首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first polyhydroxyalkanoic acid (PHA) synthase gene (phbCRr) of a Gram-positive bacterium was cloned from a genomic library of Rhodococcus ruber in the broad-host-range plasmid vector pRK404. The hybrid plasmid harboring phbCRr allowed the expression of polyhydroxybutyric acid (PHB) synthase activity and restored the ability of PHB synthesis in a PHB-negative mutant of Alcaligenes eutrophus. Nucleotide sequence analysis of phbCRr revealed an open reading frame of 1686 bp starting with the rare codon TTG and encoding a protein of relative molecular mass 61,371. The deduced amino acid sequence of phbCRr exhibited homologies to the primary structures of the PHA synthases of A. eutrophus and Pseudomonas oleovorans. Preparation of PHA granules by discontinuous density gradient centrifugation of crude cellular extracts revealed four major bands in an SDS polyacrylamide gel. A Mr 61,000 protein was identified as the PHA synthase of R. ruber by N-terminal amino acid sequence determination.  相似文献   

2.
Abstract Poly(3-hydroxybutyric acid) granules, which harbored only four major granule-associated proteins as revealed by SDS polyacrylamide gel electrophoresis, were isolated from crude cellular extracts of Chromatium vinosum D by centrifugation in a linear sucrose gradient. N-Terminal amino acid sequence determination identified two proteins of M r 41 000 and M r 40 000 as the phaE Cv and phaC Cv translational products, respectively, of C. vinosum D. In a previous study it was shown that both proteins are required for the expression opf poly(3-hydroxyalkanoic acid) synthase activity. The N-terminus of the third protein ( M r 17 000) exhibited no homology to other proteins. Lysozyme, which was during purification of the granules, exhibited a strong affinity to PHB granules and was identified as the fourth protein enriched with the granules.  相似文献   

3.
1- O -(indole-3-acetyl)- β - d -glucose: myo -inositol indoleacetyl transferase (IA- myo -inositol synthase) is an important enzyme in IAA metabolism. This enzyme catalyses the transfer of the indole acetyl (IA) moiety from 1- O -(indole-3-acetyl)- β - d -glucose to myo -inositol to form IA- myo- inositol and glucose. IA- myo -inositol synthase was purified to an electrophoretically homogenous state from maize liquid endosperm by fractionation with ammonium sulphate, anion-exchange, adsorption on hydroxylapatite, affinity chromatography on ConA-Sepharose, preparative PAGE and isoelectric focusing. We thus obtained two enzyme preparations which differ in their R f on 8% polyacrylamide gel. The preparation of R f 0.36 contained a single 56.4 kDa polypeptide, whereas the preparation of R f 0.39 consisted of two polypeptides of 56.4 and 53.5 kDa. Both purified preparations of IAInos synthase also exhibited the activity of an IAInos hydrolase, showing that the dual activity was associated with a single protein. Results of gel filtration and analytical SDS-PAGE suggest that the native enzyme exists as both a monomeric (65 kDa) and homo- or heterodimeric form (110–130 kDa). Analysis of peptide maps and amino acid sequences of two 21 amino-acid peptides showed that polypeptides of 56.4 and 53.5 kDa have the same primary structure and that the 3 kDa difference in molecular mass is probably caused by different glycosylation levels. Comparison of this partial and internal amino acid sequence with sequences of other plant acyltransferases indicated similarity to several proteins which belonged to the serine carboxypeptidase-like (SCPL) acyltransferase family.  相似文献   

4.
Abstract The glnAntrBC operon of Proteus vulgaris was cloned and heterologously expressed in Escherichia coli . The nucleotide sequence was determined. An open reading frame of 1407 bp was identified as the glnA gene and the deduced amino acid sequence showed 82% identity with the E. coli glutamine synthetase protein. Heterologous expression of the glnA gene in E. coli restored glutamine synthetase (GS) activity in a GS-negative mutant and a 52 kDa protein was detected and addressed as the GS subunit of P. vulgaris . Adjacent to the glnA gene the regulatory genes ntrB and ntrC were identified. Their coding regions comprised 1053 and 1452 bp, respectively, and the deduced gene products NRII (NtrB) and NRI (NtrC) shared 72% identity with the corresponding E. coli proteins. Heterologous expression in E. coli revealed only a 54 kDa protein which was shown to be NRI. NRII was not detectable using the methods employed.  相似文献   

