首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CRF-like immunoreactivity was measured by radioimmunoassay in the brains of normal adult rats and found to be widely distributed in extrahypothalamic areas (e.g., thalamus, amygdala, hippocampus, frontal cerbral cortex, striatum, midbrain, pons-medulla and cerebellum) at levels approximately 10% of the hypothalamus. Sephadex G-50 gel filtration reveals that CRF-like immunoreactivity in the hypothalamus coelutes with synthetic ovine CRF and is also present in the void volume. However, in the extrahypothalamic areas of the rat brain, only CRF-like immunoreactivity that coelutes with synthetic ovine CRF was detected. High performance liquid chromatography revealed equal amounts of immunoreactivity coeluting with CRF and methionine sulfoxide CRF in hypothalamic extracts.  相似文献   

2.
Phe-Met-Arg-Phe-amide immunoreactivity (FMRF-NH2-IR) is highly concentrated in the dorsal horn of rat spinal cord, and particularly in nerve terminals of lamina I. In order to establish the location of the cell bodies of the lamina I terminals containing FMRF-NH2-IR, we measured by radioimmunoassay the FMRF-NH2-IR in sensory ganglia and in spinal roots. FMRF-NH2-IR was found in both tissues, and reverse-phase HPLC analysis revealed that both tissues contain the same molecular forms that are also present in the spinal cord. Lumbo-sacral rhizotomy induced a 50% decrease of FMRF-NH2-IR in the lumbar segment of the spinal cord suggesting that at least a portion of the FMRF-NH2-IR present in this tissue is of peripheral origin. Transection of the spinal cord at the midthoracic level induced a 20-50% decrease of FMRF-NH2-IR in the lumbar segment of the spinal cord suggesting also the presence of FMRF-NH2-IR in descending pathways.  相似文献   

3.
Neuromedin K and neuromedin L are novel mammalian tachykinins isolated from porcine spinal cord. We have developed a highly sensitive radioimmunoassay for neuromedin K. Since the radioimmunoassay for neuromedin K has significant crossreactivity with neuromedin L and substance P, we can simultaneously determine the tissue concentrations of neuromedin K, neuromedin L and substance P after separation of the tissue extracts by reverse phase high performance liquid chromatography. Substance P is found to be the most abundant mammalian tachykinin in every brain region. The ratio of the concentration of substance P to neuromedin K is small in cerebral cortex and large in medulla-pons, while that of substance P to neuromedin L is rather constant in a range of 2.0–2.5. In spinal cord, dorsal half contains more neuromedin K and L than ventral half as is the case with substance P. These results indicate that both neuromedin K and L are endogenous mammalian tachykinins with specific physiological functions.  相似文献   

4.
Impact spinal cord injury (20 g-cm) was induced in rat by weight drop. The immunoreactivity of mcalpain was examined in the lesion and adjacent areas of the cord following trauma. Increased calpain immunoreactivity was evident in the lesion compared to control and the immunostaining intensity progressively increased after injury. The calpain immunoreactivity was also increased in tissue adjacent to the lesion. mCalpain immunoreactivity was significantly stronger in glial and endothelial cells, motor neurons and nerve fibers in the lesion. The calpain immunoreactivity also increased in astrocytes and microglial cells in the adjacent areas. Proliferation of microglia and astrocytes identified by GSA histochemical staining and GFAP immunostaining, respectively, was seen at one and three days after injury. Many motor neurons in the ventral horn showed increased calpain immunoreactivity and were shrunken in the lesion. These studies indicate a pivotal role for calpain and the involvement of glial cells in the tissue destruction in spinal cord injury. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

5.
The orexins are recently identified appetite-stimulating hypothalamic peptides. We used immunohistochemistry to map orexin-A and orexin-B immunoreactivity in rat brain, spinal cord, and some peripheral tissues. Orexin-A- and orexin-B-immunoreactive cell bodies were confined to the lateral hypothalamic area and perifornical nuclei. Orexin-A-immunoreactive fibers were densely distributed in the hypothalamus, septum, thalamus, locus coeruleus, spinal cord, and near the ventricles, but absent from peripheral sites investigated. In contrast, orexin-B-immunoreactive fibers were distributed sparsely in the hypothalamus. Orexin cells are strategically sited to contribute to feeding regulation, but their widespread projections suggest that orexins have other physiological roles.  相似文献   

6.
Tryptamine levels have been determined in mouse brain regions and spinal cord and in rat spinal cord. They were; caudate nucleus 2.5 ng·g–1, hypothalamus <0.5 ng·g–1, hippocampus <0.7 ng·g–1, olfactory bulb <0.7 ng·g–1, olfactory tubercles <0.6 ng·g–1, brain stem <0.4 ng·g–1, cerebellum <1.0 ng·g–1, and the rest 0.9 ng·g–1. The mouse whole brain was found to have 0.5 ng·g–1, the mouse spinal cord 0.3 ng·g–1, and the rat spinal cord 0.3 ng·g–1. These concentrations increased rapidly to 22.8 ng·g–1, 14.2 ng·g–1, and 6.6 ng·g–1 respectively at 1 hr after 200 mg·kg–1 pargyline. The turnover rates and half lives of tryptamine in the mouse brain and spinal cord and rat spinal cord were estimated to be 0.14 nmol·g–1·h–1 and 0.9 min; 0.054 nmol·g–1·h–1 and 1.5 min and 0.04 nmol·g–1·h–1 and 1.6 min respectively. The aromaticl-aminoacid decarboxylase inhibitors NSD 1034 and NSD 1055 reduced synthesis of tryptamine in controls and pargyline pretreated animals. Tryptophan increased the concentrations of mouse striatal tryptamine and 5-hydroxytryptamine and brain stem 5-hydroxyindole acetic acid.p-Chlorophenylalanine reduced formation of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid but did not change that of tryptamine.  相似文献   

