首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
306-314. Three synthetic oligonucleotides corresponding to sequences within the D7a divergent domain of the large subunit ribosomal RNA gene have been used to amplify the total DNA of Trypanosoma rangeli and Trypanosoma cruzi, two morphologically similar protozoa with overlapping geographical distribution and hosts. The two organisms may be distinguished by the electrophoretic mobilities of their respective amplification products. For T. rangeli a 210-bp product was obtained. The presence of this fragment was confirmed in 14 T. rangeli strains. For T. cruzi two possible amplification products were originated: a 265-bp DNA fragment for strains typed as lineage 1 and a 250-bp fragment for lineage 2 strains. Eleven unidentified trypanosome stocks, recently isolated from Amazonian vectors, could be discriminated using the proposed assay. The potential field application of multiplex PCR was further demonstrated by identification of the two parasite species in samples containing intestinal tract and feces of triatomines. In the present study we have also amplified the D7a domain of several trypanosomatids employing primers complementary to the conserved flanking regions. Size and sequence polymorphisms were observed, indicating that this region could also be explored as a target for specific detection of other members of the Trypanosomatidae family.  相似文献   

3.
Molecular phylogeny of Drosophila based on ribosomal RNA sequences   总被引:4,自引:0,他引:4  
Nucleotide sequences of 72 species of Drosophilidae were determined for divergent D1 and D2 domains (representing 200 and 341 nucleotides respectively in D. melanogaster) of large ribosomal RNA, using the rRNA direct sequencing method. Molecular phylogenetic trees were reconstructed using both distance and parsimony methods and the robustness of the nodes was evaluated by the bootstrap procedure. The trees obtained by these methods revealed four main lineages or clades which do not correspond to the taxonomical hierarchy. In our results, the genus Chymomyza is associated with the subgenus Scaptodrosophila of the genus Drosophila and their cluster constitutes the most ancient clade. The two other clades are constituted of groups belonging to the subgenus Sophophora of the genus Drosophila: the so-called Neotropical clade including the willistoni and saltans groups and the obscura-melanogaster clade itself split into three lineages: (1) obscura group + ananassae subgroup, (2) montium subgroup, and (3) melanogaster + Oriental subgroups. The fourth clade, the Drosophila one, contains three lineages. D. polychaeta, D. iri, and D. fraburu are branched together and constitute the most ancient lineage; the second lineage includes the annulimana, bromeliae, dreyfusi, melanica, mesophragmatica, repleta, robusta, and virilis groups. The third lineage is composed of the immigrans and the cardini, funebris, guaramunu, guarani, histrio, pallidipennis, quinaria, and tripunctata groups. The genera Samoaia, Scaptomyza, and Zaprionus are branched within the Drosophila clade. Although these four clades appear regularly in almost all tree calculations, additional sequencing will be necessary to determine their precise relationships.Correspondence to: M. Pelandakis  相似文献   

4.
The phylogenetic relationships of Trypanosoma cruzi strains were inferred using maximum-likelihood from complete 18S rDNA sequences and D7-24Salpha rDNA regions from 20 representative strains of T. cruzi. For this we sequenced the 18S rDNA of 14 strains and the D7-24Salpha rDNA of four strains and aligned them to previously published sequences. Phylogenies inferred from these data sets identified four groups, named Riboclades 1, 2, 3, and 4, and a basal dichotomy that separated Riboclade 1 from Riboclades 2, 3, and 4. Substitution models and other parameters were optimized by hierarchical likelihood tests, and our analysis of the 18S rDNA molecular clock by the likelihood ratio test suggests that a taxa subset encompassing all 2,150 positions in the alignment supports rate constancy among lineages. The present analysis supports the notion that divergence dates of T. cruzi Riboclades can be estimated from 18S rDNA sequences and therefore, we present alternative evolutionary scenarios based on two different views of T. cruzi intraspecific divergence. The first assumes a faster evolutionary rate, which suggests that the divergence between T. cruzi I and II and the extant strains occurred in the Tertiary period (37-18 MYA). The other, which supports the hypothesis that the divergence between T. cruzi I and II occurred in the Cretaceous period (144-65 MYA) and the divergence of the extant strains occurred in the Tertiary period of the Cenozoic era (65-1.8 MYA), is consistent with our previously proposed hypothesis of divergence by geographical isolation and mammalian host coevolution.  相似文献   

