首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1′s and PLK1′s functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 interactor in human cancer cells. PLK1 inhibition enhances MTORC1 activity under nutrient sufficiency and in starved cells, and PLK1 directly phosphorylates the MTORC1 component RPTOR/RAPTOR in vitro. PLK1 and MTORC1 reside together at lysosomes, the subcellular site where MTORC1 is active. Consistent with an inhibitory role of PLK1 toward MTORC1, PLK1 overexpression inhibits lysosomal association of the PLK1-MTORC1 complex, whereas PLK1 inhibition promotes lysosomal localization of MTOR. PLK1-MTORC1 binding is enhanced by amino acid starvation, a condition known to increase autophagy. MTORC1 inhibition is an important step in autophagy activation. Consistently, PLK1 inhibition mitigates autophagy in cancer cells both under nutrient starvation and sufficiency, and a role of PLK1 in autophagy is also observed in the invertebrate model organism Caenorhabditis elegans. In summary, PLK1 inhibits MTORC1 and thereby positively contributes to autophagy. Since autophagy is increasingly recognized to contribute to tumor cell survival and growth, we propose that cautious monitoring of MTORC1 and autophagy readouts in clinical trials with PLK1 inhibitors is needed to develop strategies for optimized (combinatorial) cancer therapies targeting MTORC1, PLK1, and autophagy.  相似文献   

2.
3.
Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1’s functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs) and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC). Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C) by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.  相似文献   

4.
Myosin phosphatase-targeting subunit 1 (MYPT1) binds to the catalytic subunit of protein phosphatase 1 (PP1C). This binding is believed to target PP1C to specific substrates including myosin II, thus controlling cellular contractility. Surprisingly, we found that during mitosis, mammalian MYPT1 binds to polo-like kinase 1 (PLK1). MYPT1 is phosphorylated during mitosis by proline-directed kinases including cdc2, which generates the binding motif for the polo box domain of PLK1. Depletion of PLK1 by small interfering RNAs is known to result in loss of gamma-tubulin recruitment to the centrosomes, blocking centrosome maturation and leading to mitotic arrest. We found that codepletion of MYPT1 and PLK1 reinstates gamma-tubulin at the centrosomes, rescuing the mitotic arrest. MYPT1 depletion increases phosphorylation of PLK1 at its activating site (Thr210) in vivo, explaining, at least in part, the rescue phenotype by codepletion. Taken together, our results identify a previously unrecognized role for MYPT1 in regulating mitosis by antagonizing PLK1.  相似文献   

5.
6.
特异小干扰RNA敲除PLK1基因的表达   总被引:2,自引:0,他引:2  
为研究特异小干扰RNA(siRNA)作用于大肠癌细胞株SW480中PLK1 (Polo-like kinase 1)基因表达的mRNA对该细胞分裂生长的影响,设计了对应于PLK1基因表达mRNA不同位点的10种特异siRNA,经化学合成后,用脂质体转染SW480细胞,实时定量PCR检测PLK1基因的表达,观察不同的siRNA作用强度,并计数细胞了解相应细胞的生长情况,western-blot观察PLK1表达蛋白的变化和流式细胞计数分析细胞周期改变。发现10种siRNA均可敲除PLK1基因表达的20 %以上,其中P1、P4和P9 3组敲除mRNA达80 %以上,这3种siRNA及其混合物对PLK1基因mRNA的作用具有相应浓度效应,在25 nmol/L时达到最佳作用效果,而且相同浓度的混合物作用效果更好(超过95%),PLK1表达蛋白质明显降低,细胞周期在G2期受到阻碍。72 h后的各种siRNA浓度下细胞生长变化与PLK1基因的mRNA水平变化相一致。结果表明化学合成的特异siRNA对SW480细胞中PLK1基因表达具有消除作用,混合物作用更强,在细胞水平上抑制了SW480细胞的分裂生长。  相似文献   

