首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chagas heart disease, caused by the protozoan parasite Trypanosoma cruzi, is a potentially fatal cardiomyopathy often associated with cardiac autoimmunity. T. cruzi infection induces the development of autoimmunity to a number of antigens via molecular mimicry and other mechanisms, but the genesis and pathogenic potential of this autoimmune response has not been fully elucidated. To determine whether exposure to T. cruzi antigens alone in the absence of active infection is sufficient to induce autoimmunity, we immunized A/J mice with heat-killed T. cruzi (HKTC) emulsified in complete Freund's adjuvant, and compared the resulting immune response to that induced by infection with live T. cruzi. We found that HKTC immunization is capable of inducing acute cardiac damage, as evidenced by elevated serum cardiac troponin I, and that this damage is associated with the generation of polyantigenic humoral and cell-mediated autoimmunity with similar antigen specificity to that induced by infection with T. cruzi. However, while significant and preferential production of Th1 and Th17-associated cytokines, accompanied by myocarditis, develops in T. cruzi-infected mice, HKTC-immunized mice produce lower levels of these cytokines, do not develop Th1-skewed immunity, and lack tissue inflammation. These results demonstrate that exposure to parasite antigen alone is sufficient to induce autoimmunity and cardiac damage, yet additional immune factors, including a dominant Th1/Th17 immune response, are likely required to induce cardiac inflammation.  相似文献   

2.
Infection with the protozoan parasite Trypanosoma cruzi leads to acute myocarditis that is accompanied by autoimmunity to cardiac myosin in susceptible strains of mice. It has been difficult to determine the contribution of autoimmunity to tissue inflammation, because other inflammatory mechanisms, such as parasite-mediated myocytolysis and parasite-specific immunity, are coincident during active infection. To begin to investigate the contribution of myosin autoimmunity to myocarditis, we selectively inhibited myosin autoimmunity by restoring myosin tolerance via injection of myosin-coupled splenocytes. This tolerization regimen suppressed the strong myosin-specific delayed-type hypersensitivity (DTH) that normally develops in infected mice, although it did not affect myosin-specific Ab production. Suppression of myosin autoimmunity had no effect on myocarditis or cardiac parasitosis. In contrast, myosin tolerization completely abrogated myocarditis in mice immunized with purified myosin, which normally causes severe autoimmune myocarditis. In this case, myosin-specific DTH and Ab production were significantly reduced. We also examined the contribution of T. cruzi-specific immunity to inflammation by injection of T. cruzi-coupled splenocytes before infection. This treatment reduced T. cruzi DTH, although there was no effect on parasite-specific Ab production. Interestingly, cardiac inflammation was decreased, cardiac parasitosis was significantly increased, and mortality occurred earlier in the parasite-tolerized animals. These results indicate that myosin-specific autoimmunity, while a potentially important inflammatory mechanism in acute and chronic T. cruzi infection, is not essential for inflammation in acute disease. They also confirm previous studies showing that parasite-specific cell-mediated immunity is important for myocarditis and survival of T. cruzi infection.  相似文献   

3.
Human humoral immunity to hsp70 during Trypanosoma cruzi infection   总被引:4,自引:0,他引:4  
Immunologic screening of cDNA expression libraries has been widely used for the identification of DNA sequences encoding the immunologically relevant proteins of many pathogenic microorganisms. For reasons that are not entirely clear, sequences encoding 70-kDa heat shock and related proteins (hsp70), which are among the most highly conserved proteins known, have routinely been identified by this approach. Consequently, hsp70 proteins have been proposed to be involved in the autoimmune processes thought responsible for the pathogenesis of the diseases caused by some of these organisms, e.g., chronic Trypanosoma cruzi infection (Chagas' disease). Therefore, we investigated whether hsp70 might be a specific target of the human humoral immune response to T. cruzi infection, and, if so, whether humoral autoimmunity to hsp70 might play a role in pathogenesis. We found that hsp70 is indeed a major polypeptide Ag in Chagas' disease, but that the antibodies to T. cruzi hsp70 do not react with human hsp70--even though the proteins display 73% amino acid sequence identify. These results indicate that self-tolerance to hsp70 is maintained during chronic T. cruzi infection and strongly argue against a role for humoral autoimmunity to hsp70 in the pathogenesis of Chagas' disease.  相似文献   

