首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have prepared and characterized a novel bicelle system composed of 1,2-di-O-dodecyl-sn-glycero-3-phos- phocholine (DIODPC) and 3-(chloramidopropyl)dimethylammonio-2-hydroxyl-1-propane sulfonate (CHAPSO). At the optimal DIODPC/CHAPSO molar ratio of 4.3:1, this medium becomes magnetically oriented from pH 6.5 down to pH 1.0. Unlike previously reported bicelle preparations, these bicelles are chemically stable at low pH and are capable of inducing protein alignment, as illustrated by the large residual dipolar couplings measured for rusticyanin from Thiobacillus ferrooxidans at pH 2.1. The DIODPC/CHAPSO system is particularly useful for measuring residual dipolar couplings of macromolecules that require very acidic conditions.  相似文献   

2.
Magnetically oriented lipid/detergent bilayers are potentially useful for studies of membrane-associated molecules and complexes using x-ray scattering and nuclear magnetic resonance (NMR). To establish whether the system is a reasonable model of a phospholipid bilayer, we have studied the system using x-ray solution scattering to determine the bilayer thickness, interparticle spacing, and orientational parameters for magnetically oriented lipid bilayers. The magnetically orientable samples contain the phospholipid L-alpha-dilauroylphosphatidylcholine (DLPC) and the bile salt analog 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) in a 3:1 molar ratio in 70% water (w/v) and are similar to magnetically orientable samples used as NMR media for structural studies of membrane-associated molecules. A bilayer thickness of 30 A was determined for the DLPC/CHAPSO particles, which is the same as the bilayer thickness of pure DLPC vesicles, suggesting that the CHAPSO is not greatly perturbing the lipid bilayer. These data, as well as NMR data on molecules incorporated in the oriented lipid particles, are consistent with the sample consisting of reasonably homogeneous and well dispersed lipid particles. Finally, the orientational energy of the sample suggests that the size of the cooperatively orienting unit in the samples is 2 x 10(7) phospholipid molecules.  相似文献   

3.
Giant unilamellar vesicles (GUVs) composed of different phospholipid binary mixtures were studied at different temperatures, by a method combining the sectioning capability of the two-photon excitation fluorescence microscope and the partition and spectral properties of 6-dodecanoyl-2-dimethylamino-naphthalene (Laurdan) and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE). We analyzed and compared fluorescence images of GUVs composed of 1,2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DLPC/DPPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DLPC/DSPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-diarachidoyl-sn-glycero-3-phosphocholine (DLPC/DAPC), 1, 2-dimyristoyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DMPC/DSPC) (1:1 mol/mol in all cases), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine/1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPE/DMPC) (7:3 mol/mol) at temperatures corresponding to the fluid phase and the fluid-solid phase coexistence. In addition, we studied the solid-solid temperature regime for the DMPC/DSPC and DMPE/DMPC mixtures. From the Laurdan intensity images the generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domains. We found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region for all of the lipid mixtures. At temperatures corresponding to phase coexistence we observed concurrent fluid and solid domains in the GUVs independent of the lipid mixture. In all cases the lipid solid domains expanded and migrated around the vesicle surface as we decreased the temperature. The migration of the solid domains decreased dramatically at temperatures close to the solid-fluid-->solid phase transition. For the DLPC-containing mixtures, the solid domains showed line, quasicircular, and dendritic shapes as the difference in the hydrophobic chain length between the components of the binary mixture increases. In addition, for the saturated PC-containing mixtures, we found a linear relationship between the GP values for the fluid and solid domains and the difference between the hydrophobic chain length of the binary mixture components. Specifically, at the phase coexistence temperature region the difference in the GP values, associated with the fluid and solid domains, increases as the difference in the chain length of the binary mixture component increases. This last finding suggests that in the solid-phase domains, the local concentration of the low melting temperature phospholipid component increases as the hydrophobic mismatch decreases. At the phase coexistence temperature regime and based on the Laurdan GP data, we observe that when the hydrophobic mismatch is 8 (DLPC/DAPC), the concentration of the low melting temperature phospholipid component in the solid domains is negligible. This last observation extends to the saturated PE/PC mixtures at the phase coexistence temperature range. For the DMPC/DSPC we found that the nonfluorescent solid regions gradually disappear in the solid temperature regime of the phase diagram, suggesting lipid miscibility. This last result is in contrast with that found for DMPE/DMPC mixtures, where the solid domains remain on the GUV surface at temperatures corresponding to that of the solid region. In all cases the solid domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This last finding extends previous observations of GUVs composed of DPPE/DPPC and DLPC/DPPC mixtures (, Biophys. J. 78:290-305).  相似文献   