5.
Each of the 12 genes involved in the synthesis of glucosylceramide was overexpressed in cells of Kluyveromyces lactis to construct a strain accumulating a high quantity of glucosylceramide. Glucosylceramide was doubled by the KlLAC1 gene, which encodes ceramide synthase, and not by 11 other genes, including the KlLAG1 gene, a homologue of KlLAC1 . Disruption of the KlLAC1 gene reduced the content below the detection level. Heterologous expression of the KlLAC1 gene in the cells of Saccharomyces cerevisiae caused the accumulation of ceramide, composed of C18 fatty acid. The KlLAC1 protein preferred long-chain (C18) fatty acids to very-long-chain (C26) fatty acids for condensation with sphingoid bases and seemed to supply a ceramide moiety as the substrate for the formation of glucosylceramide. When the amino acid sequences of ceramide synthase derived from eight yeast species were compared, LAC1 proteins from five species producing glucosylceramide were clearly discriminated from those of the other three species and all LAG1 proteins. The LAC1 protein of K. lactis is the enzyme that plays a crucial role in the synthesis of glucosylceramide.  相似文献   

6.
7.
8.
Paracoccus denitrificans degraded poly(3-hydroxybutyrate) (PHB) in the cells under carbon source starvation. Intracellular poly(3-hydroxyalkanoate) (PHA) depolymerase gene (phaZ) was identified near the PHA synthase gene (phaC) of P. denitrificans. Cell extract of Escherichia coli carrying lacZ--phaZ fusion gene degraded protease-treated PHB granules. Reaction products were thought to be mainly D(--)-3-hydroxybutyrate (3HB) dimer and 3HB oligomer. Diisopropylfluorophosphonate and Triton X-100 exhibited an inhibitory effect on the degradation of PHB granules. When cell extract of the recombinant E. coli was used, Mg(2+) ion inhibited PHB degradation. However, the inhibitory effect by Mg(2+) ion was not observed using the cell extract of P. denitrificans.  相似文献   

9.
The production of polyhydroxybutyrate (PHB) involves a multigene pathway consisting of thiolase, reductase and synthase genes. In order to simplify this pathway for plant-based expression, a library of thiolase and reductase gene fusions was generated by randomly ligating a short core linker DNA sequence to create in-frame fusions between the thiolase and reductase genes. The resulting fusion constructs were screened for PHB formation in Escherichia coli. This screen identified a polymer-producing candidate in which the thiolase and reductase genes were fused via a 26-amino-acid linker. This gene fusion, designated phaA-phaB, represents an active gene fusion of two homotetrameric enzymes. Expression of phaA-phaB in E. coli and Arabidopsis yielded a fusion protein observed to be the expected size by Western blotting techniques. The fusion protein exhibited thiolase and reductase enzyme activities in crude extracts of recombinant E. coli that were three-fold and nine-fold less than those of the individually expressed thiolase and reductase enzymes, respectively. When targeted to the plastid, and coexpressed with a plastid-targeted polyhydroxyalkanoate (PHA) synthase, the fusion protein enabled PHB formation in Arabidopsis, yielding roughly half the PHB formed in plants expressing individual thiolase, reductase and synthase enzymes. This work represents a first step towards simplifying the expression of the PHB biosynthetic pathway in plants.  相似文献   

10.
A full-length cDNA encoding sucrose synthase was isolated from the tropical epiphytic orchid Oncidium Goldiana. The cDNA is 2829 bp in length containing an open reading frame of 2447 bp encoding 816 amino acids with a predicted molecular mass of 93.1 kDa. The deduced amino acid sequence of O . Goldiana sucrose synthase ( Osus ) shares more than 80% identity with those from other monocotyledonous plants. The sucrose synthase gene was demonstrated to encode a functional sucrose synthase protein by expression as recombinant protein in Escherichia coli . The Osus mRNA is present in all the tissues analysed, with the highest levels in strong sinks such as developing inflorescence and root tips. Incubation with sucrose or glucose resulted in a significant increase in the steady-state Osus mRNA levels in root tips and mature leaves in a similar pattern to maize Sus1 . Expression of the Osus mRNA in mature leaves was markedly enhanced by anaerobic conditions and elevated CO2. The expression pattern and regulation of the gene suggest that the sucrose synthase plays an important role in the growth and development of the tropical epiphytic orchid O . Goldiana.  相似文献   

11.
The 6.3 kb Clostridium perfringens transposon Tn 4451 encodes a 50 kDa protein, TnpZ, which has amino acid sequence similarity to a group of plasmid mobilization and recombination proteins that comprise the Mob/Pre family. Members of this family interact with an upstream palindromic sequence called an RSA site, and an RSA-like sequence has been identified upstream of the tnpZ gene. In Escherichia coli , in the presence of a chromosomally integrated derivative of the broad-host-range IncP plasmid, RP4, TnpZ was able to promote plasmid mobilization in cis and was able to function in trans to enable the mobilization of a co-resident plasmid carrying an RSA site. It was also able to mediate the conjugative transfer of plasmids from E. coli to C. perfringens . Site-directed mutagenesis of two bases within the RSA site resulted in a significant reduction in mobilization frequency, demonstrating that the RSA site is required for efficient plasmid mobilization. TnpZ is the only Mob/Pre protein known to be associated with a transposable genetic element, and Tn 4451 is the first mobilizable but non-self-transmissible transposon to be identified from a Gram-positive bacterium.  相似文献   