7.
Phosphorylation of α-synuclein (α-syn) at Ser-129 is a hallmark of Parkinson disease and related synucleinopathies. However, the identity of the natural kinases and phosphatases responsible for regulating α-syn phosphorylation remain unknown. Here we demonstrate that three closely related members of the human Polo-like kinase (PLK) family (PLK1, PLK2, and PLK3) phosphorylate α-syn and β-syn specifically at Ser-129 and Ser-118, respectively. Unlike other kinases reported to partially phosphorylate α-syn at Ser-129 in vitro, phosphorylation by PLK2 and PLK3 is quantitative (>95% conversion). Only PLK1 and PLK3 phosphorylate β-syn at Ser-118, whereas no phosphorylation of γ-syn was detected by any of the four PLKs (PLK1 to -4). PLK-mediated phosphorylation was greatly reduced in an isolated C-terminal fragment (residues 103–140) of α-syn, suggesting substrate recognition via the N-terminal repeats and/or the non-amyloid component domain of α-syn. PLKs specifically co-localized with phosphorylated Ser-129 (Ser(P)-129) α-syn in various subcellular compartments (cytoplasm, nucleus, and membranes) of mammalian cell lines and primary neurons as well as in α-syn transgenic mice, especially cortical brain areas involved in synaptic plasticity. Furthermore, we report that the levels of PLK2 are significantly increased in brains of Alzheimer disease and Lewy body disease patients. Taken together, these results provide biochemical and in vivo evidence of α-syn and β-syn phosphorylation by specific PLKs. Our results suggest a need for further studies to elucidate the potential role of PLK-syn interactions in the normal biology of these proteins as well as their involvement in the pathogenesis of Parkinson disease and other synucleinopathies.  相似文献   

8.
Polo-like kinase 1 (PLK1) is a master kinase that regulates cell cycle progression. How its enzymatic activity is regulated in response to DNA damage is not fully understood. We show that PLK1 is enriched at double strand breaks (DSBs) within seconds of UV laser irradiation in a PARP-1-dependent manner and then disperses within 10 min in a PARG-dependent manner. Poly(ADP-)ribose (PAR) chains directly bind to PLK1 in vitro and inhibit its enzymatic activity. CHK1-mediated PLK1 phosphorylation at S137 prevents its binding to PAR and recruitment to DSBs but ensures PLK1 phosphorylation at T210 and its enzymatic activity toward RAD51 at S14. This subsequent phosphorylation event at S14 primes RAD51 for CHK1-mediated phosphorylation at T309, which is essential for full RAD51 activation. This CHK1–PLK1–RAD51 axis ultimately promotes homologous recombination (HR)-mediated repair and ensures chromosome stability and cellular radiosensitivity. These findings provide biological insight for combined cancer therapy using inhibitors of PARG and CHK1.  相似文献   

9.
Polo-like kinases (PLKs) have been reported to be essential components of anti-viral pathways. However, the role of PLKs in the production of pro-inflammatory cytokines induced by TLR activation is uncertain. We report here that monocytic THP-1 cells expressed PLK1, PLK2, PLK3 and PLK4. When THP-1 cells were treated with GW843682X, an inhibitor of PLK1 and PLK3, the results showed that GW843682X down-regulated Pam3CSK4- and LPS-induced TNF-α at both the gene and protein levels. GW843682X did not impact Pam3CSK4-induced IL-1β and IL-8 or LPS-induced IL-1β, but it down-regulated LPS-induced IL-8 significantly. Moreover, western blot results showed that TLRs activated PLK1, and PLK1 inhibition by RNA interference down-regulated Pam3CSK4-induced TNF-α production, suggesting the involvement of PLK1 in TNF-α up-regulation. In addition, GW843682X treatment for 12 to 24 h induced cell death and down-regulated MyD88, but neither of these roles contributed to the down-regulation of TNF-α, as TNF-α gene expression was up-regulated at 1 h. Furthermore, GW843682X inhibited Pam3CSK4-induced activation of ERK and NF-κB, which contributed to Pam3CSK4-induced up-regulation of TNF-α. GW843682X also inhibited LPS-induced activation of ERK, p38 and NF-κB, which contributed to LPS-induced up-regulation of TNF-α. Taken together, these results suggested that PLK1 is involved in TLR2- and TLR4-induced inflammation, and GW843682X may be valuable for the regulation of the inflammatory response.  相似文献   

