首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anaphase promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators by the 26S proteasome. Cdc20 and Cdh1 are WD40-containing APC co-activators that bind destruction boxes (DB) and KEN boxes within substrates to recruit them to the APC for ubiquitination. Acm1 is an APC(Cdh1) inhibitor that utilizes a DB and a KEN box to bind Cdh1 and prevent substrate binding, although Acm1 itself is not a substrate. We investigated what differentiates an APC substrate from an inhibitor. We identified the Acm1 A-motif that interacts with Cdh1 and together with the DB and KEN box is required for APC(Cdh1) inhibition. A genetic screen identified Cdh1 WD40 domain residues important for Acm1 A-motif interaction and inhibition that appears to reside near Cdh1 residues important for DB recognition. Specific lysine insertion mutations within Acm1 promoted its ubiquitination by APC(Cdh1) whereas lysine removal from the APC substrate Hsl1 converted it into a potent APC(Cdh1) inhibitor. These findings suggest that tight Cdh1 binding combined with the inaccessibility of ubiquitinatable lysines contributes to pseudosubstrate inhibition of APC(Cdh1).  相似文献   

2.
The anaphase-promoting complex (APC) regulates cell division in eukaryotes by targeting specific proteins for destruction. APC substrates generally contain one or more short degron sequences that help mediate their recognition and poly-ubiquitination by the APC. The most common and well characterized degrons are the destruction box (D box) and the KEN box. The budding yeast Acm1 protein, an inhibitor of Cdh1-activated APC (APC(Cdh1)) also contains several conserved D and KEN boxes, and here we report that two of these located in the central region of Acm1 constitute a pseudosubstrate sequence required for APC(Cdh1) inhibition. Acm1 interacted with and inhibited substrate binding to the WD40 repeat domain of Cdh1. Combined mutation of the central D and KEN boxes strongly reduced both binding to the Cdh1 WD40 domain and APC(Cdh1) inhibition. Despite this, the double mutant, but not wild-type Acm1, was poly-ubiquitinated by APC(Cdh1) in vitro. Thus, unlike substrates in which D and KEN boxes promote ubiquitination, these same elements in the central region of Acm1 prevent ubiquitination. We propose that this unique property of the Acm1 degron sequences results from an unusually high affinity interaction with the substrate receptor site on the WD40 domain of Cdh1 that may serve both to promote APC inhibition and protect Acm1 from destruction.  相似文献   

3.
The anaphase-promoting complex (APC) is an essential E3 ubiquitin ligase responsible for catalyzing proteolysis of key regulatory proteins in the cell cycle. Cdh1 is a co-activator of the APC aiding in the onset and maintenance of G(1) phase, whereas phosphorylation of Cdh1 at the end of G(1) phase by cyclin-dependent kinases assists in the inactivation of APC(Cdh1). Here, we suggest additional components are involved in the inactivation of APC(Cdh1) independent of Cdh1 phosphorylation. We have identified proteins known as Acm1 and Bmh1, which bind and form a ternary complex with Cdh1. The presence of phosphorylated Acm1 is critical for the ternary complex formation, and Acm1 is predominantly expressed in S phase when APC(Cdh1) is inactive. The assembly of the ternary complex inhibits ubiquitination of Clb2 in vitro by blocking the interaction of Cdh1 with Clb2. In vivo, lethality caused by overexpression of constitutively active Cdh1 is rescued by overexpression of Acm1. Partially phosphorylated Cdh1 in the absence of ACM1 still binds to and activates the APC. However, the addition of Acm1 decreases Clb2 ubiquitination when using either phosphorylated or nonphosphorylated Cdh1. Taken together, our results suggest an additional inactivation mechanism exists for APC(Cdh1) that is independent of Cdh1 phosphorylation.  相似文献   