4.
5.
Although metacyclic and blood trypomastigotes are completely functional in relation to parasite-host interaction and/or target cell invasion, they differ in the molecules present on the surface. Thus, aspects related to the variability that the forms of T. cruzi interacts with host cells may lead to fundamental implications on the immune response against this parasite and, consequently, the clinical evolution of Chagas disease. We have shown that BT infected mice presented higher levels of parasitemia during all the acute phase of infection. Moreover, the infection with either MT or BT forms resulted in increased levels of total leukocytes, monocytes and lymphocytes, specifically later for MT and earlier for BT. The infection with BT forms presented earlier production of proinflammatory cytokine TNF-α and later of IFN-γ by both T cells subpopulations. This event was accompanied by an early cardiac inflammation with an exacerbation of this process at the end of the acute phase. On the other hand, infection with MT forms result in an early production of IFN-γ, with subsequent control in the production of this cytokine by IL-10, which provided to these animals an immunomodulatory profile in the end of the acute phase. These results are in agreement with what was found for cardiac inflammation where animals infected with MT forms showed intense cardiac inflammation later at infection, with a decrease in the same at the end of this phase. In summary, our findings emphasize the importance of taking into account the inoculums source of T. cruzi, since vectorial or transfusional routes of T. cruzi infection may trigger distinct parasite-host interactions during the acute phase that may influence relevant biological aspects of chronic Chagas disease.  相似文献   

6.
Enhanced atrial natriuretic factor (ANF) production by the heart is related to hemodynamic overload, cardiac growth, and hypertrophy. The heart is one of the most affected organs during Trypanosoma cruzi infection. We tested the hypothesis that myocarditis produced by parasite infection alters the natriuretic peptide system by investigating the behavior of plasma ANF during the acute and chronic stages of T. cruzi infection in rats. Sprague-Dawley rats were infected with T. cruzi clone Sylvio-X10/7. Cardiac morphology showed damage to myocardial cells and lymphocyte infiltration in the acute phase; and fibrosis and cell atrophy in the chronic period. Plasma ANF levels (radioimmunoassay) were significantly higher in acute (348 +/- 40 vs. 195 +/- 36 pg/ml, P < 0.05, n = 17) and chronic T. cruzi myocarditis (545 +/- 81 vs. 229 +/- 38 pg/ml, P < 0.001, n = 11) than in their respective controls (n = 10 and 14). Rats in the chronic phase also showed higher levels than rats in the acute phase (P < 0.01). The damage of myocardial cells produced by the parasite and the subsequent inflammatory response could be responsible for the elevation of plasma ANF during the acute period of T. cruzi infection. The highest plasma ANF levels found in chronically infected rats could be derived from the progressive failure of cardiac function.  相似文献   

7.
Chagas disease began millions of years ago as an enzootic disease of wild animals and started to be transmitted to man accidentally in the form of an anthropozoonosis when man invaded wild ecotopes. Endemic Chagas disease became established as a zoonosis over the last 200-300 years through forest clearance for agriculture and livestock rearing and adaptation of triatomines to domestic environments and to man and domestic animals as a food source. It is estimated that 15 to 16 million people are infected with Trypanosoma cruzi in Latin America and 75 to 90 million people are exposed to infection. When T. cruzi is transmitted to man through the feces of triatomines, at bite sites or in mucosa, through blood transfusion or orally through contaminated food, it invades the bloodstream and lymphatic system and becomes established in the muscle and cardiac tissue, the digestive system and phagocytic cells. This causes inflammatory lesions and immune responses, particularly mediated by CD4+, CD8+, interleukin-2 (IL) and IL-4, with cell and neuron destruction and fibrosis, and leads to blockage of the cardiac conduction system, arrhythmia, cardiac insufficiency, aperistalsis, and dilatation of hollow viscera, particularly the esophagus and colon. T. cruzi may also be transmitted from mother to child across the placenta and through the birth canal, thus causing abortion, prematurity, and organic lesions in the fetus. In immunosuppressed individuals, T. cruzi infection may become reactivated such that it spreads as a severe disease causing diffuse myocarditis and lesions of the central nervous system. Chagas disease is characterized by an acute phase with or without symptoms, and with entry point signs (inoculation chagoma or Roma?a's sign), fever, adenomegaly, hepatosplenomegaly, and evident parasitemia, and an indeterminate chronic phase (asymptomatic, with normal results from electrocardiogram and x-ray of the heart, esophagus, and colon) or with a cardiac, digestive or cardiac-digestive form. There is great regional variation in the morbidity due to Chagas disease, and severe cardiac or digestive forms may occur in 10 to 50% of the cases, or the indeterminate form in the other asymptomatic cases, but with positive serology. Several acute cases have been reported from Amazon region most of them by T. cruzi I, Z3, and a hybrid ZI/Z3. We conclude this article presenting the ten top Chagas disease needs for the near future.  相似文献   