10.
Although it has been established that nuclear factor with BRCT domain 1/ mediator of the DNA damage checkpoint protein 1 (NFBD1/MDC1) is closely involved in DNA damage response, its possible contribution to the regulation of cell- cycle progression is unclear. In the present study, we have found for the first time that NFBD1 is phosphorylated by polo-like kinase 1 (PLK1) and has an important role in G2/M transition. Both NFBD1 and PLK1 are co-expressed in cellular nuclei throughout G2/M transition, and binding assays demonstrated direct interaction between NFBD1 and PLK1. Indeed, in vitro kinase reactions revealed that the PST domain of NFBD1 contains a potential amino acid sequence (845-DVTGEE-850) targeted by PLK1. Furthermore, enforced expression of GFP-PST but not GFP-PST(T847A) where threonine at 847 was substituted by alanine inhibited the phosphorylation levels of histone H3, suggesting a defect of M phase entry. Because PLK1 has been implicated in promoting the G2/M transition, we reasoned that overexpressed PST might serve as a pseudosubstrate for PLK1 and thus interfere with phosphorylation of endogenous PLK1 substrates. Interestingly, siRNA-mediated knockdown of NFBD1 resulted in early M phase entry and accelerated M phase progression, raising the possibility that NFBD1 is a PLK1 substrate for regulating the G2/M transition. Moreover, the constitutive active form of PLK1(T210D) overcame the ICRF-193-induced decatenation checkpoint and inhibited the interaction between NFBD1 and topoisomerase IIα, but kinase-deficient PLK1 did not. Based on these observations, we propose that PLK1-mediated phosphorylation of NFBD1 is involved in the regulation of G2/M transition by recovering a decatenation checkpoint.  相似文献   

11.
Protein kinase and phosphatase signaling cascade, coupled with other post-translational modifications, orchestrates temporal order of various events during cell division. Among the many mitotic kinases, Polo-like kinase 1 (PLK1) as a key regulator, participates in regulating mitosis from mitotic entry to cytokinesis. The advancement in optical reporter engineering and the recent development of specific chemical probes enable us to visualize spatiotemporal gradient of kinase activity at nano-scale. One of such tools is FRET-based optic sensor that allows us to delineate the PLK1 activity in space and time. In this review, we address the inter-relationships between PLK1 and other protein kinases/phosphatases, as well as the crosstalk between PLK1 phosphorylation and ubiquitination during cell division. In particular, we discuss the molecular mechanisms and steps underlying PLK1 kinase priming, activation and turn-off during cell division.  相似文献   

12.
PLK1 (polo-like kinase 1) is a key mitotic kinase and a therapeutic target in the treatment of proliferative diseases. Here we investigate the relative substrate specificity and pharmacological relatedness of PLK1, -2, -3, and -4 that together comprise a conserved family of Ser/Thr kinases (PLK family). We report consensus substrate sequences for PLK2, -3, and -4 and an expanded consensus sequence for PLK1, which we use to design an optimal peptide substrate, PLKtide. We report inhibitory activity for the entire PLK family across a diverse set of small-molecule ATP-competitive inhibitors including several clinical compounds. With respect to both substrate and ATP-site specificity, highest similarity is observed between PLK2 and PLK3, PLK1 is next most similar, and PLK4 is least similar. Further, we have identified and report time-dependent inhibition by two potent and selective PLK inhibitors.  相似文献   

13.
Polo-like kinase 1 (PLK1), which has been shown to have a critical role in mitosis, is one possible target for cancer therapeutic intervention. PLK1, at least in Xenopus, starts the mitotic cascade by phosphorylating and activating cdc25C phosphatase. Also, loss of PLK1 function has been shown to induce mitotic catastrophe in a HeLa cervical carcinoma cell line but not in normal Hs68 fibroblasts. We wanted to understand whether the selective mitotic catastrophe in HeLa cells could be extended to other tumor types, and, if so, whether it could be attributable to a tumor-specific loss of dependence on PLK1 for cdc25C activation. When PLK1 function was blocked through adenovirus delivery of a dominant-negative gene, we observed tumor-selective apoptosis in most tumor cell lines. In some lines, dominant-negative PLK1 induced a mitotic catastrophe similar to that published in HeLa cells (K. E. Mundt et al., Biochem. Biophys Res. Commun., 239: 377-385, 1997). Normal human mammary epithelial cells, although arrested in mitosis, appeared to escape the loss of centrosome maturation and mitotic catastrophe seen in tumor lines. Mitotic phosphorylation of cdc25C and activation of cdk1 was blocked by dominant-negative PLK1 in human mammary epithelial cells as well as in the tumor lines regardless of whether they underwent mitotic catastrophe. These data strongly argue that the mitotic catastrophe is not attributable to a lack of dependence for PLK1 in activating cdc25C.  相似文献   

