首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Dietary flavonoids intake has been reported inversely related to the incidence of cardiovascular diseases (CVD). The present study is undertaken to evaluate the preventive role of naringin on mitochondrial enzymes in isoproterenol (ISO)-induced myocardial infarction in male albino Wistar rats. Rats subcutaneously injected with ISO (85 mg/kg) at an interval of 24 h for 2 days, resulting in significant (p < 0.05) increase in the levels of mitochondrial lipid peroxides. ISO-induction also showed significant (p < 0.05) decrease in the activities of mitochondrial tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome c oxidase). Oral pretreatment with naringin (10, 20, and 40 mg/kg) to ISO-induced rats daily for a period of 56 days significantly (p < 0.05) minimized the alterations in all the biochemical parameters and restored the normal mitochondrial function. Transmission electron microscopic (TEM) observations also correlated with these biochemical findings. Thus, our findings demonstrate that naringin prevents the mitochondrial dysfunction during ISO-induced myocardial infarction in rats.  相似文献   

2.
The present study investigates the effect of aspartate and glutamate on mitochondrial function during myocardial infarction (MI) in wistar rats. Male albino wistar rats were pretreated with aspartate [100 mg(kgbody weight)(-1) day(-1)] or glutamate [100 mg(kg body weight)(-1) day(-1)] intraperitoneally for a period of 7 days. Following amino acid treatment, MI was induced in rats by subcutaneous injection of isoproterenol [200 mg(kg body weight)(-1) day(-1)] for 2 days at an interval of 24 h. Isoproterenol (ISO) induction resulting in significant (P<0.05) increase in the levels of cardiac mitochondrial lipid peroxidation with a decrease in reduced glutathione level. The activities of glutathione peroxidase and glutathione reductase were significantly (P<0.05) decreased by ISO. ISO-induction also caused significant (P<0.05) decrease in the activities of mitochondrial tricarboxylic acid cycle enzymes (malate dehydrogenase, isocitrate dehydrogenase, succinate dehydrogenase, alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome-c-oxidase). ISO significantly (P<0.05) reduced the cytochrome contents, ATP production, ADP/O ratio and oxidation of succinate in state 3/state 4 whereas significantly (P<0.05) increased NADH oxidation. Pretreatment with aspartate or glutamate significantly (P<0.05) reduced the alterations induced by ISO and maintained normal mitochondrial function. The present findings reveal the protective effect of aspartate and glutamate on cardiac mitochondrial function in myocardial infarction-induced rats.  相似文献   

3.
4.
Pyruvate dehydrogenase kinase (PDK) can regulate the catalytic activity of pyruvate decarboxylation oxidation via the mitochondrial pyruvate dehydrogenase complex, and it further links glycolysis with the tricarboxylic acid cycle and ATP generation. This review seeks to elucidate the regulation of PDK activity in different species, mainly mammals, and the role of PDK inhibitors in preventing increased blood glucose, reducing injury caused by myocardial ischemia, and inducing apoptosis of tumor cells. Regulations of PDKs expression or activity represent a very promising approach for treatment of metabolic diseases including diabetes, heart failure, and cancer. The future research and development could be more focused on the biochemical understanding of the diseases, which would help understand the cellular energy metabolism and its regulation by pharmacological effectors of PDKs.  相似文献   