4.
The ubiquitin ligase activity of the anaphase-promoting complex (APC)/cyclosome needs to be tightly regulated for proper cell cycle progression. Substrates are recruited to the APC by the Cdc20 and Cdh1 accessory proteins. The Cdh1-APC interaction is inhibited through phosphorylation of Cdh1 by Cdc28, the major cyclin-dependent protein kinase in budding yeast. More recently, Acm1 was reported to be a Cdh1-binding and -inhibitory protein in budding yeast. We found that although Acm1 is an unstable protein and contains the KEN-box and D-box motifs typically found in APC substrates, Acm1 itself is not an APC substrate. Rather, it uses these motifs to compete with substrates for Cdh1 binding, thereby inhibiting their recruitment to the APC. Mutation of these motifs prevented Acm1-Cdh1 binding in vivo and rendered Acm1 inactive both in vitro and in vivo. Acm1 stability was critically dependent on phosphorylation by Cdc28, as Acm1 was destabilized following inhibition of Cdc28, mutation of consensus Cdc28 phosphorylation sites in Acm1, or deletion of the Bmh1 and Bmh2 phosphoprotein-binding proteins. Thus, Cdc28 serves dual roles in inhibiting Cdh1-dependent APC activity during the cell cycle: stabilization of the Cdh1 inhibitor Acm1 and direct phosphorylation of Cdh1 to prevent its association with the APC.  相似文献   

5.
The anaphase-promoting complex (APC) regulates the eukaryotic cell cycle by targeting specific proteins for proteasomal degradation. Its activity must be strictly controlled to ensure proper cell cycle progression. The co-activator proteins Cdc20 and Cdh1 are required for APC activity and are important regulatory targets. Recently, budding yeast Acm1 was identified as a Cdh1 binding partner and APC(Cdh1) inhibitor. Acm1 disappears in late mitosis when APC(Cdh1) becomes active and contains conserved degron-like sequences common to APC substrates, suggesting it could be both an inhibitor and substrate. Surprisingly, we found that Acm1 proteolysis is independent of APC. A major determinant of Acm1 stability is phosphorylation at consensus cyclin-dependent kinase sites. Acm1 is a substrate of Cdc28 cyclin-dependent kinase and Cdc14 phosphatase both in vivo and in vitro. Mutation of Cdc28 phosphorylation sites or conditional inactivation of Cdc28 destabilizes Acm1. In contrast, inactivation of Cdc14 prevents Acm1 dephosphorylation and proteolysis. Cdc28 stabilizes Acm1 in part by promoting binding of the 14-3-3 proteins Bmh1 and Bmh2. We conclude that the opposing actions of Cdc28 and Cdc14 are primary factors limiting Acm1 to the interval from G(1)/S to late mitosis and are capable of establishing APC-independent expression patterns similar to APC substrates.  相似文献   

6.
Cdh1 is a coactivator of the anaphase-promoting complex/cyclosome (APC/C) and contributes to mitotic exit and G1 maintenance by facilitating the polyubiquitination and subsequent proteolysis of specific substrates. Here, we report that budding yeast Cdh1 is a component of a cell cycle-regulated complex that includes the 14-3-3 homologs Bmh1 and Bmh2 and a previously uncharacterized protein, which we name Acm1 (APC/CCdh1 modulator 1). Association of Cdh1 with Bmh1 and Bmh2 requires Acm1, and the Acm1 protein is cell cycle regulated, appearing late in G1 and disappearing in late M. In acm1Delta strains, Cdh1 localization to the bud neck and association with two substrates, Clb2 and Hsl1, were strongly enhanced. Several lines of evidence suggest that Acm1 can suppress APC/CCdh1-mediated proteolysis of mitotic cyclins. First, overexpression of Acm1 fully restored viability to cells expressing toxic levels of Cdh1 or a constitutively active Cdh1 mutant lacking inhibitory phosphorylation sites. Second, overexpression of Acm1 was toxic in sic1Delta cells. Third, ACM1 deletion exacerbated a low-penetrance elongated-bud phenotype caused by modest overexpression of Cdh1. This bud elongation was independent of the morphogenesis checkpoint, and the combination of acm1Delta and hsl1Delta resulted in a dramatic enhancement of bud elongation and G2/M delay. Effects on bud elongation were attenuated when Cdh1 was replaced with a mutant lacking the C-terminal IR dipeptide, suggesting that APC/C-dependent proteolysis is required for this phenotype. We propose that Acm1 and Bmh1/Bmh2 constitute a specialized inhibitor of APC/CCdh1.  相似文献   