4.
A combined experimental and theoretical study is performed on binary dilauroylphosphatidylcholine/distearoylphosphatidylcholine (DLPC/DSPC) lipid bilayer membranes incorporating bacteriorhodopsin (BR). The system is designed to investigate the possibility that BR, via a hydrophobic matching principle related to the difference in lipid bilayer hydrophobic thickness and protein hydrophobic length, can perform molecular sorting of the lipids at the lipid-protein interface, leading to lipid specificity/selectivity that is controlled solely by physical factors. The study takes advantage of the strongly nonideal mixing behavior of the DLPC/DSPC mixture and the fact that the average lipid acyl-chain length is strongly dependent on temperature, particularly in the main phase transition region. The experiments are based on fluorescence energy transfer techniques using specifically designed lipid analogs that can probe the lipid-protein interface. The theoretical calculations exploit a microscopic molecular interaction model that embodies the hydrophobic matching as a key parameter. At low temperatures, in the gel-gel coexistence region, experimental and theoretical data consistently indicate that BR is associated with the short-chain lipid DLPC. At moderate temperatures, in the fluid-gel coexistence region, BR remains in the fluid phase, which is mainly composed of short-chain lipid DLPC, but is enriched at the interface between the fluid and gel domains. At high temperatures, in the fluid phase, BR stays in the mixed lipid phase, and the theoretical data suggest a preference of the protein for the long-chain DSPC molecules at the expense of the short-chain DLPC molecules. The combined results of the experiments and the calculations provide evidence that a molecular sorting principle is active because of hydrophobic matching and that BR exhibits physical lipid selectivity. The results are discussed in the general context of membrane organization and compartmentalization and in terms of nanometer-scale lipid-domain formation.  相似文献   

5.
Images of giant unilamellar vesicles (GUVs) formed by different phospholipid mixtures (1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1, 2-dilauroyl-sn-glycero-3-phosphocholine (DPPC/DLPC) 1:1 (mol/mol), and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPE/DPPC), 7:3 and 3:7 (mol/mol) at different temperatures were obtained by exploiting the sectioning capability of a two-photon excitation fluorescence microscope. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN), 6-propionyl-2-dimethylamino-naphthalene (PRODAN), and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE) were used as fluorescent probes to reveal domain coexistence in the GUVs. We report the first characterization of the morphology of lipid domains in unsupported lipid bilayers. From the LAURDAN intensity images the excitation generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domain. On the basis of the phase diagram of each lipid mixture, we found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region in all lipid mixtures. At temperatures corresponding to the phase coexistence region we observed lipid domains of different sizes and shapes, depending on the lipid sample composition. In the case of GUVs formed by DPPE/DPPC mixture, the gel DPPE domains present different shapes, such as hexagonal, rhombic, six-cornered star, dumbbell, or dendritic. At the phase coexistence region, the gel DPPE domains are moving and growing as the temperature decreases. Separated domains remain in the GUVs at temperatures corresponding to the solid region, showing solid-solid immiscibility. A different morphology was found in GUVs composed of DLPC/DPPC 1:1 (mol/mol) mixtures. At temperatures corresponding to the phase coexistence, we observed the gel domains as line defects in the GUV surface. These lines move and become thicker as the temperature decreases. As judged by the LAURDAN GP histogram, we concluded that the lipid phase characteristics at the phase coexistence region are different between the DPPE/DPPC and DLPC/DPPC mixtures. In the DPPE/DPPC mixture the coexistence is between pure gel and pure liquid domains, while in the DLPC/DPPC 1:1 (mol/mol) mixture we observed a strong influence of one phase on the other. In all cases the domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This observation is also novel for unsupported lipid bilayers.  相似文献   