12.
Abstract A new gene ( menF ) encoding an isochorismate synthase specifically involved in menaquinone (vitamin K2) biosynthesis has been cloned and sequenced. Overexpression of the encoded polypeptide under the influence of a T7 promoter showed an increase in specific activity of 2200-fold. Treatment with protamine sulfate resulted in another 3.5-fold increase in specific activity (7700-fold compared to the parent strain). The relative molecular mass of the overexpressed protein was M r 49 000, which is in full agreement with the DNA sequence predicted molecular mass of 48777 Da. Purified enzyme converted chorismate to isochorismate with the product of the reaction shown to be isochorismate by its thermal conversion to salicylic acid. The fluorescence spectrum generated by the formed salicylic acid was identical to that of authentic salicylic acid. The 5' end of the flanking menD gene has also been redefined.  相似文献   

13.
14.
An approximately 4.9 kb Sau3A I genomic DNA fragment from the Streptomyces aureofaciens NRRL 2209 aiding in the biosynthesis of PHB in recombinant Escherichia coli has been sequenced and analysed for phaC gene. The putative phaC(Sa) gene of 2 kb is 79.1% GC rich and encodes a 63.5 kDa protein. It expressed under its own promoter and significant PHA synthase activity was detected in the recombinant E. coli. This is the first putative PHA synthase gene reported from a Streptomyces sp. with serine as the active nucleophile in the conserved lipase box. The phaC(Sa) was found in close proximity to a regulatory gene, which apparently regulated the phaC expression.  相似文献   

15.
Abstract Alcaligenes eutrophus can accumulate poly-3-hydroxybutyrate (PHB) or polyhydroxyalkanoate (PHA) containing only 3-hydroxybutyrate (HB) and 3-hydroxyvalerate (HV) units. Granule-associated PHB-synthase was active with d (−)-3-hydroxybutyryl-CoA and d (−)-3-hydroxyvaleryl-CoA of the range of d (−)- and l (+)-3-hydroxyacyl-CoA substrates tested (C4–C10). In carbon-limited cultures, PHB-synthase was predominantly soluble, becoming granule-associated on transition to nitrogen limitation. Granule-associated PHB-synthase increased in activity at least up to pH 10.0 and K m values of 0.68 mM and 1.63 mM were determined for the C4 and C5 substrates, respectively, at pH 8.5. The soluble PHB-synthase, which was unstable, showed equal activity in the range pH 8.0–10.0, had a K m value for d (−)-3-hydroxybutyryl-CoA of 0.72 mM and an M r of 160,000. PHB does not measurably turn over under steady-state polymer-accumulating conditions.  相似文献   

16.
Polyhydroxyalakanote (PHA) was produced by the marine bacteria Paracoccus seriniphilus Strain E71. Three methods were used for screening PHA in this strain: (1) microscopic analysis, (2) specifically designed primers for amplify fragments of phaC gene from Gram negative bacteria, and (3) measurements using spectroscopy, calorimetry, thermogravimetry, and rheology. The polyhydroxyalkanoic acid synthase gene (phaC) sequence had 77% identity with the phaC gene of P. denitrificans PD1222 strain. Additionally, the translated sequence showed an 86% similarity with the amino acid sequence of the phaC gene N-terminal portion of the P. denitrificans PD1222 strain. Our phaC sequence was closely related to two phaC sequences that correspond to P. denitrificans; therefore, this is the first report of a sequence of phaC that codifies a poly-(3-hydroxyalkanoate) synthase class I, specifically a poly-beta-hydroxybutyrate polymerase from the marine bacteria Paracoccus seriniphilus. The polymer PHA of E71 melts at 167.86°C (T m), which corresponded to the fusion of the crystalline polymer and thermally degrades at 296.52°C, indicating that the biopolymer has good thermal stability. Rheology showed that this polymer behaves as a nonNewtonian fluid. All these characteristics suggest that the E71 strain produces a PHA that corresponds to the crystalline thermoplastic polymer PHB type.  相似文献   