7.
The anaphase-promoting complex (APC) is tightly regulated during cell division, often by pseudosubstrate binding to its coactivators Cdh1 and Cdc20. Budding yeast Acm1 is a Cdh1 pseudosubstrate inhibitor whose biological function is unknown. We show here that cells lacking Acm1 have defects in nuclear positioning and spindle morphology during mitosis. However, Cdh1 substrates are not destabilized in the absence of Acm1 and expression of inactive Cdh1 mutants that retain substrate binding is sufficient for the acm1 phenotype. We conclude that Acm1 is not required to inhibit APCCdh1 activity but rather prevents untimely Cdh1-substrate interactions. We further provide evidence suggesting that the substrate primarily responsible for the acm1 phenotype is the bud neck-localized kinase, Hsl1. Our results imply that at least some coactivator-substrate interactions require regulation. Several unrelated APC pseudosubstrates have been identified in diverse eukaryotes and their ability to simultaneously inhibit enzymatic activity and substrate binding may partly explain why this regulatory mechanism has been selected repeatedly during evolution.  相似文献   

8.
The anaphase-promoting complex (APC) is tightly regulated during cell division, often by pseudosubstrate binding to its coactivators Cdh1 and Cdc20. Budding yeast Acm1 is a Cdh1 pseudosubstrate inhibitor whose biological function is unknown. We show here that cells lacking Acm1 have defects in nuclear positioning and spindle morphology during mitosis. However, Cdh1 substrates are not destabilized in the absence of Acm1, and expression of inactive Cdh1 mutants that retain substrate binding is sufficient for the acm1 phenotype. We conclude that Acm1 is not required to inhibit APCCdh1 activity, but rather prevents untimely Cdh1-substrate interactions. We further provide evidence suggesting that the substrate primarily responsible for the acm1 phenotype is the bud neck-localized kinase, Hsl1. Our results imply that at least some coactivator-substrate interactions require regulation. Several unrelated APC pseudosubstrates have been identified in diverse eukaryotes, and their ability to simultaneously inhibit enzymatic activity and substrate binding may partly explain why this regulatory mechanism has been selected repeatedly during evolution.Key words: anaphase-promoting complex, pseudosubstrate, Cdh1, Hsl1, Acm1, cell cycle, mitosis  相似文献   

9.
10.
Chen M  Gutierrez GJ  Ronai ZA 《PloS one》2012,7(4):e35520
The anaphase-promoting complex or cyclosome (APC/C) is a multi-subunit ubiquitin ligase that regulates exit from mitosis and G1 phase of the cell cycle. Although the regulation and function of APC/C(Cdh1) in the unperturbed cell cycle is well studied, little is known of its role in non-genotoxic stress responses. Here, we demonstrate the role of APC/C(Cdh1) (APC/C activated by Cdh1 protein) in cellular protection from endoplasmic reticulum (ER) stress. Activation of APC/C(Cdh1) under ER stress conditions is evidenced by Cdh1-dependent degradation of its substrates. Importantly, the activity of APC/C(Cdh1) maintains the ER stress checkpoint, as depletion of Cdh1 by RNAi impairs cell cycle arrest and accelerates cell death following ER stress. Our findings identify APC/C(Cdh1) as a regulator of cell cycle checkpoint and cell survival in response to proteotoxic insults.  相似文献   

11.
Cell cycle progression is driven by waves of cyclin expression coupled with regulated protein degradation. An essential step for initiating mitosis is the inactivation of proteolysis mediated by the anaphase-promoting complex/cyclosome (APC/C) bound to its regulator Cdh1p/Hct1p. Yeast APC(Cdh1) was proposed previously to be inactivated at Start by G1 cyclin/cyclin-dependent kinase (CDK). Here, we demonstrate that in a normal cell cycle APC(Cdh1) is inactivated in a graded manner and is not extinguished until S phase. Complete inactivation of APC(Cdh1) requires S phase cyclins. Further, persistent APC(Cdh1) activity throughout G1 helps to ensure the proper timing of Cdc20p expression. This suggests that S phase cyclins have an important role in allowing the accumulation of mitotic cyclins and further suggests a regulatory loop among S phase cyclins, APC(Cdh1), and APC(Cdc20).  相似文献   

12.
We demonstrate that Rca1 is an essential inhibitor of the anaphase-promoting complex/cyclosome (APC) in Drosophila. APC activity is restricted to mitotic stages and G1 by its activators Cdc20-Fizzy (Cdc20(Fzy)) and Cdh1-Fizzy-related (Cdh1(Fzr)), respectively. In rca1 mutants, cyclins are degraded prematurely in G2 by APC-Cdh1(Fzr)-dependent proteolysis, and cells fail to execute mitosis. Overexpression of Cdh1(Fzr) mimics the rca1 phenotype, and coexpression of Rca1 blocks this Cdh1(Fzr) function. We show that Rca1 and Cdh1(Fzr) are in a complex that also includes the APC component Cdc27. Previous studies have shown that phosphorylation of Cdh1 prevents its interaction with the APC. Our data reveal a different mode of APC regulation by Rca1 at the G2 stage, when low Cdk activity is unable to inhibit Cdh1(Fzr) interaction.  相似文献   

