首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Pseudomonas aeruginosa is a ubiquitous environmental bacterium whose major catalase (KatA) is highly stable, extracellularly present, and required for full virulence as well as for peroxide resistance in planktonic and biofilm states. Here, we dismantled the function of P. aeruginosa KatA (KatA(Pa)) by comparing its properties with those of two evolutionarily related (clade 3 monofunctional) catalases from Bacillus subtilis (KatA(Bs)) and Streptomyces coelicolor (CatA(Sc)). We switched the coding region for KatA(Pa) with those for KatA(Bs) and CatA(Sc), expressed the catalases under the potential katA-regulatory elements in a P. aeruginosa PA14 katA mutant, and verified their comparable protein levels by Western blot analysis. The activities of KatA(Bs) and CatA(Sc), however, were less than 40% of the KatA(Pa) activity, suggestive of the difference in intrinsic catalatic activity or efficiency for posttranslational activity modulation in P. aeruginosa. Furthermore, KatA(Bs) and CatA(Sc) were relatively susceptible to proteinase K, whereas KatA(Pa) was highly stable upon proteinase K treatment. As well, KatA(Bs) and CatA(Sc) were undetectable in the extracellular milieu. Nevertheless, katA(Bs) and catA(Sc) fully rescued the peroxide sensitivity and osmosensitivity of the katA mutant, respectively. Both catalase genes rescued the attenuated virulence of the katA mutant in mouse acute infection and Drosophila melanogaster models. However, the peroxide susceptibility of the katA mutant in a biofilm growth state was rescued by neither katA(Bs) nor catA(Sc). Based on these results, we propose that the P. aeruginosa KatA is highly stable compared to the two major catalases from gram-positive bacteria and that its unique properties involving metastability and extracellular presence may contribute to the peroxide resistance of P. aeruginosa biofilm and presumably to chronic infections.  相似文献   

3.
Agrobacterium tumefaciens possesses two catalases, a bifunctional catalase-peroxidase, KatA and a homologue of a growth phase regulated monofunctional catalase, CatE. In stationary phase cultures and in cultures entering stationary phase, total catalase activity increased 2-fold while peroxidase activity declined. katA and catE were found to be independently regulated in a growth phase dependent manner. KatA levels were highest during exponential phase and declined as cells entered stationary phase, while CatE was detectable at early exponential phase and increased during stationary phase. Only small increases in H2O2 resistance levels were detected as cells entering stationary phase. The katA mutant was more sensitive to H2O2 than the parental strain during both exponential and stationary phase. Inactivation of catE alone did not significantly change the level of H2O2 resistance. However, the katA catE double mutant was more sensitive to H2O2 during both exponential and stationary phase than either of the single catalase mutants. The data indicated that KatA plays the primary role and CatE acts synergistically in protecting A. tumefaciens from H2O2 toxicity during all phases of growth. Catalase-peroxidase activity (KatA) was required for full H2O2 resistance. The expression patterns of the two catalases in A. tumefaciens reflect their physiological roles in the protection against H2O2 toxicity, which are different from other bacteria.  相似文献   

4.
5.
A Pseudomonas aeruginosa oxyR mutant was dramatically sensitive to H(2)O(2), despite possessing wild-type catalase activity. Oxygen-dependent oxyR phenotypes also included an inability to survive aerobic serial dilution in Luria broth and to resist aminoglycosides. Plating the oxyR mutant after serial dilution in its own spent culture supernatant, which contained the major catalase KatA, or under anaerobic conditions allowed for survival. KatA was resistant to sodium dodecyl sulfate, proteinase K, pepsin, trypsin, chymotrypsin and the neutrophil protease cathepsin G. When provided in trans and expressed constitutively, the OxyR-regulated genes katB, ahpB, and ahpCF could not restore both the serial dilution defect and H(2)O(2) resistance; only oxyR itself could do so. The aerobic dilution defect could be complemented, in part, by only ahpB and ahpCF, suggesting that the latter gene products could possess a catalase-like activity. Aerobic Luria broth was found to generate approximately 1.2 microM H(2)O(2) min(-1) via autoxidation, a level sufficient to kill serially diluted oxyR and oxyR katA bacteria and explain the molecular mechanism behind the aerobic serial dilution defect. Taken together, our results indicate that inactivation of OxyR renders P. aeruginosa exquisitely sensitive to both H(2)O(2) and aminoglycosides, which are clinically and environmentally important antimicrobials.  相似文献   

