首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The p53 protein is modified by as many as 50 individual posttranslational modifications. Many of these occur in response to genotoxic or nongenotoxic stresses and show interdependence, such that one or more modifications can nucleate subsequent events. This interdependent nature suggests a pathway that operates through multiple cooperative events as opposed to distinct functions for individual, isolated modifications. This concept, supported by recent investigations, which provide exquisite detail as to how various modifications mediate precise protein–protein interactions in a cooperative manner, may explain why knockin mice expressing p53 proteins substituted at one or just a few sites of modification typically show only subtle effects on p53 function. The present article focuses on recent, exciting progress and develops the idea that the impact of modification on p53 function is achieved through collective and integrated events.  相似文献   

2.
To determine the role of proteins, and in particular protein variants, in human health, it may often be necessary to quantitatively determine the concentration of a specific protein variant present in complex biological samples such as blood, cerebral spinal fluid (CSF), or tissue. Many protein variants are present only at trace levels and therefore a simple assay with very high sensitivity and reliability would greatly facilitate correlation of the presence of particular protein variants with the progression of specific diseases. We have developed a simple phage based capture ELISA system that enables femtomolar or better detection of individual protein variants directly from complex biological samples. The protocol utilizes a capture reagent that selectively recognizes a unique epitope of the protein variant and a phage based detection reagent that binds to a second epitope present in all forms of the target protein. The phage based detection reagent is essentially a self‐assembling nanoparticle consisting of several thousand coat proteins that can each be labeled to amplify the detection signal by several orders of magnitude. Here we demonstrate that we can achieve subfemtomolar detection of individual protein variants that have been implicated in neurodegenerative disease directly from complex tissue homogenates and sera. The ELISA system should facilitate identification of disease specific protein variants or other compounds even when present at trace amounts in samples including blood, CSF, saliva and urine. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:289–298, 2015  相似文献   

3.
Vertebrates control intracellular iron concentration principally through the interaction of iron regulatory proteins with mRNAs that contain an iron responsive element, a small hairpin with a bulged C. The hairpin loop and bulged C have previously been assumed to be critical for binding and have been proposed to make direct contact with the iron regulatory proteins. However, we show here that a U or G can be substituted for the bulged C provided that specific nucleotides are also present within internal loops. The K(d), IC(50) and chemical modifications of the iron responsive element variants are similar to the wild-type. Results are more consistent with a role in which the C-bulge functions to orient the hairpin for optimal protein binding rather than to directly contact the protein. Characterization of these novel iron responsive element variants may facilitate the identification of additional mRNAs whose expression is controlled by iron regulatory proteins, as well as provide insight into the nature of a critical RNA-protein interaction.  相似文献   

4.
Genetic variations and posttranslational modifications give rise to structural diversity in fully expressed human proteins. Structural modifications can also be induced during the life cycle of a protein and can lead to impaired functioning and pathological conditions. Although a large number of protein modifications have been discovered thus far, their incidence among the general population has not been determined. Here we show that human proteins exhibit a wide range of modifications present at various frequencies in the general population. The screening of 1,000 individuals from four geographical regions in the United States for five plasma proteins revealed the existence of 27 protein modifications. Some variants, such as those resulting from oxidation and single amino acid terminal truncations, were observed in the majority of individuals, whereas point mutations and extensive sequence truncations were detected in only a few individuals. Gender correlations were observed for two protein modifications. The data obtained reveal the extent of structural diversity in the general populace and represent the first such catalogue of structural protein modifications. Systematic studies of this kind will help redefine the normal human proteome and reveal the effects of these modifications in pathological processes.  相似文献   

5.
This paper emphasizes the importance of the protein component of cuticles. Correlation of electrophoretic charge distribution of individual cuticular proteins and physical properties of the cuticles from which they were extracted, as well as interpopulation and interspecies conservation of electrophoretic patterns, are used to argue that individual proteins play precise roles in the cuticle. Glycosylation of cuticular proteins is described, but no function for these modifications is yet known. Analogy is drawn to analyses of chorion proteins and the case is made that analysis of amino acid sequence data is likely to provide insights into how cuticular proteins and chitin interact to construct the diverse types of cuticles.  相似文献   