13.
The anaphase-promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators. Cdh1p is an APC coactivator that directly binds APC substrates. A genetic screen in budding yeast identified residues within Cdh1p critical for its function. Cdh1p proteins containing mutations within the "C box" or the "IR" motif could bind substrate, but not the APC, whereas mutants that only bound the APC were not identified, suggesting an ordered assembly of the ternary APC-Cdh1p-substrate complex. Supporting this hypothesis, we found that substrate binding to wild-type Cdh1p enhanced its association with the APC in yeast cells. We used peptide competition assays to demonstrate that Cdh1p interacts directly with the D box and the KEN box, two motifs within APC substrates known to be required for APC-mediated degradation. Moreover, an intact D box domain within a substrate was required to stimulate the association between the Cdh1p-substrate complex and the APC.  相似文献   

14.
Mammalian Cdh1/Fzr mediates its own degradation   总被引:4,自引:0,他引:4  
The Anaphase-Promoting Complex/Cyclosome (APC/C) ubiquitin ligase mediates degradation of cell cycle proteins during mitosis and G1. Cdc20/Fzy and Cdh1/Fzr are substrate-specific APC/C activators. The level of mammalian Cdh1 is high in mitosis, but it is inactive and does not bind the APC/C. We show that when Cdh1 is active in G1 and G0, its levels are considerably lower and almost all of it is APC/C associated. We demonstrate that Cdh1 is subject to APC/C-specific degradation in G1 and G0, and that this degradation depends upon two RXXL-type destruction boxes. We further demonstrate that addition of Cdh1 to Xenopus interphase extracts, which have an inactive APC/C, activates it to degrade Cdh1. These observations indicate that Cdh1 mediates its own degradation by activating the APC/C to degrade itself. Elevated levels of Cdh1 are deleterious for cell cycle progression in various organisms. This auto-regulation of Cdh1 could thus play a role in ensuring that the level of Cdh1 is reduced during G1 and G0, allowing it to be switched off at the correct time.  相似文献   

15.
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 and Cdh1 leads to ubiquitin-dependent degradation of securin and cyclin B and thereby promotes the initiation of anaphase and exit from mitosis. Cyclin B and securin ubiquitination depend on a destruction box (D box) sequence in these proteins, but how APC/C bound to Cdc20 or Cdh1 recognizes the D box is poorly understood. By using site-specific photocrosslinking in combination with mutational analyses, we show that the D box directly interacts with an evolutionarily conserved surface on the predicted WD40 propeller structure of Cdh1 and that this interaction is essential for processive substrate ubiquitination. We further show that Cdh1 specifically crosslinks to the APC/C subunit Cdc27 and that Cdh1 binding to APC/C depends on the presence of Cdc27. Our data imply that APC/C is activated by the association of Cdh1 with Cdc27, which enables APC/C to recognize the D box of substrates via Cdh1's propeller domain.  相似文献   

16.
Two forms of the anaphase-promoting complex (APC) mediate the degradation of critical cell cycle regulators. APC(Cdc20) promotes sister-chromatid separation by ubiquitinating securin, whereas APC(Cdh1) ubiquitinates mitotic cyclins, allowing the exit from mitosis. Here we show that phosphorylation of human Cdh1 (hCdh1) by cyclin B-Cdc2 alters the conformation of hCdh1 and prevents it from activating APC. A human homologue of yeast Cdc14, human Cdc14a (hCdc14a), dephosphorylates hCdh1 and activates APC(Cdh1). In contrast, hCdc14a does not affect the activity of APC(Cdc20). hCdc14a is a major phosphatase for hCdh1 and localizes to centrosomes in HeLa cells. Therefore, hCdc14a may promote the activation of APC(Cdh1) and exit from mitosis in mammalian cells.  相似文献   