5.
Suspension cells of tobacco (Nicotiana tabacum L. cv Bright Yellow) were used to investigate signals regulating the expression of the nuclear gene Aox1 encoding the mitochondrial alternative oxidase (AOX) protein responsible for cyanide-resistant respiration in plants. We found that an increase in the tricarboxylic acid cycle intermediate citrate (either after its exogenous supply to cells or after inhibition of aconitase by monofluoroacetate) caused a rapid and dramatic increase in the steady-state level of Aox1 mRNA and AOX protein. This led to a large increase in the capacity for AOX respiration, defined as the amount of salicylhydroxamic acid-sensitive O2 uptake by cells in the presence of potassium cyanide. The results indicate that citrate may be an important signal metabolite regulating Aox1 gene expression. A number of other treatments were also identified that rapidly induced the level of Aox1 mRNA and AOX capacity. These included short-term incubation of cells with 10 mM acetate, 2 [mu]M antimycin A, 5 mM H2O2, or 1 mM cysteine. For some of these treatments, induction of AOX occurred without an increase in cellular citrate level, indicating that other signals (possibly related to oxidative stress conditions) are also important in regulating Aox1 gene expression. The signals influencing Aox1 gene expression are discussed with regard to the potential function(s) of AOX to modulate tricarboxylic acid cycle metabolism and/or to prevent the generation of active oxygen species by the mitochondrial electron transport chain.  相似文献   

6.
7.
Diabetic cardiomyopathy is preceded by mitochondrial alterations, and progresses to heart failure. We studied whether treatment with methylene blue (MB), a compound that was reported to serve as an alternate electron carrier within the mitochondrial electron transport chain (ETC), improves mitochondrial metabolism and cardiac function in type 1 diabetes. MB was administered at 10 mg/kg/day to control and diabetic rats. Both echocardiography and hemodynamic studies were performed to assess cardiac function. Mitochondrial studies comprised the measurement of oxidative phosphorylation and specific activities of fatty acid oxidation enzymes. Proteomic studies were employed to compare the level of lysine acetylation on cardiac mitochondrial proteins between the experimental groups. We found that MB facilitates NADH oxidation, increases NAD+, and the activity of deacetylase Sirtuin 3, and reduces protein lysine acetylation in diabetic cardiac mitochondria. We identified that lysine acetylation on 83 sites in 34 proteins is lower in the MB-treated diabetic group compared to the same sites in the untreated diabetic group. These changes occur across critical mitochondrial metabolic pathways including fatty acid transport and oxidation, amino acid metabolism, tricarboxylic acid cycle, ETC, transport, and regulatory proteins. While the MB treatment has no effect on the activities of acyl-CoA dehydrogenases, it decreases 3-hydroxyacyl-CoA dehydrogenase activity and long-chain fatty acid oxidation, and improves cardiac function. Providing an alternative route for mitochondrial electron transport is a novel therapeutic approach to decrease lysine acetylation, alleviate cardiac metabolic inflexibility, and improve cardiac function in diabetes.  相似文献   

8.
Radiation-induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear; however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation-induced genomic instability we have evaluated the mitochondrial subproteome and performed quantitative mass spectrometry analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and upregulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype, and evaluation of gene and microRNA expression suggests that epigenetics play a role in the phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under suboptimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.  相似文献   

9.
Tricarboyxlic acid cycle activity was examined in Neisseria gonorrhoeae CS-7. The catabolism of glucose in N. gonorrheae by a combination of the Entner-Doudoroff and pentose phosphate pathways resulted in the accumulation of acetate, which was not further catabolized until the glucose was depleted or growth became limiting. Radiorespirometric studies revealed that the label in the 1 position of acetate was converted to CO2 at twice the rate of the label in the 2 position, indicating the presence of a tricarboxylic acid cycle. Growth on glucose markedly reduced the levels of all tricarboxylic acid cycle enzymes except citrate synthase (EC 4.1.3.7). Extracts of glucose-grown cells contained detectable levels of all tricarboxylic acid cycle enzymes except aconitase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.42), and a pyridine nucleotide-dependent malate dehydrogenase (EC 1.1.1.37). Extracts of cells capable of oxidizing acetate lacked only the pyridine nucleotide-dependent malate dehydrogenase. In lieu of this enzyem, a particulate pyridine nucleotide-independent malate oxidase (EC 1.1.3.3) was present. This enzyme required flavin adenine dinucleotide for activity and appeared to be associated with the electron transport chain. Radiorespirometric studies utilizing labeled glutamate demonstrated that a portion of the tricarboxylic acid cycle functioned during glucose catabolism. In spite of the presence of all tricarboxylic acid cycle enzymes, N. gonorrhoeae CS-7 was unable to grow in medium supplemented with cycle intermediates.  相似文献   