6.
The publication of the human genome sequence enables most of the still unknown protein sequences to be added to the current databases. A sequence alone does not, however, give information about the possible expression level of the corresponding protein, neither does it inform about the possible posttranslational modifications, like phosphorylation, glycosylation or changes in individual amino acids. Thus, the human proteome project, a large scale analysis of the functions of gene products, will have an enormous impact on our understanding of the biochemistry of proteins, processes and pathways they are involved in. The diversity in proteins is considerably expanded by various posttranslational modifications. These also pose problems to the investigators, but their careful analysis often pays back because they can reveal important properties in proteins or peptides--like an increased antigenicity leading to (auto)immune responses or an active form of a signaling protein. Immune tolerance usually exists towards self-proteins, but in specific cases it may be broken by posttranslational modifications in the proteins. Novel mass spectrometric, affinity and display techniques offer valuable tools for the large-scale analysis of proteomes. In the present paper we discuss their use for the detection of posttranslational modifications, functional interactions and possible disease-associated abnormalities in proteins.  相似文献   

7.

Background  

Post-translational modifications and genetic variations give rise to protein variants that significantly increase the complexity of the human proteome. Modified proteins also play an important role in biological processes. While sandwich immunoassays are routinely used to determine protein concentrations, they are oblivious to protein variants that may serve as biomarkers with better sensitivity and specificity than their wild-type proteins. Mass spectrometry, coupled to immunoaffinity separations, can provide an efficient mean for simultaneous detection and quantification of protein variants.  相似文献   

8.
It is an established fact that allelic variation and post-translational modifications create different variants of proteins, which are observed as isoelectric and size subspecies in two-dimensional gel based proteomics. Here we explore the stromal proteome of spinach and Arabidopsis chloroplast and show that clustering of mass spectra is a useful tool for investigating such variants and detecting modified peptides with amino acid substitutions or post-translational modifications. This study employs data mining by hierarchical clustering of MALDI-MS spectra, using the web version of the SPECLUST program (http://bioinfo.thep.lu.se/speclust.html). The tool can also be used to remove peaks of contaminating proteins and to improve protein identification, especially for species without a fully sequenced genome. Mutually exclusive peptide peaks within a cluster provide a good starting point for MS/MS investigation of modified peptides, here exemplified by the identification of an A to E substitution that accounts for the isoelectric heterogeneity in protein isoforms.  相似文献   

9.
PABP1 [poly(A)-binding protein 1] is a central regulator of mRNA translation and stability and is required for miRNA (microRNA)-mediated regulation and nonsense-mediated decay. Numerous protein, as well as RNA, interactions underlie its multi-functional nature; however, it is unclear how its different activities are co-ordinated, since many partners interact via overlapping binding sites. In the present study, we show that human PABP1 is subject to elaborate post-translational modification, identifying 14 modifications located throughout the functional domains, all but one of which are conserved in mouse. Intriguingly, PABP1 contains glutamate and aspartate methylations, modifications of unknown function in eukaryotes, as well as lysine and arginine methylations, and lysine acetylations. The latter dramatically alter the pI of PABP1, an effect also observed during the cell cycle, suggesting that different biological processes/stimuli can regulate its modification status, although PABP1 also probably exists in differentially modified subpopulations within cells. Two lysine residues were differentially acetylated or methylated, revealing that PABP1 may be the first example of a cytoplasmic protein utilizing a 'methylation/acetylation switch'. Modelling using available structures implicates these modifications in regulating interactions with individual PAM2 (PABP-interacting motif 2)-containing proteins, suggesting a direct link between PABP1 modification status and the formation of distinct mRNP (messenger ribonucleoprotein) complexes that regulate mRNA fate in the cytoplasm.  相似文献   