8.
Chagas disease is caused by persistent Trypanosoma cruzi infection in muscle tissue that ultimately results in chronic inflammation and tissue destruction. It is unclear why T. cruzi is cleared from some tissues but persists in others, despite an active inflammatory response. In this study, we show that the majority of CD8(+) T cells present in muscle tissue express memory and effector cell surface markers but have sharply attenuated effector function compared with their splenic counterparts. The dysfunction of CD8(+) T cells in the muscle tissue suggests a mechanism by which T. cruzi can persist in that location and cause inflammatory damage.  相似文献   

9.
Trypanosoma cruzi infection leads to development of chronic Chagas disease. In this article, we provide an update on the current knowledge of the mechanisms employed by the parasite to gain entry into the host cells and establish persistent infection despite activation of a potent immune response by the host. Recent studies point to a number of T. cruzi molecules that interact with host cell receptors to promote parasite invasion of the diverse host cells. T. cruzi expresses an antioxidant system and thromboxane A(2) to evade phagosomal oxidative assault and suppress the host's ability to clear parasites. Additional studies suggest that besides cardiac and smooth muscle cells that are the major target of T. cruzi infection, adipocytes and adipose tissue serve as reservoirs from where T. cruzi can recrudesce and cause disease decades later. Further, T. cruzi employs at least four strategies to maintain a symbiotic-like relationship with the host, and ensure consistent supply of nutrients for its own survival and long-term persistence. Ongoing and future research will continue to help refining the models of T. cruzi invasion and persistence in diverse tissues and organs in the host.  相似文献   

10.
Trypanosoma cruzi, a parasitic protozoan, is the etiological agent of Chagas disease, an endemic and neglected pathology in Latin America. It presents a life cycle that involves a hematophagous insect and man as well as domestic and wild mammals. The parasitic infection is not eliminated by the immune system of mammals; thus, the vertebrate host serves as a parasite reservoir. Additionally, chronic processes leading to dysfunction of the cardiac and digestive systems are observed. To establish a chronic infection some parasites should resist the oxidative damage to its DNA exerted by oxygen and nitrogen free radicals (ROS/RNS) generated in host cells. Till date there are no reports directly showing oxidative DNA damage and repair in T. cruzi. We establish that ROS/RNS generate nuclear and kinetoplastid DNA damage in T. cruzi that may be partially repaired by the parasite. Furthermore, we determined that both oxidative agents diminish T. cruzi cell viability. This effect is significantly augmented in parasites subsequently incubated with methoxyamine, a DNA base excision repair (BER) pathway inhibitor, strongly suggesting that the maintenance of T. cruzi viability is a consequence of DNA repair mechanisms.  相似文献   

11.
Chagas' disease affects 16-18 million patients in South America and heart involvement is the major cause of morbidity and mortality. Heart failure is the most severe clinical manifestation of the chronic phase of infection with Trypanosoma cruzi. The intensity and nature of the immune response is associated with the clinical outcome of the disease. In murine models, a low proliferative response and T-cell apoptosis have been observed during acute infection. In the present study the immune response of patients in the chronic phase of infection was analyzed. Patients were divided into: (a) asymptomatic, i.e., without involvement of the heart or digestive system; and (b) with heart failure. Patients with heart failure presented a significantly lower peripheral blood mononuclear cell (PBMC) proliferative response to T. cruzi antigens compared to asymptomatic patients. This low response was associated with antigen-induced apoptosis. Apoptosis of PBMC and a low proliferative response were also associated with double Fas/Fas-L expression and high production of TNF-alpha, a cytokine known to induce programmed cell death. These results suggest that apoptosis of PBMC, probably triggered by double expression of Fas/Fas-L and TNF-alpha, is implicated in the immune regulatory mechanism during the chronic phase of Chagas' disease.  相似文献   