5.
Isozyme analysis with 18 enzyme loci was conducted on 146 isolates of Trypanosoma cruzi from Mexico, Guatemala, Colombia, Ecuador, Peru, Brazil, Bolivia, Paraguay and Chile. Forty-four different MLGs (groups of isolates with identical multilocus genotypes) were identified and a phylogeny was constructed. The phylogenetic tree consisted of two main groups (T. cruzi I, T. cruzi II), and the latter was further divided into two subgroups (T. cruzi IIa, T. cruzi IIb–e). Evidence of hybridization between different MLGs of T. cruzi II was found, which means that genetic exchanges seem to have occurred in South American T. cruzi. On the other hand, the persistence of characteristic T. cruzi I and T. cruzi II isozyme patterns in single small villages in Bolivia and Guatemala suggested that genetic exchange is very rare between major lineages. A significant difference in genetic diversity was shown between T. cruzi I and T. cruzi II from several indices of population genetics. Two possibilities could explain this genetic variation in the population: differences in evolutionary history and/or different tendencies to exchange genetic material. Broad-scale geographic distributions of T. cruzi I and T. cruzi IIb–e were different; T. cruzi I occurred in Central America and south to Bolivia and Brazil, while T. cruzi IIb–e occurred in the central and southern areas of South America, overlapping with T. cruzi I in Brazil and Bolivia.  相似文献   

6.
7.
Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences   总被引:18,自引:0,他引:18  
A phylogenetic tree of most of the major groups of organisms has been constructed from the 352 5S ribosomal RNA sequences now available. The tree suggests that there are several major groups of eubacteria that diverged during the early stages of their evolution. Metabacteria (= archaebacteria) and eukaryotes separated after the emergence of eubacteria. Among eukaryotes, red algae emerged first; and, later, thraustochytrids (a Proctista group), ascomycetes (yeast), green plants (green algae and land plants), "yellow algae" (brown algae, diatoms, and chrysophyte algae), basidiomycetes (mushrooms and rusts), slime- and water molds, various protozoans, and animals emerged, approximately in that order. Three major types of photosynthetic eukaryotes--i.e., red algae (= Chlorophyll a group), green plants (Chl. a + b group) and yellow algae (Chl. a + c)--are remotely related to one another. Other photosynthetic unicellular protozoans--such as Cyanophora (Chl. a), Euglenophyta (Chl. a + b), Cryptophyta (Chl. a + c), and Dinophyta (Chl. a + c)--seem to have separated shortly after the emergence of the yellow algae.   相似文献   

8.

Background

The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites.

Methodology/Principal Findings

The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (José-IMT). Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively.

Conclusions

Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion and split events involving T. brucei and T. cruzi chromosomes.  相似文献   

9.
The multi-copy ribosomal P proteins have been identified on the ribosomes of prokaryotic and eukaryotic cells, and their antigenicity is an important feature of human Trypanosoma cruzi infection. In this review, Mariano Levin, Martin Vazquez, Dan Kaplan and Alejandro Schijman give a rational basis for the classification of these proteins, and discuss their inter-relationship.  相似文献   

10.
Hori  H.  Satow  Y. 《Hydrobiologia》1991,216(1):505-508
Using nucleotide sequences of 5S ribosomal RNAs from 2 hydrozoan jellyfishes, 3 scyphozoan jellyfishes and 2 sea anemones, a phylogenetic tree of Cnidaria has been constructed to elucidate the evolutionary relationships of radial and bilateral symmetries. The 3 classes of Cnidaria examined herein belong to one branch, which does not include other metazoan phyla such as the Platyhelminthes. The Hydrozoa (having radial symmetry without septa) and the Scyphozoa (having radial symmetry with septa) are more closely related to each other than to the Anthozoa (having bilateral symmetry with septa). In classical taxonomy, multicellular animals are considered to have evolved through organisms with radial symmetry (e.g., Cnidaria) to bilateral symmetry. Our results, however, indicate that the emergence of the Bilateria was earlier than that of the Radiata, suggesting (in opposition to Haeckel's view) that the radial symmetry of Cnidaria is an evolutionary dead end.  相似文献   