6.
Mixing and thermal behavior of hydrated and air-dried mixtures of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1,2-distearoyl-d70-sn-glycero-3-phosphocholine (DSPCd-70) in the absence and presence of trehalose were investigated by Fourier transform infrared spectroscopy. Mixtures of DLPC:DSPCd-70 (1:1) that were air-dried at 25 degrees C show multiple phase transitions and mixed phases in the dry state. After annealing at high temperatures, however, only one transition is seen during cooling scans. When dried in the presence of trehalose, the DLPC component shows two phase transitions at -22 degrees C and 75 degrees C and is not fully solidified at -22 degrees C. The DSPCd-70 component, however, shows a single phase transition at 78 degrees C. The temperatures of these transitions are dramatically reduced after annealing at high temperatures with trehalose. The data suggest that the sugar has a fluidizing effect on the DLPC component during drying and that this effect becomes stronger for both components with heating. Examination of infrared bands arising from the lipid phosphate and sugar hydroxyl groups suggests that the strong effect of trehalose results from direct interactions between lipid headgroups and the sugar and that these interactions become stronger after heating. The findings are discussed in terms of the protective effect of trehalose on dry membranes.  相似文献   

7.
We showed previously that high-quality crystals of bacteriorhodopsin (bR) from Halobacterium salinarum can be obtained from bicelle-forming DMPC/CHAPSO mixtures at 37 degrees C. As many membrane proteins are not sufficiently stable for crystallization at this high temperature, we tested whether the bicelle method could be applied at a lower temperature. Here we show that bR can be crystallized at room temperature using two different bicelle-forming compositions: DMPC/CHAPSO and DTPC/CHAPSO. The DTPC/CHAPSO crystals grown at room temperature are essentially identical to the previous, twinned crystals: space group P21 with unit cell dimensions of a = 44.7 A, b = 108.7 A, c = 55.8 A, beta = 113.6 degrees . The room-temperature DMPC/CHAPSO crystals are untwinned, however, and belong to space group C222(1) with the following unit cell dimensions: a = 44.7 A, b = 102.5 A, c = 128.2 A. The bR protein packs into almost identical layers in the two crystal forms, but the layers stack differently. The new untwinned crystal form yielded clear density for a previously unresolved CHAPSO molecule inserted between protein subunits within the layers. The ability to grow crystals at room temperature significantly expands the applicability of bicelle crystallization.  相似文献   

8.
The direct measurement of 13C chemical shift anisotropies (CSA) and 31P-13C dipolar splitting in random dispersions of unlabeled L alpha-phase phosphatidylcholine (PC) has traditionally been difficult because of extreme spectral boradening due to anisotropy. In this study, mixtures of dimyristoyl phosphatidylcholine (DMPC) with three different detergents known to promote the magnetic orientation of DMPC were employed to eliminate the powder-pattern nature of signals without totally averaging out spectral anisotropy. The detergents utilized were CHAPSO, Triton X-100, and dihexanoylphosphatidylcholine (DHPC). Using such mixtures, many of the individual 13C resonances from DMPC were resolved and a number of 13C-31P dipolar couplings were evident. In addition, differing line widths were observed for the components of some dipolar doublets, suggestive of dipolar/chemical shift anisotropy (CSA) relaxation interference effects. Oriented sample resonance assignments were made by varying the CHAPSO or DHPC to DMPC ratio to systematically scale overall bilayer order towards the isotropic limit. In this manner, peaks could be identified based upon extrapolation to their isotropic positions, for which assignments have previously been made (Lee, C.W.B., and R.G. Griffin. 1989. Biophys. J. 55:355-358; Forbes, J., J. Bowers, X. Shan, L. Moran, E. Oldfield, and M.A. Moscarello. 1988. J. Chem. Soc., Faraday, Trans. 1 84:3821-3849). It was observed that the plots of CSA or dipolar coupling versus overall bilayer order obtained from DHPC and CHAPSO titrations were linear. Estimates of the intrinsic dipolar couplings and chemical shift anisotropies for pure DMPC bilayers were made by extrapolating shifts and couplings from the detergent titrations to zero detergent. Both detergent titrations led to similar "intrinsic" CSAs and dipolar couplings. Results extracted from an oriented Triton-DMPC mixture also led to similar estimates for the detergent-free DMPC shifts and couplings. The results from these experiments were found to compare favorably with limited measurements made from pure L alpha PC. This detergent-based method for assigning spectra and for determining dipolar couplings and CSA in detergent-free systems should be extendable to other lipid systems. The resulting data set from this study may prove useful in future modeling of the structure and dynamics of DMPC bilayers. In addition, the fact that experiments utilizing each of the three detergents led to similar estimates for the spectral parameters of pure DMPC, and the fact that spectral parameter versus bilayer order plots were linear, indicate that the averaged conformation and dynamics of DMPC in the presence of the three detergents are very similar to those of pure L alpha DMPC.  相似文献   