12.
Persistence of Trypanosoma cruzi is associated with damage to the heart, which is a characteristic of Chagas disease. In this article, we discuss recently identified mechanisms of aberrant T-cell activation that are responsible for persistence of T. cruzi and cardiac injury. Among them, apoptosis of host cells drives T. cruzi replication in macrophages and is present in cardiac inflammation. It is proposed that phagocytic removal of infected apoptotic cardiomyocytes, combined with signaling through innate immune receptors, is required to initiate immune responses that damage the heart.  相似文献   

13.
14.
Abstract Infection with Trypanosoma cruzi develops in three phases: acute, indeterminate or asymptomatic, and chronic phase (with cardiac or digestive manifestations). Moreover, transmission may occur from infected mothers to newborn, the so-called congenital form. In the present study, humoral responses against T. cruzi total extract and against the 13 amino acid peptide named R-13 derived from the parasite ribosomal P protein, previously described as a possible marker of chronic Chagas heart disease, were determined pateints and in blood bank donors from endemic areas. While in sera from acute phase, only IgM anti- T.cruzi response was observed, both IgM and IgG anti- T. cruzi antibodies were detected in sera from congenitally infected newborns. The percentage of positive response in sera from blood bank donors was relatively high in endemic regions. Antibodies against the R-13 peptide were present in a large proportion of cardiac chagasic patients but were totally lacking in patients with digestive form of Chagas disease. Furthermore, anti-R-13 positive responses were detected in congenitally infected newborns.  相似文献   

15.
To understand the interaction of Trypanosoma cruzi with caviomorph rodents, which supposedly have an ancient co-evolutionary history with this parasite, experimental infection of laboratory reared Trichomys apereoides with several isolates of both genotypes of the parasite was studied. Parasitemia, pattern of hematic cells, specific humoral immune response, histopathological features and parasite clearance were appraised. T. apereoides maintained stable infections independent of the T. cruzi genotype as demonstrated by positive PCR results in analyses of several tissues after a 5 months follow-up. The acute phase was characterized by abundant and disseminated presence of amastigotes, vacuolization and/or myocytolysis. Lymphocytosis was a common feature. The chronic phase was characterized mainly by lymphomacroeosinophilic infiltrates independent of the inoculated T. cruzi isolate. T. cruzi of different genotypes did not show any tissular preference in T. apereoides.  相似文献   

16.
The objective of this investigation was to study the morphometry of the epithelial mucosa in the chronic phase of T. cruzi infection. Nine young female Wistar rats were inoculated with T. cruzi. Ten months after inoculation the animals were sacrificed and the proximal colon was collected for morphometric measurements of the thickness of the muscle layers, the number of neurons in the myenteric plexus, the crypt cell population (CCP), crypt cell production per crypt (CCPC) and turnover time (TT) of the epithelium. There was no muscle layer hypertrophy but there was significant denervation in the group inoculated with T. cruzi, which also showed hyperplasia of the epithelium. The data suggest that denervation of the myenteric plexus did not induce hypertrophy of the propria muscle layer itself but altered the morphometry of the colonic epithelium in T. cruzi-infected animals, with increased development of CCP and TT. It is possible that this epithelial hyperplasia, as a consequence of a longer crypt cell TT, increased the absorption and secretion activities of the colon, which in turn may participate in the genesis of the enteromegalies observed in the chronic phase of Chagas' Disease.  相似文献   