11.
Base composition of ribosomal RNA and evolution   总被引:2,自引:0,他引:2  
Summary Base composition analysis has been carried out for the two major ribosomal RNA components extracted from ribosomes of plants and animals of various taxonomic position. The high degree of change undergone by these molecules during evolution is evident from the results obtained. Moreover, the evolutionary pattern of therRNA base composition well reflects the phylogenetic relationships of the various taxonomic groups.On leave from the Facultad de Medicina, Universidad Central de Venezuela, Caracas.  相似文献   

12.
13.
On the evolution of ribosomal RNA   总被引:8,自引:0,他引:8  
Despite the availability of a rapidly growing ribosomal RNA database that now includes organisms in all three primary lines of descent (eubacteria, archaebacteria, and eukaryotes), theoretical treatment of the evolution of the ribosomal RNAs has lagged behind that of the protein genes. In this paper a theory is developed that applies current views of protein gene evolution to the ribosomal RNAs. The major topics addressed are the variability in size, gene arrangement, and processing of the rRNAs among the three primary lines of descent. Among the conclusions are that the rRNAs of eukaryotes retain some primitive features that were probably present in the rRNAs of the earliest cell (the progenote) and that the genes coding for the three major rRNA species were probably originally unlinked.  相似文献   

14.
Brachiopod and phoronid phylogeny is inferred from SSU rDNA sequences of 28 articulate and nine inarticulate brachiopods, three phoronids, two ectoprocts and various outgroups, using gene trees reconstructed by weighted parsimony, distance and maximum likelihood methods. Of these sequences, 33 from brachiopods, two from phoronids and one each from an ectoproct and a priapulan are newly determined. The brachiopod sequences belong to 31 different genera and thus survey about 10% of extant genus-level diversity. Sequences determined in different laboratories and those from closely related taxa agree well, but evidence is presented suggesting that one published phoronid sequence (GenBank accession UO12648) is a brachiopod-phoronid chimaera, and this sequence is excluded from the analyses. The chiton, Acanthopleura, is identified as the phenetically proximal outgroup; other selected outgroups were chosen to allow comparison with recent, non-molecular analyses of brachiopod phylogeny. The different outgroups and methods of phylogenetic reconstruction lead to similar results, with differences mainly in the resolution of weakly supported ancient and recent nodes, including the divergence of inarticulate brachiopod sub-phyla, the position of the rhynchonellids in relation to long- and short-looped articulate brachiopod clades and the relationships of some articulate brachiopod genera and species. Attention is drawn to the problem presented by nodes that are strongly supported by non-molecular evidence but receive only low bootstrap resampling support. Overall, the gene trees agree with morphology-based brachiopod taxonomy, but novel relationships are tentatively suggested for thecideidine and megathyrid brachiopods. Articulate brachiopods are found to be monophyletic in all reconstructions, but monophyly of inarticulate brachiopods and the possible inclusion of phoronids in the inarticulate brachiopod clade are less strongly established. Phoronids are clearly excluded from a sister-group relationship with articulate brachiopods, this proposed relationship being due to the rejected, chimaeric sequence (GenBank UO12648). Lineage relative rate tests show no heterogeneity of evolutionary rate among articulate brachiopod sequences, but indicate that inarticulate brachiopod plus phoronid sequences evolve somewhat more slowly. Both brachiopods and phoronids evolve slowly by comparison with other invertebrates. A number of palaeontologically dated times of earliest appearance are used to make upper and lower estimates of the global rate of brachiopod SSU rDNA evolution, and these estimates are used to infer the likely divergence times of other nodes in the gene tree. There is reasonable agreement between most inferred molecular and palaeontological ages. The estimated rates of SSU rDNA sequence evolution suggest that the last common ancestor of brachiopods, chitons and other protostome invertebrates (Lophotrochozoa and Ecdysozoa) lived deep in Precambrian time. Results of this first DNA-based, taxonomically representative analysis of brachiopod phylogeny are in broad agreement with current morphology-based classification and systematics and are largely consistent with the hypothesis that brachiopod shell ontogeny and morphology are a good guide to phylogeny.  相似文献   