6.
The first cloning and characterization of the gene katA, encoding the major catalase (KatA), from Xanthomonas is reported. A reverse genetic approach using a synthesized katA-specific DNA probe to screen a X. campestris pv. phaseoli genomic library was employed. A positively hybridizing clone designated pKat29 that contained a full-length katA was isolated. Analysis of the nucleotide sequence revealed an open reading frame of 1,521 bp encoding a 507-amino acid protein with a theoretical molecular mass of 56 kDa. The deduced amino acid sequence of KatA revealed 84% and 78% identity to CatF of Pseudomonas syringae and KatB of P. aeruginosa, respectively. Phylogenetic analysis places Xanthomonas katA in the clade I group of bacterial catalases. Unexpectedly, expression of katA in a heterologous Escherichia coli host resulted in a temperature-sensitive expression. The KatA enzyme was purified from an overproducing mutant of X. campestris and was characterized. It has apparent K(m) and V(max) values of 75 m M [H(2)O(2)] and 2.55 x 10(5) micromol H(2)O(2) micromol heme(-1) s(-1), respectively. The enzyme is highly sensitive to 3-amino-1,2,4-triazole and NaN(3), has a narrower optimal pH range than other catalases, and is more sensitive to heat inactivation.  相似文献   

7.
Catalases are known to detoxify H2O2, a major component of oxidative stress imposed on a cell. An Agrobacterium tumefaciens catalase encoded by a chromosomal gene katA has been implicated as an important virulence factor as it is involved in detoxification of H2O2 released during Agrobacterium-plant interaction. In this paper, we report a feedback regulation pathway that controls the expression of katA in A. tumefaciens cells. We observed that katA could be induced by plant tissue sections and by acidic pH on a minimal medium, which resembles the plant environment that the bacteria encounter during the course of infection. This represents a new regulatory factor for catalase induction in bacteria. More importantly, a feedback regulation was observed when the katA-gfp expression was studied in different genetic backgrounds. We found that introduction of a wild-type katA gene encoding a functional catalase into A. tumefaciens cells could repress the katA-gfp expression over 60-fold. The katA gene could be induced by H2O2 and the encoded catalase could detoxify H2O2. In addition, the katA-gfp expression of one bacterial cell could be repressed by other surrounding catalase-proficient bacterial cells. Furthermore, mutation at katA caused a 10-fold increase of the intracellular H2O2 concentration in the bacteria grown on an acidic pH medium. These results suggest that the endogenous H2O2 generated during A. tumefaciens cell growth could serve as the intracellular and intercellular inducer for the katA gene expression and that the acidic pH could pose an oxidative stress on the bacteria. Surprisingly, one mutated KatA protein, exhibiting no significant catalase activity as a result of the alteration of two important residues at the putative active site, could partially repress the katA-gfp expression. The feedback regulation of the katA gene by both catalase activity and KatA protein could presumably maintain an appropriated level of catalase activity and H2O2 inside A. tumefaciens cells.  相似文献   

8.
Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis.  相似文献   

9.
10.
To investigate the involvement of bacterial catalases of the symbiotic gram-negative bacterium Rhizobium meliloti in the development of Medicago-Rhizobium functional nodules, we cloned a putative kat gene by screening a cosmid library with a catalase-specific DNA probe amplified by PCR from the R. meliloti genome. Nucleotide sequence analysis of a 1.8-kb DNA fragment revealed an open reading frame, called katA, encoding a peptide of 562 amino acid residues with a calculated molecular mass of 62.9 kDa. The predicted amino acid sequence showed a high homology with the primary structure of monofunctional catalases from eucaryotes and procaryotes. The katA gene was localized on the chromosome, and the katA gene product was essentially found in the periplasmic space. A katA::Tn5 mutant was obtained and showed a drastic sensitivity to hydrogen peroxide, indicating an essential protective role of KatA. However, neither Nod nor Fix phenotypes were impaired in the mutant, suggesting that KatA is not essential for nodulation and establishment of nitrogen fixation. Exposure to a sublethal concentration of H2O2 enhanced KatA activity (100-fold) and also increased survival to subsequent H2O2 exposure at higher concentrations. No protection is observed in katA::Tn5, indicating that KatA is the major component of an adaptive response.  相似文献   