9.
Residual dipolar couplings are being increasingly used as structural constraints for NMR studies of biomolecules. A problem arises when dipolar coupling contributions are larger than scalar contributions for a given spin pair, as is commonly observed in solid state NMR studies, in that signs of dipolar couplings cannot easily be determined. Here the sign ambiguities of dipolar couplings in field-oriented bicelles are resolved by variable angle sample spinning (VASS) techniques. The director behavior of field-oriented bicelles (DMPC/DHPC, DMPC/CHAPSO) in VASS is studied by 31P NMR. A stable configuration occurs when the spinning angle is smaller than the magic angle, 54.7°, and the director (or bicelle normal) of the disks is mainly distributed in a plane perpendicular to the rotation axis. Since the dipolar couplings depend on how the bicelles are oriented with respect to the magnetic field, it is shown that the dipolar interaction can be scaled to the same order as the J-coupling by moving the spinning axis from 0° toward 54.7°. Thus the relative sign of dipolar and scalar couplings can be determined.  相似文献   

10.
Buffered mixtures of the detergent 3-(cholamidopropyl)dimethylammonio-2-hydroxy-1-propanesulfonate (CHAPSO) and dimyristoylphosphatidylcholine (DMPC) orient in the presence of a strong magnetic field over a wide range of water contents (at least 65-85%) and CHAPSO:DMPC molar ratios (typically 1:10-1:3). 31P NMR studies show that the phospholipid in such mixtures is oriented with its director axis perpendicular to the magnetic field. 31P and 2H NMR results also suggest that the structure and dynamics of the DMPC molecules are similar to that of pure phospholipids existing in the liquid crystalline (L alpha) bilayer phase. The ability of 1:5 CHAPSO:DMPC samples to orient is highly tolerant of large changes in temperature, pH, and ionic strength, as well as to the addition of substantial amounts of charged amphiphiles or soluble protein. However, 2H NMR studies of deuterated beta-dodecyl melibiose (DD-MB) solubilized in the system indicate the head group conformation and/or dynamics of this glycolipid analogue is dependent upon the CHAPSO concentration. Despite the latter results, the orientational versatility of the system, together with the nondenaturing properties of CHAPSO, makes this system useful in spectroscopic studies of membrane-associated phenomena.  相似文献   

11.
The miscibility of the solid-phase-forming distearoylphosphatidylcholine (DSPC) and the fluid-phase-forming dilauroylphosphatidylcholine (DLPC) at the air/water interface was investigated by the Langmuir film balance. Surface pressure-area isotherms suggest that mixtures containing 25.0-62.5-mol% DLPC (range of composition investigated) are phase-separated. The lateral structure of the DSPC/DLPC monolayers was imaged by Brewster angle microscopy (BAM) as a function of the surface pressure. Quasi-circular condensed domains appeared at pressures between 0 and 0.5mN m(-1), and these structures were already fully developed at approximately 1mN m(-1). Further compression of the monolayers above 1mN m(-1) merely brought the domains closer together. The mixed monolayers consisted of solid domains of DSPC, approximately 3-20 micro in size, in a fluid matrix of DLPC. BAM and the phase contrast mode of intermittent-contact atomic force microscopy (AFM) revealed that the quasi-circular DSPC domains are divided into segments of different reflectivities (BAM) or phase shift (AFM) that arise from abrupt changes in the long-range orientational order of the tilted hydrocarbon chains. The DSPC domains in DSPC/DLPC internally exhibited star and cardioid textures that were heretofore only reported for single-component lipid monolayers in the phase coexistence region.  相似文献   