10.
Mitochondrial dysfunction in acute hyperammonemia   总被引:5,自引:0,他引:5  
Acute hyperammonemia resulting from congenital urea cycle disorders, Reye syndrome or acute liver failure results in severe neuronal dysfunction, seizures and death. Increasing evidence suggests that acute hyperammonemia results in alterations of mitochondrial and cellular energy function resulting from ammonia-induced inhibition of the tricarboxylic acid cycle enzyme alpha-ketoglutarate dehydrogenase and by activation of the NMDA receptor. Antagonists of this receptor and NOS inhibitors prevent acute ammonia-induced seizures and mortality and prevent acute ammonia-induced changes in mitochondrial calcium homeostasis and cellular energy metabolism. Acute hyperammonemia also results in decreased activities of free radical scavenging enzymes and again, free radical formation due to ammonia exposure is prevented by either NMDA receptor antagonists or NOS inhibitors. Acute hyperammonemia also results in activation of "peripheral-type" benzodiazepine receptors and monoamine oxidase-B, enzymes which are localized on the mitochondrial membranes of astrocytes in the CNS. Activation of these receptors results in mitochondrial swelling and in increased degradation of monoamines, respectively. Alterations of mitochondrial function could contribute to the neuronal dysfunction characteristic of acute hyperammonemic syndromes.  相似文献   

11.
In virtue of analysis of data on the interaction of tricarboxylic acid cycle enzymes with the mitochondrial inner membrane and data on the enzyme-enzyme interactions, the spatial structure for the tricarboxylic acid cycle enzyme complex (tricarboxylic acid cycle metabolon) is proposed. The alpha-ketoglutarate dehydrogenase complex, adsorbed on the mitochondrial inner membrane along one of its 3-fold symmetry axes, plays the key role in the formation of metabolon. Two association sites of the alpha-ketoglutarate dehydrogenase complex located on opposite sides of the complex participate in the interaction with the membrane. The tricarboxylic acid cycle enzyme complex contains one molecule of the alpha-ketoglutarate dehydrogenase complex and six molecules of each of the other enzymes of the tricarboxylic acid cycle, as well as aspartate aminotransferase and nucleosidediphosphate kinase. Succinate dehydrogenase, the integral protein of the mitochondrial inner membrane, is a component of the anchor site responsible for the assembly of metabolon on the membrane. The molecular mass of the complex (ignoring succinate dehydrogenase) is of 8.10(6) daltons. The metabolon symmetry corresponds to the D3 point symmetry group. It is supposed, that the tricarboxylic acid cycle enzyme complex interacts with other multienzyme complexes of the matrix and the electron transfer chain.  相似文献   

12.
Mitochondrial metabolism is a critical component in the functioning and maintenance of cellular organs. The stoichiometry of biochemical reaction networks imposes constraints on mitochondrial function. A modeling framework, flux-balance analysis (FBA), was used to characterize the optimal flux distributions for maximal ATP production in the mitochondrion. The model predicted the expected ATP yields for glucose, lactate, and palmitate. Genetic defects that affect mitochondrial functions have been implicated in several human diseases. FBA can characterize the metabolic behavior due to genetic deletions at the metabolic level, and the effect of mutations in the tricarboxylic acid (TCA) cycle on mitochondrial ATP production was simulated. The mitochondrial ATP production is severely affected by TCA-cycle mutations. In addition, the model predicts the secretion of TCA-cycle intermediates, which is observed in clinical studies of mitochondriopathies such as those associated with fumarase deficiency. The model provides a systemic perspective to characterize the effect of stoichiometric constraints and specific metabolic fluxes on mitochondrial function.  相似文献   