11.
Oxidative-stress resistance in Staphylococcus aureus is linked to metal ion homeostasis via several interacting regulators. In particular, PerR controls the expression of a regulon of genes, many of which encode antioxidants. Two PerR regulon members, ahpC (alkylhydroperoxide reductase) and katA (catalase), show compensatory regulation, with independent and linked functions. An ahpC mutation leads to increased H2O2 resistance due to greater katA expression via relief of PerR repression. Moreover, AhpC provides residual catalase activity present in a katA mutant. Mutation of both katA and ahpC leads to a severe growth defect under aerobic conditions in defined media (attributable to lack of catalase activity). This results in the inability to scavenge exogenous or endogenously produced H2O2, resulting in accumulation of H2O2 in the medium. This leads to DNA damage, the likely cause of the growth defect. Surprisingly, the katA ahpC mutant is not attenuated in two independent models of infection, which implies reduced oxygen availability during infection. In contrast, both AhpC and KatA are required for environmental persistence (desiccation) and nasal colonization. Thus, oxidative-stress resistance is an important factor in the ability of S. aureus to persist in the hospital environment and so contribute to the spread of human disease.  相似文献   

12.
13.
14.
Expression of the peroxide stress genes alkyl hydroperoxide reductase (ahpC) and catalase (katA) of the microaerophile Campylobacter jejuni is repressed by iron. Whereas iron repression in gram-negative bacteria is usually carried out by the Fur protein, previous work showed that this is not the case in C. jejuni, as these genes are still iron repressed in a C. jejuni fur mutant. An open reading frame encoding a Fur homolog (designated PerR for "peroxide stress regulator") was identified in the genome sequence of C. jejuni. The perR gene was disrupted by a kanamycin resistance cassette in C. jejuni wild-type and fur mutant strains. Subsequent characterization of the C. jejuni perR mutants showed derepressed expression of both AhpC and KatA at a much higher level than that obtained by iron limitation, suggesting that expression of these genes is controlled by other regulatory factors in addition to the iron level. Other iron-regulated proteins were not affected by the perR mutation. The fur perR double mutant showed derepressed expression of known iron-repressed genes. Further phenotypic analysis of the perR mutant, fur mutant, and the fur perR double mutant showed that the perR mutation made C. jejuni hyperresistant to peroxide stress caused by hydrogen peroxide and cumene hydroperoxide, a finding consistent with the high levels of KatA and AhpC expression, and showed that these enzymes were functional. Quantitative analysis of KatA expression showed that both the perR mutation and the fur mutation had profound effects on catalase activity, suggesting additional non-iron-dependent regulation of KatA and, by inference, AhpC. The PerR protein is a functional but nonhomologous substitution for the OxyR protein, which regulates peroxide stress genes in other gram-negative bacteria. Regulation of peroxide stress genes by a Fur homolog has recently been described for the gram-positive bacterium Bacillus subtilis. C. jejuni is the first gram-negative bacterium where non-OxyR regulation of peroxide stress genes has been described and characterized.  相似文献   

15.
16.
Catechol-2,3-dioxygenase (C23O) of Pseudomonas putida, encoded by the xylE gene, was found to be sensitive to hydrogen peroxide (H(2)O(2)) when used as a reporter in gene fusion constructs. Exposure of Pseudomonas aeruginosa katA or katA katB mutants harboring katA- or katB-lacZ (encoding beta-galactosidase) or -xylE fusion plasmids to H(2)O(2) stimulated beta-galactosidase activity, while there was little or no detectable C23O activity in these strains. More than 95% of C23O activity was lost after a 5-min exposure to equimolar H(2)O(2), while a 10,000-fold excess was required for similar inhibition of beta-galactosidase. Electron paramagnetic resonance spectra of the nitrosyl complexes of C23O showed that H(2)O(2) nearly stoichiometrically oxidized the essential active-site ferrous ion, thus accounting for the loss of activity. Our results suggest using caution in interpreting data derived from xylE reporter fusions under aerobic conditions, especially where oxidative stress is present or when catalase-deficient strains are used.  相似文献   