17.
The δ-endo toxin proteins from Bacillus thuringiensis which kill the larvae of various scarabaeid beetles such as Anomala cuprea, A. rufocuprea and Popillia japonica were purified by DEAE ion exchange chromatography. A protein with a molecular size of 130 kDa was purified. During the purification a minor peak was also detected which was estimated to be 67 kDa by SDS-PAGE. Both 130 and 67 kDa proteins showed larvicidal activity against A. cuprea. The lethal concentration of the 130 kDa protein which killed 50% of the larvae tested (LC50) against A. cuprea was 2 μg g1 compost. A comparison by SDS-PAGE of the V8 protease digestion pattern of the 130 and 67 kDa larvicidal proteins showed that proteolytic resistant core peptides of approximately 60 kDa molecular size were resulted. The N -terminus amino acid sequence of the 130 and 67 kDa proteins was determined to be NH2-XXPNNQNEYEIIDAL and NH2-XSRNPGTFI, respectively, which is not identical to the sequence of CryIA, CryIB, CryIC and CryIII proteins.  相似文献   

18.
The gene for the catalytic subunit of cellulose synthase from Acetobacter xylinum has been cloned by using an oligonucleotide probe designed from the N-terminal amino acid sequence of the catalytic subunit (an 83 kDa polypeptide) of the cellulose synthase purified from trypsin-treated membranes of A. xylinum. The gene was located on a 9.5 kb HindIII fragment of A. xylinum DNA that was cloned in the plasmid pUC18. DNA sequencing of approximately 3 kb of the HindIII fragment led to the identification of an open reading frame of 2169 base pairs coding for a polypeptide of 80 kDa. Fifteen amino acids in the N-terminal region (positions 6 to 20) of the amino acid sequence, deduced from the DNA sequence, match with the N-terminal amino acid sequence obtained for the 83 kDa polypeptide, confirming that the DNA sequence cloned codes for the catalytic subunit of cellulose synthase which transfers glucose from UDP-glucose to the growing glucan chain. Trypsin treatment of membranes during purification of the 83 kDa polypeptide cleaved the first 5 amino acids at the N-terminal end of this polypeptide as observed from the deduced amino acid sequence, and also from sequencing of the 83 kDa polypeptide purified from membranes that were not treated with trypsin. Sequence analysis suggests that the cellulose synthase catalytic subunit is an integral membrane protein with 6 transmembrane segments. There is no signal sequence and it is postulated that the protein is anchored in the membrane at the N-terminal end by a single hydrophobic helix. Two potential N-glycosylation sites are predicted from the sequence analysis, and this is in agreement with the earlier observations that the 83 kDa polypeptide is a glycoprotein [13]. The cloned gene is conserved among a number of A. xylinum strains, as determined by Southern hybridization.  相似文献   

19.
Polyhydroxyalkanoate (PHA) synthase is the central enzyme involved in the biosynthesis of PHA, a family of bacterial biodegradable polyesters. Due to its high variability, the N-terminal fragment of this enzyme was previously considered as unnecessary for a functionally active enzyme. In this study, polyhydroxybutyrate synthase from Ralstonia eutropha (PhbC(Re)) with a deletion on N-terminal 88 amino acid residues showed a significant reduced activity, as reflected by only 1.5% PHB accumulation compared with the wild type which produced 58.4% PHB of the cell dry weight. Whilst several site-specific mutagenesis results revealed the amphiphilic alpha-helix assembled by the amino acid region, D70-E88 played an important role in both maintaining the PHB synthase activity and regulating molecular weight and polydispersity of accumulated PHB homopolymer.  相似文献   

20.
Polyhydroxyalkanoates (PHAs) are polyoxoesters that are produced by diverse bacteria and that accumulate as intracellular granules. Phasins are granule-associated proteins that accumulate to high levels in strains that are producing PHAs. The accumulation of phasins has been proposed to be dependent on PHA production, a model which is now rigorously tested for the phasin PhaP of Ralstonia eutropha. R. eutropha phaC PHA synthase and phaP phasin gene replacement strains were constructed. The strains were engineered to express heterologous and/or mutant PHA synthase alleles and a phaP-gfp translational fusion in place of the wild-type alleles of phaC and phaP. The strains were analyzed with respect to production of polyhydroxybutyrate (PHB), accumulation of PhaP, and expression of the phaP-gfp fusion. The results suggest that accumulation of PhaP is strictly dependent on the genetic capacity of strains to produce PHB, that PhaP accumulation is regulated at the level of both PhaP synthesis and PhaP degradation, and that, within mixed populations of cells, PhaP accumulation within cells of a given strain is not influenced by PHB production in cells of other strains. Interestingly, either the synthesis of PHB or the presence of relatively large amounts of PHB in cells (>50% of cell dry weight) is sufficient to enable PhaP synthesis. The results suggest that R. eutropha has evolved a regulatory mechanism that can detect the synthesis and presence of PHB in cells and that PhaP expression can be used as a marker for the production of PHB in individual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号