14.
15.
The discovery and characterization of two new chemical classes of potent and selective Polo-like kinase 1 (PLK1) inhibitors is reported. For the most interesting compounds, we discuss the biological activities, crystal structures and preliminary pharmacokinetic parameters. The more advanced compounds inhibit PLK1 in the enzymatic assay at the nM level and exhibit good activity in cell proliferation on A2780 cells. Furthermore, these compounds showed high levels of selectivity on a panel of unrelated kinases, as well as against PLK2 and PLK3 isoforms. Additionally, the compounds show acceptable oral bioavailability in mice making these inhibitors suitable candidates for further in vivo activity studies.  相似文献   

16.
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics.The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.  相似文献   

17.
18.
Centrosome duplication occurs once every cell cycle in a strictly controlled manner. Polo-like kinase 4 (PLK4) is a key regulator of this process whose kinase activity is essential for centriole duplication. Here, we show that PLK4 autophosphorylation of serine S305 is a consequence of kinase activation and enables the active fraction to be identified in the cell. Active PLK4 is detectable on the replicating mother centriole in G1/S, with the proportion of active kinase increasing through interphase to reach a maximum in mitosis. Activation of PLK4 at the replicating daughter centriole is delayed until G2, but a level equivalent to the replicating mother centriole is achieved in M phase. Active PLK4 is regulated by the proteasome, because either proteasome inhibition or mutation of the degron motif of PLK4 results in the accumulation of S305-phosphorylated PLK4. Autophosphorylation probably plays a role in the process of centriole duplication, because mimicking S305 phosphorylation enhances the ability of overexpressed PLK4 to induce centriole amplification. Importantly, we show that S305-phosphorylated PLK4 is specifically sequestered at the centrosome contrary to the nonphosphorylated form. These data suggest that PLK4 activity is restricted to the centrosome to prevent aberrant centriole assembly and sustained kinase activity is required for centriole duplication.  相似文献   

19.
Myosin phosphatase is a heterotrimeric holoenzyme consisting of myosin phosphatase-targeting subunit 1 (MYPT1), a catalytic subunit of PP1Cβ, and a 20-kDa subunit of an unknown function. We have previously reported that myosin phosphatase also controls mitosis, apparently by antagonizing polo-like kinase 1 (PLK1). Here we found that depletion of MYPT1 by siRNA led to precocious chromatid segregation when HeLa cells were arrested at metaphase by a proteasome inhibitor, MG132, or by Cdc20 depletion. Consistently, cyclin B1 and securin were not degraded, indicating that the chromatid segregation is independent of the anaphase-promoting complex/cyclosome. Precocious segregation induced by MYPT1 depletion requires PLK1 activity because a PLK1 inhibitor, BI-2536, blocked precocious segregation. Furthermore, the expression of an unphosphorylatable mutant of SA2 (SCC3 homologue 2), a subunit of the cohesin complex, prevented precocious chromatid segregation induced by MYPT1 depletion. It has been shown that SA2 at centromeres is protected from phosphorylation by PP2A phosphatase recruited by Shugoshin (Sgo1), whereas SA2 along chromosome arms is phosphorylated by PLK1, leading to SA2 dissociation at chromosome arms. Taken together, our results suggest that hyperactivation of PLK1 caused by MYPT1 reduction could override the counteracting PP2A phosphatase, resulting in precocious chromatid segregation. We propose that SA2 at the centromeres is protected by two phosphatases. One is PP2A directly dephosphorylating SA2, and the other is myosin phosphatase counteracting PLK1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号