Cui YY  Liang P  Wang KW 《Neurochemical research》2008,33(10):2078-2084
The cytoplamsic auxiliary KChIPs modulate surface expression and gating properties of Kv4 channels. Recent co-crystal structure of Kv4.3 N-terminus and KChIP1 reveals a clamping action of the complex in which a single KChIP1 molecule laterally binds two neighboring Kv4.3 N-termini at different locations, thus forming two contact interfaces involved in the protein–protein interaction. In the second interface, it functions to stabilize the tetrameric assembly, but the role it plays in channel trafficking remains elusive. In this study, we examined the effects of KChIP1 on Kv4 protein trafficking in COS-7 cells expressing EGFP-tagged Kv4.3 channels using confocal microscopy. Mutations either in KChIP1 (KChIP1 L39E-Y57A-K61A) or Kv4.3 (Kv4.3 E70A-F73E) that disrupt the protein–protein interaction within the second interface can reduce surface expression of Kv4 channel proteins. Kv4.3 C110A, the Zn2+ binding site mutation in T1 domain, that disrupts the tetrameric assembly of the channels can be rescued by WT KChIP1, but not the KChIP1 triple mutant. These results were further confirmed by whole cell current recordings in oocytes. Our findings show that key residues of second interface involved in stabilizing tetrameric assembly can regulate the channel trafficking, indicating an intrinsic link between tetrameric assembly and channel trafficking. The results also suggest that formation of octameric Kv4 and KChIP complex by KChIPs clamping takes place before their trafficking to final destination on the cell surface. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

15.
16.
Mechanisms underlying Kv4 channel inactivation and recovery are presently unclear, although there is general consensus that the basic characteristics of these processes are not consistent with Shaker (Kv1) N- and P/C-type mechanisms. Kv4 channels also differ from Shaker in that they can undergo significant inactivation from pre-activated closed-states (closed-state inactivation, CSI), and that inactivation and recovery kinetics can be regulated by intracellular KChIP2 isoforms. To gain insight into the mechanisms regulating Kv4.3 CSI and recovery, we have analyzed the effects of increasing [K(+)](o) from 2 mM to 98 mM in the absence and in the presence of KChIP2b, the major KChIP2 isoform expressed in the mammalian ventricle. In the absence of KChIP2b, high [K(+)](o) promoted Kv4.3 inactivated closed-states and significantly slowed the kinetics of recovery from both macroscopic and closed-state inactivation. Coexpression of KChIP2b in 2 mM [K(+)](o) promoted non-inactivated closed-states and accelerated the kinetics of recovery from both macroscopic and CSI. In high [K(+)](o), KChIP2b eliminated or significantly reduced the slowing effects on recovery. Attenuation of CSI by the S4 charge-deletion mutant R302A, which produced significant stabilization of non-inactivated closed-states, effectively eliminated the opposing effects of high [K(+)](o) and KChIP2b on macroscopic recovery kinetics, confirming that these results were due to alterations of CSI. Elevated [K(+)](o) therefore slows Kv4.3 recovery by stabilizing inactivated closed-states, while KChIP2b accelerates recovery by destabilizing inactivated closed-states. Our results challenge underlying assumptions of presently popular Kv4 gating models and suggest that Kv4.3 possesses novel allosteric mechanisms, which are absent in Shaker, for coupling interactions between intracellular KChIP2b binding motifs and extracellular K(+)-sensitive regulatory sites.  相似文献   

17.
Mechanisms underlying Kv4 channel inactivation and recovery are presently unclear, although there is general consensus that the basic characteristics of these processes are not consistent with Shaker (Kv1) N- and P/C-type mechanisms. Kv4 channels also differ from Shaker in that they can undergo significant inactivation from pre-activated closed-states (closed-state inactivation, CSI), and that inactivation and recovery kinetics can be regulated by intracellular KChIP2 isoforms. To gain insight into the mechanisms regulating Kv4.3 CSI and recovery, we have analyzed the effects of increasing [K+]o from 2 mM to 98mM in the absence and in the presence of KChIP2b, the major KChIP2 isoform expressed in the mammalian ventricle. In the absence of KChIP2b, high [K+]o promoted Kv4.3 inactivated closed-states and significantly slowed the kinetics of recovery from both macroscopic and closed-state inactivation. Coexpression of KChIP2b in 2 mM [K+]o promoted non-inactivated closed-states and accelerated the kinetics of recovery from both macroscopic and CSI. In high [K+]o, KChIP2b eliminated or significantly reduced the slowing effects on recovery. Attenuation of CSI by the S4 charge-deletion mutant R302A, which produced significant stabilization of non-inactivated closed-states, effectively eliminated the opposing effects of high [K+]o and KChiP2b on macroscopic recovery kinetics, confirming that these results were due to alterations of CSI. Elevated [K+]o therefore slows Kv4.3 recovery by stabilizing inactivated closed-states, while KChIP2b accelerates recovery by destabilizing inactivated closed-states. Our results challenge underlying assumptions of presently popular Kv4 gating models and suggest that Kv4.3 possesses novel allosteric mechanisms, which are absent in Shaker, for coupling interactions between intracellular KChIP2b binding motifs and extracellular K+-sensitive regulatory sites.  相似文献   