12.
Gamma-secretase is important for the development of Alzheimer's disease, since it is a crucial enzyme for the generation of the pathogenic amyloid beta-peptide (Abeta). Most data on gamma-secretase is derived from studies in cell lines overexpressing gamma-secretase components or amyloid precursor protein (APP), and since gamma-secretase is a transmembrane protein complex, detergents have been frequently used to facilitate the studies. However, no extensive comparison of the influence of different detergents at different concentrations on gamma-secretase activity in preparations from brain has been made. Here, we establish the optimal conditions for gamma-secretase activity in rat brain, using an activity assay detecting endogenous production of the APP intracellular domain, which is generated when gamma-secretase cleaves the APP C-terminal fragments. We performed a subcellular fractionation and noted the highest gamma-secretase activity in the 100000g pellet and that the optimal pH was around 7. We found that gamma-secretase was active for at least 16 h at 37 degrees C and that the endogenous substrate levels were sufficient for activity measurements. The highest activity was obtained in 0.4% CHAPSO, which is slightly below the critical micelle concentration (0.5%) for this detergent, but the complex was not solubilized efficiently at this concentration. On the other hand, 1% CHAPSO solubilized a substantial amount of the gamma-secretase components, but the activity was low. The activity was fully restored by diluting the sample to 0.4% CHAPSO. Therefore, using 1% CHAPSO for solubilization and subsequently diluting the sample to 0.4% is an appropriate procedure for obtaining a soluble, highly active gamma-secretase from rat brain.  相似文献   

13.
We studied the interaction between the 35 kDa apolipoprotein of canine pulmonary surfactant (SP 35) and five saturated phosphatidylcholines: distearoyl (DSPC), diheptadecanoyl (DHPC), dipalmitoyl (DPPC), dimyristoyl (DMPC), and dilauroyl (DLPC); and two monoenoic unsaturated phosphatidylcholines: dioleoyl (DOPC) and dielaidyl (DEPC), using temperatures at which all of the phospholipids except DOPC were in both the gel and liquid-crystalline states. The experiments were carried out in a buffer without Ca2+. The amount of apolipoprotein which was bound by both small unilamellar and multilayered vesicles of these lipids decreased as the temperature was increased. Moreover, near the temperatures of the phase transitions of all lipids except DLPC, there was an abrupt and marked reduction in binding of protein, in that over a 3-4 degree change in temperature there was an abrupt decrease in bound apolipoprotein. A similar change in binding occurred using DLPC, although the relatively large changes in bound protein occurred at about 10 and 20 degrees C, temperatures which are above the phase transition temperature of this lipid. Experiments using DOPC were limited to temperatures above the phase transition, and apolipoprotein binding was low. Experiments monitoring the intrinsic fluorescence of the protein, and the fluorescence of bis-1-anilino-8-naphthalene sulfonic acid bound to the protein, revealed a possible conformational change at about 40 degrees C. Measurement of intrinsic fluorescence provided the same result whether or not the protein was associated with lipid. DSC of the apolipoprotein indicated that this change was not associated with a measurable thermogenic process. We found that the interaction with DPPC was reversible at 42 degrees C, and we measured the thermodynamic parameters of the interaction at this temperature. These were: delta G0 = -8.0 kcal/mol apolipoprotein; delta H0 = -88 kcal/mol; delta S0 = -254 cal/Cdeg per mol. We conclude that the interaction between SP 35 and saturated phosphatidylcholines is temperature sensitive, and this probably reflects differences in the ability of gel and liquid-crystalline phospholipids to bind this protein. Both the delta H0 and delta S0 of the interaction are negative, and may reflect an immobilization of phospholipid around the apolipoprotein to form a boundary layer. This hypothesis is consistent with the findings obtained by DSC, in which the enthalpy of the phase transition of DMPC in lipid-apolipoprotein recombinants was found to be about 60% of that expected for a pure and unperturbed multilamellar dispersion.  相似文献   

14.
We previously reported that the combination of dilinoleoylphosphatidylcholine (DLPC) and S-adenosylmethionine (SAMe), which have antioxidant properties and antifibrogenic actions, prevented leptin-stimulated tissue inhibitor of metalloproteinase (TIMP)-1 production in hepatic stellate cells (HSCs) by inhibiting H2O2-mediated signal transduction. We now show that DLPC and SAMe inhibit alpha1(I) collagen mRNA expression induced by leptin or menadione in LX-2 human HSCs. We found that DLPC and SAMe prevent H2O2 generation and restore reduced glutathione (GSH) depletion whether caused by leptin or menadione. Blocking H2O2 signaling through ERK1/2 and p38 pathways resulted in a complete inhibition of leptin or menadione-induced alpha1(I) collagen mRNA. The inhibition of collagen mRNA by DLPC and SAMe combined is at least two times more effective than that by DLPC or SAMe alone. In conjunction with the prevention of TIMP-1 production, the ability of DLPC and SAMe to inhibit alpha1(I) collagen mRNA expression provides a mechanistic basis for these innocuous compounds in the prevention of hepatic fibrosis, because enhanced TIMP-1 and collagen productions are associated with hepatic fibrogenesis and their attenuation may diminish fibrosis.  相似文献   