13.
14.
Cardiac function is highly dependent on oxidative energy, which is produced by mitochondrial respiration. Defects in mitochondrial function are associated with both structural and functional abnormalities in the heart. Here, we show that heart-specific ablation of the circadian clock gene Bmal1 results in cardiac mitochondrial defects that include morphological changes and functional abnormalities, such as reduced enzymatic activities within the respiratory complex. Mice without cardiac Bmal1 function show a significant decrease in the expression of genes associated with the fatty acid oxidative pathway, the tricarboxylic acid cycle, and the mitochondrial respiratory chain in the heart and develop severe progressive heart failure with age. Importantly, similar changes in gene expression related to mitochondrial oxidative metabolism are also observed in C57BL/6J mice subjected to chronic reversal of the light-dark cycle; thus, they show disrupted circadian rhythmicity. These findings indicate that the circadian clock system plays an important role in regulating mitochondrial metabolism and thereby maintains cardiac function.  相似文献   

15.
Several studies have demonstrated that overnutrition during early postnatal period can increase the long-term risk of developing obesity and cardiac disorders, yet the short-term effects of postnatal overfeeding in cardiac metabolism remains unknown. The aim of our study was to investigate the cardiac metabolism of weaned mice submitted to overnutrition during lactation, particularly as to mitochondrial function, substrate preference and insulin signaling. Postnatal overfeeding was induced by litter size reduction in mice at postnatal day 3. At 21 days of age (weaning), mice in the overfed group (OG) presented biometric and biochemical parameters of obesity, including increased body weight, visceral fat, liver weight and increased left ventricle weight/tibia length ratio; indicating cardiac hypertrophy, hyperglycemia, hyperinsulinemia and increased liver glycogen content compared to control group. In the heart, we detected impaired insulin signaling, mainly due to decreased IRβ, pTyr-IRS1, PI3K, GLUT4 and pAkt/Akt and increased PTP1B, GLUT1 and pAMPKα/AMPKα content. Activities of lactate dehydrogenase and citrate synthase were increased, accompanied by enhanced carbohydrate oxidation, as observed by high-resolution respirometry. Moreover, OG hearts had lower CPT1, PPARα and increased UCP2 mRNA expression, associated with increased oxidative stress (4-HNE content), BAX/BCL2 ratio and cardiac fibrosis. Ultrastructural analysis of OG hearts demonstrated mild mitochondrial damage without alterations in OXPHOS complexes. In conclusion, overnutrition during early life induces short-term metabolic disturbances, impairment in heart insulin signaling, up-regulates GLUT-1 and switch cardiac fuel preference in juvenile mice.  相似文献   

16.
17.
The high energy demands of the heart are met primarily by the mitochondrial oxidation of fatty acids and glucose. However, in heart failure there is a decrease in cardiac mitochondrial oxidative metabolism and glucose oxidation that can lead to an energy starved heart. Ketone bodies are readily oxidized by the heart, and can provide an additional source of energy for the failing heart. Ketone oxidation is increased in the failing heart, which may be an adaptive response to lessen the severity of heart failure. While ketone have been widely touted as a “thrifty fuel”, increasing ketone oxidation in the heart does not increase cardiac efficiency (cardiac work/oxygen consumed), but rather does provide an additional fuel source for the failing heart. Increasing ketone supply to the heart and increasing mitochondrial ketone oxidation increases mitochondrial tricarboxylic acid cycle activity. In support of this, increasing circulating ketone by iv infusion of ketone bodies acutely improves heart function in heart failure patients. Chronically, treatment with sodium glucose co-transporter 2 inhibitors, which decreases the severity of heart failure, also increases ketone body supply to the heart. While ketogenic diets increase circulating ketone levels, minimal benefit on cardiac function in heart failure has been observed, possibly due to the fact that these dietary regimens also markedly increase circulating fatty acids. Recent studies, however, have suggested that administration of ketone ester cocktails may improve cardiac function in heart failure. Combined, emerging data suggests that increasing cardiac ketone oxidation may be a therapeutic strategy to treat heart failure.  相似文献   