18.
The goal of the present study is to explore whether Ca2+ and Mg2+-binding properties of isomeric Kv channel-interacting proteins (KChIPs) have different effects on their molecular structure and the binding with Kv channel. 8-Anilinonaphthalene- 1-sulfonate fluorescence measurement showed that KChIP4.1 and KChIP2.2 possessed one and two types of Ca2+-binding sites, respectively, and only one type of Mg2+-binding site was noted in the two KChIP proteins. Removal of EF-hand 4 (EF-4) caused a marked drop in their high affinities for Ca2+, but the binding affinity for Mg2+ remained mostly the same. Unlike KChIP4.1, the intact EF-4 was essential for the Kv channel-binding ability of KChIP2.2 in a metal-free buffer. Nevertheless, the interaction of wild-type KChIPs and EF-4-truncated mutants with Kv channel was enhanced by the addition of Mg2+ and Ca2+. In contrast to KChIP4.1, the thermal stability of KChIP2.2 was decreased by the binding of Mg2+ and Ca2+. These results suggest that the conformational change with metal-bound KChIP4.1 is crucial for its interaction with Kv channel but not for KChIP2.2, and that the Mg2+- and Ca2+-binding properties of KChIP2.2 and KChIP4.1 have different effects on their molecular structure.  相似文献   

19.
Members of the K+ channel-interacting protein (KChIP) family bind the distal N termini of members of the Shal subfamily of voltage-gated K+ channel (Kv4) pore-forming (α) subunits to generate rapidly activating, rapidly inactivating neuronal A-type (IA) and cardiac transient outward (Ito) currents. In heterologous cells, KChIP co-expression increases cell surface expression of Kv4 α subunits and Kv4 current densities, findings interpreted to suggest that Kv4·KChIP complex formation enhances forward trafficking of channels (from the endoplasmic reticulum or the Golgi complex) to the surface membrane. The results of experiments here, however, demonstrate that KChIP2 increases cell surface Kv4.2 protein expression (∼40-fold) by an order of magnitude more than the increase in total protein (∼2-fold) or in current densities (∼3-fold), suggesting that mechanisms at the cell surface regulate the functional expression of Kv4.2 channels. Additional experiments demonstrated that KChIP2 decreases the turnover rate of cell surface Kv4.2 protein by inhibiting endocytosis and/or promoting recycling. Unexpectedly, the experiments here also revealed that Kv4.2·KChIP2 complex formation stabilizes not only (total and cell surface) Kv4.2 but also KChIP2 protein expression. This reciprocal protein stabilization and Kv4·KChIP2 complex formation are lost with deletion of the distal (10 amino acids) Kv4.2 N terminus. Taken together, these observations demonstrate that KChIP2 differentially regulates total and cell surface Kv4.2 protein expression and Kv4 current densities.  相似文献   

20.
The Ca(2+)-binding proteins KChIP1-4 (KChIP3 is also known as DREAM and calsenilin) act as auxiliary subunits for voltage-gated K(+) channels in the Kv4 family. Here we identify three splicing isoforms of rat KChIP2 with variable N-terminal peptides. The two longer isoforms, which contain the 32-amino acid peptide, produce larger increases in Kv4.3 protein level and current density and more effectively localize themselves and their associated channels at the plasma membrane than the shortest variant. The 32-amino acid peptide contains potential palmitoylation cysteines. Metabolic labeling demonstrates that these cysteines in the KChIP2 isoforms, as well as the corresponding sites in KChIP3, are palmitoylated. Mutating these cysteines reduces their plasma membrane localization and the enhancement of Kv4.3 current density. Thus, palmitoylation of the KChIP auxiliary subunits controls plasma membrane localization of their associated channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号