15.
小鲵科线粒体16S rRNA基因序列分析及其系统发育   总被引:9,自引:0,他引:9  
李悦  吴敏  王秀玲 《动物学报》2004,50(3):464-469
To study the phylogeny of Hynobiidae, we amplified DNA fragments of 470 bp 16S ribosomal RNA (16S rRNA) gene on mitochondrial DNA from Ranodon sibiricus and Ranodon tsinpaensis. PCR products were cloned into PMD18 T vector after purification. These sequences were determined and deposited in the GenBank (accession numbers: AY373459 for Ranodon sibiricus, AY372534 for Ranodon tsinpaensis). By comparing the nucleotide differences of 16S ribosomal RNA sequences among Liua shihi, Pseudohynobius flavomaculatus and Batrachuperus genus from GenBank database, we analyzed the divergences and base substitution among these sequences with the MEGA software. The molecular results support that B. tibetanus, B. pinchonii and B. karlschmidti are classified into three valid species. Liua shihi has closer phylogenetic relationships to Ranodon tsinpaensis than to other species. More our results reveal that Pseudohynobius flavomaculatus is not a synonym of Ranodon tsinpaensis. [Acta Zoologica Sinica 50 (3) : 464 - 469,2004].  相似文献   

16.
17.
The phylogenetic position of the Tardigrada remains uncertain. This is due to the limited information available, and the uncertainty of whether some characters are homologous or analogous with other taxa. Based on some morphological characters, current discussion centres on whether the taxon branches from the annelid-arthropod lineage, or lies within the arthropod complex. The molecular data presented here from an analysis of the 18S rRNA gene sequences are used to test the validity of these two hypotheses. Phylogenetic inference by the maximum parsimony and distance (neighbour-joining) methods suggests that the Tardigrada is a sister group of the major protostome eucoelomate assemblage that emerged before the arthropods, annelids, molluscs, and sipunculids evolved. The tardigrade clade also appears as an independent lineage separate from the nematode clade, thus supporting the current idea that tardigrades do not have a close aschelminth relationship. The molecular data also imply that several morphological features, considered significant in determining the phylogenetic relationships of tardigrades, are not synapomorphic characters.  相似文献   

18.
19.
The ribosomal RNA from several stocks of the genera Leishmania and Trypanosoma were studied by gel electrophoresis, sedimentation on sucrose density gradients and RNA/DNA hybridization experiments. Three major components were observed after electrophoresis in polyacrylamide gels (PAGE-SDS), the relative molecular masses being respectively: X1 = 0.83 megadaltons, X2 = 0.63 megadaltons and X3 = 0.54 megadaltons for Leishmania RNA; and X1 = 0.86 megaldaltons, X2 = 0.78 megadaltons, and X3 = 0.58 megadaltons for Trypanosoma RNA. Depending upon the isolation procedure, a fourth component, X0 = 1.2 megadaltons (26S), became evident. The later component was purified from Leishmania brasiliensis (Y) by centrifugation on a linear 15-30% sucrose density gradient. This component, after heat denaturation and PAGE-SDS, gave rise to two bands coinciding in molecular mass with those of X2 and X3, indicating that these components are part of the large ribosomal subunit whereas X1 belongs to the small one. The above mentioned differences in mobilities of components X1 and X2 between the two genera were no longer observed after electrophoresis in denaturing agarose-formaldehyde gels, suggesting secondary structural differences among these RNA species. Hybridization experiments with L. brasiliensis (Y) DNA showed that both RNA types compete equally well for the ribosomal sites in this DNA, and that L. brasiliensis (Y) rRNA recognizes the ribosomal sites in DNA of Trypanosoma cruzi (EP), thus indicating that no gross changes occurred in their nucleotide sequences during evolution.  相似文献   

20.
Recent discussions on the evolution of Trypanosoma cruzi have been dominated by the southern super-continent hypothesis, whereby T. cruzi and related parasites evolved in isolation in the mammals of South America, Antarctica and Australia. Here, we consider recent molecular evidence suggesting that T. cruzi evolved from within a broader clade of bat trypanosomes, and that bat trypanosomes have successfully made the switch into other mammalian hosts in both the New and Old Worlds. Accordingly, we propose an alternative hypothesis--the bat seeding hypothesis--whereby lineages of bat trypanosomes have switched into terrestrial mammals, thereby seeding the terrestrial lineages within the clade. One key implication of this finding is that T. cruzi may have evolved considerably more recently than previously envisaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号