17.
Pseudomonas aeruginosa is an obligate aerobe that is virtually ubiquitous in the environment. During aerobic respiration, the metabolism of dioxygen can lead to the production of reactive oxygen intermediates, one of which includes hydrogen peroxide. To counteract the potentially toxic effects of this compound, P. aeruginosa possesses two heme-containing catalases which detoxify hydrogen peroxide. In this study, we have cloned katB, encoding one catalase gene of P. aeruginosa. The gene was cloned on a 5.4-kb EcoRI fragment and is composed of 1,539 bp, encoding 513 amino acids. The amino acid sequence of the P. aeruginosa katB was approximately 65% identical to that of a catalase from a related species, Pseudomonas syringae. The katB gene was mapped to the 71- to 75-min region of the P. aeruginosa chromosome, the identical region which harbors both sodA and sodB genes encoding both manganese and iron superoxide dismutases. When cloned into a catalase-deficient mutant of Escherichia coli (UM255), the recombinant P. aeruginosa KatB was expressed (229 U/mg) and afforded this strain resistance to hydrogen peroxide nearly equivalent to that of the wild-type E. coli strain (HB101). The KatB protein was purified to homogeneity and determined to be a tetramer of approximately 228 kDa, which was in good agreement with the predicted protein size derived from the translated katB gene. Interestingly, KatB was not produced during the normal P. aeruginosa growth cycle, and catalase activity was greater in nonmucoid than in mucoid, alginate-producing organisms. When exposed to hydrogen peroxide and, to a greater extent, paraquat, total catalase activity was elevated 7- to 16-fold, respectively. In addition, an increase in KatB activity caused a marked increase in resistance to hydrogen peroxide. KatB was localized to the cytoplasm, while KatA, the "housekeeping" enzyme, was detected in both cytoplasmic and periplasmic extracts. A P. aeruginosa katB mutant demonstrated 50% greater sensitivity to hydrogen peroxide than wild-type bacteria, suggesting that KatB is essential for optimal resistance of P. aeroginosa to exogenous hydrogen peroxide.  相似文献   

18.
Agrobacterium tumefaciens is an aerobic plant pathogenic bacterium that is exposed to reactive oxygen species produced either as by-products of aerobic metabolism or by the defense systems of host plants. The physiological function of the bifunctional catalase-peroxidase (KatA) in the protection of A. tumefaciens from reactive oxygen species other than H(2)O(2) was evaluated in the katA mutant (PB102). Unexpectedly, PB102 was highly sensitive to the superoxide generator menadione. The expression of katA from a plasmid vector complemented the menadione-hypersensitive phenotype. A. tumefaciens possesses an additional catalase gene, a monofunctional catalase encoded by catE. Neither inactivation nor high-level expression of the catE gene altered the menadione resistance level. Moreover, heterologous expression of the catalase-peroxidase-encoding gene katG from Burkholderia pseudomallei, but not the monofunctional catalase gene katE from Xanthomonas campestris could restore normal levels of menadione resistance to PB102. A recent observation suggests that the menadione resistance phenotype involves increased activities of organic peroxide-metabolizing enzymes. Heterologous expression of X. campestris alkyl hydroperoxide reductase from a plasmid vector failed to complement the menadione-sensitive phenotype of PB102. The level of menadione resistance shows a direct correlation with the level of peroxidase activity of KatA. This is a novel role for KatA and suggests that resistance to menadione toxicity is mediated by a new, and as yet unknown, mechanism in A. tumefaciens.  相似文献   

19.
20.
Pseudomonas aeruginosa is considered a strict aerobe that possesses several enzymes important in the disposal of toxic oxygen reduction products including iron- and manganese-cofactored superoxide dismutase and catalase. At present, the nature of the regulation of these enzymes in P. aeruginosa Is not understood. To address these issues, we used two mutants called A4 and C6 which express altered Fur (named for ferric uptake regulation) proteins and constitutively produce the siderophores pyochelin and pyoverdin. Both mutants required a significant lag phase prior to log-phase aerobic growth, but this lag was not as apparent when the organisms were grown under microaerobic conditions. The addition of iron salts to mutant A4 and, to a greater extent, C6 cultures allowed for an increased growth rate under both conditions relative to that of bacteria without added iron. Increased manganese superoxide dismutase (Mn-SOD) and decreased catalase activities were also apparent in the mutants, although the second catalase, KatB, was detected in cell extracts of each fur mutant. Iron deprivation by the addition of the iron chelator 2,2'-dipyridyl to wild-type bacteria produced an increase in Mn-SOD activity and a decrease in total catalase activity, similar to the fur mutant phenotype. Purified wild-type Fur bound more avidly than mutant Fur to a PCR product containing two palindromic 19-bp "iron box" regions controlling expression of an operon containing the sodA gene that encodes Mn-SOD. All mutants were defective in both ferripyochelin- and ferripyoverdin-mediated iron uptake. Two mutants of strain PAO1, defective in pyoverdin but not pyochelin biosynthesis, produced increased Mn-SOD activity. Sensitivity to both the redox-cycling agent paraquat and hydrogen peroxide was greater in each mutant than in the wild-type strain. In summary, the results indicate that mutations in the P. aeruginosa fur locus affect aerobic growth and SOD and catalase activities in P. aeruginosa. We postulate that reduced siderophore-mediated iron uptake, especially that by pyoverdin, may be one possible mechanism contributing to such effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号