15.
The sizes and shapes of solidus (gel) phase domains in the hydrated molecular bilayers of dilauroylphosphatidylcholine/dipalmitoylphasphatidylcholine (DLPC/DPPC) (1:1) and phosphatidylserine (PS)/DPPC (1:2) are visualized directly by low dose diffraction-contrast electron microscopy. The temperature and humidity of the bilayers are controlled by an environmental chamber set in an electron microscope. The contrast between crystalline domains is enhanced by electron optical filtering of the diffraction patterns of the bilayers. The domains are seen as a patchwork in the plane of the bilayer, with an average width of 0.2-0.5 micrometer. The percentage of solidus area measured from diffraction-contrast micrographs at various temperatures agrees in general with those depicted by known phase diagrams. The shape and size of the domains resemble those seen by freeze-fracture in multilamellar vesicles. Temperature-related changes in domain size and in phase boundary per unit area are more pronounced in the less miscible DLPC/DPPC mixture. No significant change in these geometric parameters with temperature is found in the PS/DPPC mixture. Mapping domains by their molecular diffraction signals not only verifies the existance of areas of different molecular packing during phase separation but also provides a quantitative measurement of structural boundaries and defects in lipid bilayers.  相似文献   

16.
Buffy JJ  Waring AJ  Lehrer RI  Hong M 《Biochemistry》2003,42(46):13725-13734
The dynamics and aggregation of a beta-sheet antimicrobial peptide, protegrin-1 (PG-1), are investigated using solid-state NMR spectroscopy. Chemical shift anisotropies of F12 and V16 carbonyl carbons are uniaxially averaged in 1,2-dilauryl-sn-glycero-3-phosphatidylcholine (DLPC) bilayers but approach rigid-limit values in the thicker 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine (POPC) bilayers. The Calpha-Halpha dipolar coupling of L5 is scaled by a factor of 0.16 in DLPC bilayers but has a near-unity order parameter of 0.96 in POPC bilayers. The larger couplings of PG-1 in POPC bilayers indicate immobilization of the peptide, suggesting that PG-1 forms oligomeric aggregates at the biologically relevant bilayer thickness. Exchange NMR experiments on F12 (13)CO-labeled PG-1 show that the peptide undergoes slow reorientation with a correlation time of 0.7 +/- 0.2 s in POPC bilayers. This long correlation time suggests that in addition to aggregation, geometric constraints in the membrane may also contribute to PG-1 immobilization. The PG-1 aggregates contact both the surface and the hydrophobic center of the POPC bilayer, as determined by (1)H spin-diffusion measurements. Thus, solid-state NMR provides a wide range of information about the molecular details of membrane peptide immobilization and aggregation in lipid bilayers.  相似文献   

17.
NMR residual dipolar couplings for the S-peptide of ribonuclease A aligned in C8E5/n-octanol liquid crystals are consistent with the presence of a native-like alpha-helix structure undergoing dynamic fraying. Residues 3-13, which correspond to the first alpha-helix of ribonuclease A, show couplings that become more negative at low temperature and in the presence of salt, conditions which stabilize alpha-helical structure in the S-peptide. By contrast, dipolar couplings from the N and C termini of the peptide are close to zero and remain nearly invariant with changes in solution conditions. Torsion angle dynamics simulations using a gradient of dihedral restraint bounds that increase from the center to the ends of the peptide reproduce the experimentally observed sequence dependence of dipolar couplings. The magnitudes of residual dipolar couplings depend on the anisotropy of the solute. Native proteins often achieve nearly spherical shapes due to the hydrophobic effect. Embryonic partially folded structures such as the S-peptide alpha-helix have an intrinsically greater potential for anisotropy that can result in sizable residual dipolar couplings in the absence of long-range structure.  相似文献   