10.
11.
Proteomic analysis of post-translational modifications   总被引:20,自引:0,他引:20  
Post-translational modifications modulate the activity of most eukaryote proteins. Analysis of these modifications presents formidable challenges but their determination generates indispensable insight into biological function. Strategies developed to characterize individual proteins are now systematically applied to protein populations. The combination of function- or structure-based purification of modified 'subproteomes', such as phosphorylated proteins or modified membrane proteins, with mass spectrometry is proving particularly successful. To map modification sites in molecular detail, novel mass spectrometric peptide sequencing and analysis technologies hold tremendous potential. Finally, stable isotope labeling strategies in combination with mass spectrometry have been applied successfully to study the dynamics of modifications.  相似文献   

12.
In concert with the selective pressures affecting protein folding and function in the extreme environments in which they can exist, proteins in Archaea have evolved to present permanent molecular adaptations at the amino acid sequence level. Such adaptations may not, however, suffice when Archaea encounter transient changes in their surroundings. Post-translational modifications offer a rapid and reversible layer of adaptation for proteins to cope with such situations. Here, it is proposed that Archaea further augment their ability to survive changing growth conditions by modifying the extent, position, and, where relevant, the composition of different post-translational modifications, as a function of the environment. Support for this hypothesis comes from recent reports describing how patterns of protein glycosylation, methylation, and other post-translational modifications of archaeal proteins are altered in response to environmental change. Indeed, adjusting post-translational modifications as a means to cope with environmental variability may also hold true beyond the Archaea.  相似文献   

13.
14.
Charge variants in recombinant proteins are an important series of protein modifications, whose potential role on protein stability, activity, immunogenicity, and pharmacokinetics continues to be studied. Monoclonal antibodies in particular have been shown to have a wide range of acidic species variants, including those associated with the addition of covalent modifications as well as the chemical degradation at specific peptide regions on the antibody. These variants play a significant role toward the overall heterogeneity of recombinant therapeutic proteins and are typically monitored during manufacturing to ensure they lie within proven acceptable ranges. In this work, it has been found that the supplementation of members of the bioflavonoid chemical family into mammalian cell culture media was effective toward the reduction of acidic species charge variants on recombinant monoclonal antibodies and dual variable domain immunoglobulins. The demonstrated reduction in acidic species through the use of bioflavonoids facilitates the manufacturing of a less heterogeneous product with potential improvements in antibody structure and function. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1039–1052, 2015  相似文献   

15.
We have identified a protein, FLJ12673 or FBXO11, that contains domains characteristically present in protein arginine methyltransferases (PRMTs). Immuno-purified protein expressed from one of the four splice variants in HeLa cells and in Escherichia coli exhibited methyltransferase activity. Monomethylarginine, symmetric, and asymmetric dimethylarginine (SDMA, ADMA) were formed on arginine residues. Accordingly, we have designated the protein PRMT9. PRMT9 is the third member of the PRMT family that forms SDMA modifications in proteins. Structurally, this protein is distinct from all other known PRMTs implying that convergent evolution allowed this protein to develop the ability to methylate arginine residues and evolved elements conserved in PRMTs to accomplish this.  相似文献   