17.
It has been demonstrated that the acute phase of Trypanosoma cruzi infection promotes several changes in the oral glands. The present study examined whether T. cruzi modulates the expression of host cell apoptotic or mitotic pathway genes. Rats were infected with T. cruzi then sacrificed after 18, 32, 64 or 97 days, after which the submandibular glands were analyzed by immunohistochemistry. Immunohistochemical analyses using an anti-bromodeoxyuridine antibody showed that, during acute T. cruzi infection, DNA synthesizing cells in rat submandibular glands were lower than in non-infected animals (p < 0.05). However, after 64 days of infection (chronic phase), the number of immunolabeled cells are similar in both groups. However, immunohistochemical analysis of Fas and Bcl-2 expression did not find any difference between infected and non-infected animals in both the acute and chronic stages. These findings suggest that the delay in ductal maturation observed at the acute phase of Chagas disease is correlated with lower expression of DNA synthesis genes, but not apoptotic genes.  相似文献   

18.
The Trypanosoma cruzi trans-sialidase (TS) is a unique enzyme with neuraminidase and sialic acid transfer activities important for parasite infectivity. The T. cruzi genome contains a large family of TS homologous genes, and it has been suggested that TS homologues provide a mechanism of immune escape important for chronic infection. We have investigated whether the consensus TS enzymatic domain could induce immunity protective against acute and chronic, as well as mucosal and systemic, T. cruzi infection. We have shown that: 1) TS-specific immunity can protect against acute T. cruzi infection; 2) effective TS-specific immunity is maintained during chronic T. cruzi infection despite the expression of numerous related TS superfamily genes encoding altered peptide ligands that in theory could promote immune tolerization; and 3) the practical intranasal delivery of recombinant TS protein combined with a ssDNA oligodeoxynucleotide (ODN) adjuvant containing unmethylated CpG motifs can induce both mucosal and systemic protective immunity. We have further demonstrated that the intranasal delivery of soluble TS recombinant Ag combined with CpG ODN induces both TS-specific CD4(+) and CD8(+) T cells associated with vaccine-induced protective immunity. In addition, optimal protection induced by intranasal TS Ag combined with CpG ODN requires B cells, which, after treatment with CpG ODN, have the ability to induce TS-specific CD8(+) T cell cross-priming. Our results support the development of TS vaccines for human use, suggest surrogate markers for use in future human vaccine trials, and mechanistically identify B cells as important APC targets for vaccines designed to induce CD8(+) CTL responses.  相似文献   

19.
Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas disease and the proximity of parasitised glial cells and neurons in damaged myenteric ganglia is a frequent finding. Glial cells have crucial roles in many neuropathological situations and are potential sources of NO. Here, we investigate peripheral glial cell response to Trypanosoma cruzi infection to clarify the role of these cells in the neuronal lesion pathogenesis of Chagas disease. We used primary glial cell cultures from superior cervical ganglion to investigate cell activation and NO production after T. cruzi infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal macrophages. T. cruzi infection was greater in glial cells, despite similar levels of NO production in both cell types. Glial cells responded similarly to T. cruzi and LPS, but were less responsive to LPS than macrophages were. Our observations contribute to the understanding of Chagas disease pathogenesis, as based on the high susceptibility of autonomic glial cells to T. cruzi infection with subsequent NO production. Moreover, our findings will facilitate future research into the immune responses and activation mechanisms of peripheral glial cells, which are important for understanding the paradoxical responses of this cell type in neuronal lesions and neuroprotection.  相似文献   

20.
In two murine models we studied Trypanosoma cruzi reinfection in the acute and chronic phase of experimental Chagas' disease in order to elucidate the relevance of reinfections in determining the variability of cardiac symptoms and the irreversible cardiac damage. They were followed for 120 and 600 days post infection (p.i.) for the acute and chronic model, respectively. Reinfected mice reached higher parasitaemia levels than infected mice. The survival was 33 and 21% in the chronic phase for mice reinfected in the acute phase and 13% for mice reinfected in the chronic stage at the end of the experiments. Sixty-six percent of the infected group presented electrocardiographic abnormalities (heart frequency, prolonged PQ segment or QRS complex) in the chronic stage whereas 100% of the reinfected animals exhibited electric cardiac dysfunction since 90 and 390 days p.i. for the acute and chronic reinfected model, respectively (P<0.01). Heart histopathological studies showed fibrosis and necrosis areas and mononuclear infiltrates supporting the view that parasite persistence is a major factor in continuing the tissue inflammation. This work shows that T. cruzi reinfections could be related to the variability and severity of the clinical course of Chagas' disease and that parasite persistence is involved in exacerbation of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号