18.
Transglutaminase 2 (TGase 2) expression and glycolysis are increased in most renal cell carcinoma (RCC) cell lines compared to the HEK293 kidney cell line. Although increased glycolysis and altered tricarboxylic acid cycle are common in RCC, the detailed mechanism by which this phenomenon occurs remains to be elucidated. In the present study, TGase 2 siRNA treatment lowered glucose consumption and lactate levels by about 20–30 % in RCC cells; conversely, high expression of TGase 2 increased glucose consumption and lactate production together with decreased mitochondrial aconitase (Aco 2) levels. In addition, TGase 2 siRNA increased mitochondrial membrane potential and ATP levels by about 20–30 % and restored Aco 2 levels in RCC cells. Similarly, Aco 2 levels and ATP production decreased significantly upon TGase 2 overexpression in HEK293 cells. Therefore, TGase 2 leads to depletion of Aco 2, which promotes glycolytic metabolism in RCC cells.  相似文献   

19.
Alteration of pancreatic beta-cell survival and Preproinsulin gene expression by prolonged hyperglycemia may result from increased c-MYC expression. However, it is unclear whether c-MYC effects on beta-cell function are compatible with its proposed role in glucotoxicity. We therefore tested the effects of short-term c-MYC activation on key beta-cell stimulus-secretion coupling events in islets isolated from mice expressing a tamoxifen-switchable form of c-MYC in beta-cells (MycER) and their wild-type littermates. Tamoxifen treatment of wild-type islets did not affect their cell survival, Preproinsulin gene expression, and glucose stimulus-secretion coupling. In contrast, tamoxifen-mediated c-MYC activation for 2-3 days triggered cell apoptosis and decreased Preproinsulin gene expression in MycER islets. These effects were accompanied by mitochondrial membrane hyperpolarization at all glucose concentrations, a higher resting intracellular calcium concentration ([Ca(2+)](i)), and lower glucose-induced [Ca(2+)](i) rise and islet insulin content, leading to a strong reduction of glucose-induced insulin secretion. Compared with these effects, 1-wk culture in 30 mmol/l glucose increased the islet sensitivity to glucose stimulation without reducing the maximal glucose effectiveness or the insulin content. In contrast, overnight exposure to a low H(2)O(2) concentration increased the islet resting [Ca(2+)](i) and reduced the amplitude of the maximal glucose response as in tamoxifen-treated MycER islets. In conclusion, c-MYC activation rapidly stimulates apoptosis, reduces Preproinsulin gene expression and insulin content, and triggers functional alterations of beta-cells that are better mimicked by overnight exposure to a low H(2)O(2) concentration than by prolonged culture in high glucose.  相似文献   

20.
Cardiac hypertrophy is an independent risk factor in the development of heart failure. However, the cellular mechanisms underlying the transition from compensated hypertrophy to heart failure are incompletely understood. The aim of this study was to investigate changes in myocardial substrate utilisation and function in pressure-overload hypertrophy (using 13C NMR spectroscopy) in parallel with alterations in the expression pattern of genes involved in cardiac fatty acid and glucose uptake and oxidation. Left ventricular hypertrophy was induced surgically in Sprague–Dawley rats by inter-renal aortic constriction. Nine weeks later, hearts were perfused in the isovolumic mode with a physiological mixture of substrates including 5 mM 1-13C glucose, 1 mM 3-13C lactate, 0.1 mM U-13C pyruvate and 0.3 mM U-13C palmitate and cardiac function monitored simultaneously. Real-time PCR was used to determine mRNA levels of PPARα and PPARα-regulated metabolic enzymes. Results showed that at the stage of compensated hypertrophy, fatty acid oxidation (FAO) and expression of genes involved in FAO were markedly reduced, whilst pyruvate oxidation was enhanced, highlighting the fact that metabolic remodelling is an early event in the development of cardiac hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号