16.
The proteins of the major human snRNPs U1, U2, U4/U6 and U5 were characterised by two-dimensional electrophoresis, with isoelectric focussing in the first dimension and SDS-polyacrylamide gel electrophoresis in the second. With the exception of protein F, which exhibits an acidic pl value (pl = 3.3), the snRNP proteins are basic. Post-translational modification was found among the proteins associated specifically with the U1 and U2 particles. The most complex modification pattern was observed for the U1-specific 70K protein. This was found in at least 13 isoelectric variants, with pl values ranging from 6.7 to 8.7; these variants differed also in molecular weight. All of the 70K variants are phosphorylated in the cell. Thin-layer analysis of their tryptic phosphopeptides revealed that the 70K variants have four major phosphopeptides in common, in addition to which at least four additional serine residues are phosphorylated to different extents. The comparative phosphopeptide analysis shows that differential phosphorylation alone is not sufficient to explain the occurrence of the many isoelectric variants of 70K, so that the final charge of the 70K variants is determined both by phosphorylation and by other, as yet unidentified posttranslational modifications. By two-dimensional separation of snRNP proteins obtained from mouse Ehrlich ascites tumour cells, it was shown that the pattern of pl values of the mouse proteins was almost identical with the corresponding pattern for human proteins. Even the complex modification patterns of the 70K protein are identical in mouse and man, indicating that the presence in the cell of so many variants of this protein may have functional importance. The major difference between murine and human snRNP proteins is the absence of protein B' from mouse snRNPs. This suggests that the homologous protein B may be able to carry out the task of protein B'.  相似文献   

17.
Nuclear pore complexes are composed of ∼30 different proteins, each present at the pore in multiple copies. Together these proteins create specialized channels that convey cargo between the cytoplasm and the nuclear interior. With the building blocks of nuclear pores identified, one challenge is to decipher how these proteins are coordinately produced and assembled into macromolecular pore structures with each cell division. Specific individual pore proteins and protein cofactors have been probed for their role in the assembly process, as well as certain kinases that add a layer of regulation via the phosphorylation status of nucleoporins. Other posttranslational modifications are candidates for coordinating events of pore assembly as well. In this study of two pore-associated small ubiquitin-like modifier (SUMO) proteases, sentrin/SUMO-specific protease 1 (SENP1) and SENP2, we observe that many nucleoporins are mislocalized and, in some cases, reduced in level when SENP1 and SENP2 are codepleted. The pore complexes present under these conditions are still capable of transport, although the kinetics of specific cargo is altered. These results reveal a new role for the pore-associated SENPs in nucleoporin homeostasis and in achieving proper configuration of the nuclear pore complex.  相似文献   

18.
Histone proteins and their accompanying post-translational modifications have received much attention for their ability to affect chromatin structure and, hence, regulate gene expression. Recently, mass spectrometry has become an important complementary tool for the analysis of histone variants and modification sites, for determining the degree of occupancy of these modifications and for quantifying differential expression of these modifications from various samples. Additionally, as advancements in mass spectrometry technologies continue, the ability to read entire 'histone codes' across large regions of histone polypeptides or intact protein is possible. As chromatin biology demands, mass spectrometry has adapted and continues as a key technology for the analysis of gene regulation networks involving histone modifications.  相似文献   

19.
Selective chemical labeling of proteins in living cells   总被引:1,自引:0,他引:1  
Labeling proteins with fluorophores, affinity labels or other chemically or optically active species is immensely useful for studying protein function in living cells or tissue. The use of genetically encoded green fluorescent protein and its variants has been particularly valuable in this regard. In an effort to increase the diversity of available protein labels, various efforts to append small molecules to selected proteins in vivo have been reported. This review discusses recent advances in selective, in vivo protein labeling based on small molecule ligand-receptor interactions, intein-mediated processes, and enzyme-catalyzed protein modifications.  相似文献   

20.
Knowledge of protein domains that function as the biological effectors for diverse post-translational modifications of histones is critical for understanding how nuclear and epigenetic programs are established. Indeed, mutations of chromatin effector domains found within several proteins are associated with multiple human pathologies, including cancer and immunodeficiency syndromes. To date, relatively few effector domains have been identified in comparison to the number of modifications present on histone and non-histone proteins. Here we describe the generation and application of human modified peptide microarrays as a platform for high-throughput discovery of chromatin effectors and for epitope-specificity analysis of antibodies commonly utilized in chromatin research. Screening with a library containing a majority of the Royal Family domains present in the human proteome led to the discovery of TDRD7, JMJ2C, and MPP8 as three new modified histone-binding proteins. Thus, we propose that peptide microarray methodologies are a powerful new tool for elucidating molecular interactions at chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号