17.
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets various substrates for proteolysis inside and outside of the cell cycle. The activation of APC/C is dependent on two WD-40 domain proteins, Cdc20 and Cdh1. While APC/Cdc20 principally regulates mitotic progression, APC/Cdh1 shows a broad spectrum of substrates in and beyond cell cycle. In the past several years, numerous biochemical and mouse genetic studies have greatly attracted our attention to the emerging role of APC/Cdh1 in genomic integrity, cellular differentiation and human diseases. This review will aim to summarize the recently expanded understanding of APC/Cdh1 in regulating biological function and how its dysfunction may lead to diseases.Key words: APC/C, Cdh1, proteolysis, genomic integrity, signal transduction, differentiation, tumorigenesis  相似文献   

18.
Periodic activity of the anaphase-promoting complex (APC) ubiquitin ligase determines progression through multiple cell cycle transitions by targeting cell cycle regulators for destruction. At the G(1)/S transition, phosphorylation-dependent dissociation of the Cdh1-activating subunit inhibits the APC, allowing stabilization of proteins required for subsequent cell cycle progression. Cyclin-dependent kinases (CDKs) that initiate and maintain Cdh1 phosphorylation have been identified. However, the issue of which cyclin-CDK complexes are involved has been a matter of debate, and the mechanism of how cyclin-CDKs interact with APC subunits remains unresolved. Here we substantiate the evidence that mammalian cyclin A-Cdk2 prevents unscheduled APC reactivation during S phase by demonstrating its periodic interaction with Cdh1 at the level of endogenous proteins. Moreover, we identified a conserved cyclin-binding motif within the Cdh1 WD-40 domain and show that its disruption abolished the Cdh1-cyclin A-Cdk2 interaction, eliminated Cdh1-associated histone H1 kinase activity, and impaired Cdh1 phosphorylation by cyclin A-Cdk2 in vitro and in vivo. Overexpression of cyclin binding-deficient Cdh1 stabilized the APC-Cdh1 interaction and induced prolonged cell cycle arrest at the G(1)/S transition. Conversely, cyclin binding-deficient Cdh1 lost its capability to support APC-dependent proteolysis of cyclin A but not that of other APC substrates such as cyclin B and securin Pds1. Collectively, these data provide a mechanistic explanation for the mutual functional interplay between cyclin A-Cdk2 and APC-Cdh1 and the first evidence that Cdh1 may activate the APC by binding specific substrates.  相似文献   

19.
APC/C-Cdh1     
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets various substrates for proteolysis inside and outside of cell cycle. The activation of APC/C is depended on two WD-40 domain proteins, Cdc20 and Cdh1. While APC/Cdc20 principally regulates mitotic progression, APC/Cdh1 shows a broad spectrum of substrates in and beyond cell cycle. In past several years, numerous biochemical and mouse genetic studies have greatly attracted our attention to the emerging role of APC/Cdh1 in genomic integrity, cellular differentiation and human diseases. This review will aim to summarize the recent expended understanding of APC/Cdh1 in regulating biological function and how its dysfunction may lead to diseases.  相似文献   

20.
The spindle checkpoint is a cell cycle surveillance mechanism that ensures the fidelity of chromosome segregation during mitosis and meiosis. Bub1 is a protein serine-threonine kinase that plays multiple roles in chromosome segregation and the spindle checkpoint. In response to misaligned chromosomes, Bub1 directly inhibits the ubiquitin ligase activity of the anaphase-promoting complex or cyclosome (APC/C) by phosphorylating its activator Cdc20. The protein level and the kinase activity of Bub1 are regulated during the cell cycle; they peak in mitosis and are low in G1/S phase. Here we show that Bub1 is degraded during mitotic exit and that degradation of Bub1 is mediated by APC/C in complex with its activator Cdh1 (APC/C(Cdh1)). Overexpression of Cdh1 reduces the protein levels of ectopically expressed Bub1, whereas depletion of Cdh1 by RNA interference increases the level of the endogenous Bub1 protein. Bub1 is ubiquitinated by immunopurified APC/C(Cdh1) in vitro. We further identify two KEN-box motifs on Bub1 that are required for its degradation in vivo and ubiquitination in vitro. A Bub1 mutant protein with both KEN-boxes mutated is stable in cells but fails to elicit a cell cycle phenotype, indicating that degradation of Bub1 by APC/C(Cdh1) is not required for mitotic exit. Nevertheless, our study clearly demonstrates that Bub1, an APC/C inhibitor, is also an APC/C substrate. The antagonistic relationship between Bub1 and APC/C may help to prevent the premature accumulation of Bub1 during G1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号