18.
Hydrophobic matching, in which transmembrane proteins cause the surrounding lipid bilayer to adjust its hydrocarbon thickness to match the length of the hydrophobic surface of the protein, is a commonly accepted idea in membrane biophysics. To test this idea, gramicidin (gD) was embedded in 1, 2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1, 2-myristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers at the peptide/lipid molar ratio of 1:10. Circular dichroism (CD) was measured to ensure that the gramicidin was in the beta6.3 helix form. The bilayer thickness (the phosphate-to-phosphate distance, or PtP) was measured by x-ray lamellar diffraction. In the Lalpha phase near full hydration, PtP is 30.8 A for pure DLPC, 32.1 A for the DLPC/gD mixture, 35.3 A for pure DMPC, and 32.7 A for the DMPC/gD mixture. Gramicidin apparently stretches DLPC and thins DMPC toward a common thickness as expected by hydrophobic matching. Concurrently, gramicidin-gramicidin correlations were measured by x-ray in-plane scattering. In the fluid phase, the gramicidin-gramicidin nearest-neighbor separation is 26.8 A in DLPC, but shortens to 23.3 A in DMPC. These experiments confirm the conjecture that when proteins are embedded in a membrane, hydrophobic matching creates a strain field in the lipid bilayer that in turn gives rise to a membrane-mediated attractive potential between proteins.  相似文献   

19.
Understanding protein stability requires characterization of structural determinants of the folded and unfolded states. Many proteins are capable of populating partially folded states under specific solution conditions. Occasionally, coexistence of the folded and an unfolded state under non- or mildly denaturing conditions can be observed by NMR, allowing us to structurally probe these states under identical conditions. Here we report on a destabilized mutant of the B1 domain of protein G (GB1) whose equilibrium unfolding was systematically investigated. Backbone amide residual dipolar couplings (RDCs), the tryptophan Nepsilon-H resonance and the amide nitrogen transverse relaxation rates (R2s) for varying pH values and different temperatures were measured. The backbone amide RDCs indicate that prior to complete unfolding, two melting hot spots are formed at the turn around T11, L12 and K13 and the N terminus of the helix at A24 and T25. The RDCs for the low pH, thermally unfolded state of GB1 are very small and do not indicate the presence of any native-like structure. Amide nitrogen transverse relaxation rates for GB1 in the folded state at different temperatures exhibit large contributions from exchange processes and the associated dynamics display considerable heterogeneity. Our data provide clear evidence for intermediate conformations and multi-state equilibrium un/folding for this GB1 variant.  相似文献   

20.
The conformational propensities of unfolded states of apomyoglobin have been investigated by measurement of residual dipolar couplings between (15)N and (1)H in backbone amide groups. Weak alignment of apomyoglobin in acid and urea-unfolded states was induced with both stretched and compressed polyacrylamide gels. In 8 M urea solution at pH 2.3, conditions under which apomyoglobin contains no detectable secondary or tertiary structure, significant residual dipolar couplings of uniform sign were observed for all residues. At pH 2.3 in the absence of urea, a change in the magnitude and/or sign of the residual dipolar couplings occurs in local regions of the polypeptide where there is a high propensity for helical secondary structure. These results are interpreted on the basis of the statistical properties of the unfolded polypeptide chain, viewed as a polymer of statistical segments. For a folded protein, the magnitude and sign of the residual dipolar couplings depend on the orientation of each bond vector relative to the alignment tensor of the entire molecule, which reorients as a single entity. For unfolded proteins, there is no global alignment tensor; instead, residual dipolar couplings are attributed to alignment of the statistical segments or of transient elements of secondary structure. For apomyoglobin in 8 M urea, the backbone is highly extended, with phi and psi dihedral angles favoring the beta or P(II) regions. Each statistical segment has a highly anisotropic shape, with the N-H bond vectors approximately perpendicular to the long axis, and becomes weakly aligned in the anisotropic environment of the strained acrylamide gels. Local regions of enhanced flexibility or chain compaction are characterized by a decrease in the magnitude of the residual dipolar couplings. The formation of a small population of helical structure in the acid-denatured state of apomyoglobin leads to a change in sign of the residual dipolar couplings in local regions of the polypeptide; the population of helix estimated from the residual dipolar couplings is in excellent agreement with that determined from chemical shifts. The alignment model described here for apomyoglobin can also explain the pattern of residual dipolar couplings reported previously for denatured states of staphylococcal nuclease and other proteins. In conjunction with other NMR experiments, residual dipolar couplings can provide valuable insights into the dynamic conformational propensities of unfolded and partly folded states of proteins and thereby help to chart the upper reaches of the folding landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号