7.
8.
The distributions of neuronal nitric oxide synthase immunoreactivity (NOS-IR) and NADPH-diaphorase (NADPH-d) activity were compared in the cat spinal cord. NOS-IR in neurons around the central canal, in superficial laminae (I and II) of the dorsal horn, in the dorsal commissure, and in fibers in the superficial dorsal horn was observed at all levels of the spinal cord. In these regions, NOS-IR paralleled NADPH-d activity. The sympathetic autonomic nucleus in the rostral lumbar and thoracic segments exhibited prominent NOS-IR and NADPH-d activity, whereas the parasympathetic nucleus in the sacral segments did not exhibit NOS-IR or NADPH-d activity. Within the region of the sympathetic autonomic nucleus, fewer NOS-IR cells were identified compared with NADPH-d cells. The most prominent NADPH-d activity in the sacral segments occurred in fibers within and extending from Lissauer's tract in laminae I and V along the lateral edge of the dorsal horn to the region of the sacral parasympathetic nucleus. These afferent projections did not exhibit NOS-IR; however, NOS-IR and NADPH-d activity were demonstrated in dorsal root ganglion cells (L7-S2). The results of this study demonstrate that NADPH-d activity is not always a specific histochemical marker for NO-containing neural structures.  相似文献   

9.
S S Tay  W C Wong 《Acta anatomica》1992,144(3):196-201
Insulin-like immunoreactive neurons were localized in the cervical, thoracic, lumbar and sacral segments of the monkey spinal cord. Both dorsal and ventral horn cells were labelled. Insulin-like reaction product was localized in the cell nucleus and cytoplasm. Both inner and outer nuclear membranes were labelled. Reaction product appeared to be scattered throughout the nucleoplasm but not within the nucleolus. In the cytoplasm, labelling was mainly localized in the cisternae of rER and saccules of Golgi apparatus. Both proximal and distal dendrites were labelled, the reaction product was closely associated with the parallel arrays of neurotubules. Most of the distal dendrites were postsynaptic to non-labelled axon terminals; however, some were postsynaptic to lightly labelled axon terminals. A labelled dendrite often formed the central element of a synaptic glomerulus with several nonlabelled axon terminals. It is hypothesized that insulin-like substance(s) may be modulating nuclear activities as well as neurotransmission at the synapse.  相似文献   

10.
11.
The historical development of concepts of gap junctions as sites for electrical, ionic, and metabolic coupling is reviewed, from the initial discovery of gap junctions linking heart cells, to the current concepts that gap junctions represent 'electrotonic synapses' between neurons. The ultrastructure and immunocytochemistry of gap junctions in heart, brain, and spinal cord of adult rats is examined using conventional thin sections, negative staining, grid-mapped freeze-fracture replicas, and immunogold-labeled freeze-fracture replicas. We review evidence for neuronal gap junctions at 'mixed' (combined electrical and chemical) synapses throughout adult rat spinal cord. We also show immunogold labeling of connexin43 in astrocyte and ependymocyte gap junctions and of connexin32 in oligodendrocyte gap junctions. Ultrastructural and freeze-fracture immunocytochemical methods have provided for definitive determination of the number, size, histological distribution, and connexin composition of gap junctions between neurons in all regions of the central nervous systems of vertebrate species.  相似文献   

12.
At the light microscope level, the minute concentrations of substance P (SP) in rat spinal ventral horn can be visualized best by amplification with the double bridge PAP method of Vacca et al. (1975; 1980) in 5 microns paraffin tissue sections. Morphologically, the immunoreactive sites resemble punctate bodies. They occur in close apposition with the large ventral horn cells and their associated neuronal processes. By the Sternberger PAP procedure, we now describe these punctate bodies at the electron microscope level. Ultrastructurally, they appear as tiny boutons (terminal and preterminal) and small unmyelinated processes. The boutons and processes typically contain one to several immunolabeled dense core vesicles among many immunolabeled clear vesicles. They range in size near the limit of resolution of the light microscope (LM), thereby justifying further the use of LM amplification staining by the double bridge method. The immunolabeled boutons often synapse with large smooth dendrites (which may originate from motoneurons) by asymmetrical or symmetrical synaptic densities. Their synaptic densities appear immunostained as well. The data support the view that the electrophysiological action of SP in the ventral horn occurs in part by synaptic action along the processes of the ventral horn cells. Other mechanisms of action are considered for the peptide as well. Additional types of membrane specializations (synaptoid junctions) and SP neural circuits are described below.  相似文献   

13.
Summary At the light microscope level, the minute concentrations of substance P (SP) in rat spinal ventral horn can be visualized best by amplification with the double bridge PAP method of Vacca et al. (1975; 1980) in 5 m paraffin tissue sections. Morphologically, the immunoreactive sites resemble punctate bodies. They occur in close apposition with the large ventral horn cells and their associated neuronal processes. By the Sternberger PAP procedure, we now describe these punctate bodies at the electron microscope level. Ultrastructurally, they appear as tiny boutons (terminal and preterminal) and small unmyelinated processes. The boutons and processes typically contain one to several immunolabeled dense core vesicles among many immunolabeled clear vesicles. They range in size near the limit of resolution of the light microscope (LM), thereby justifying further the use of LM amplification staining by the double bridge method. The immunolabeled boutons often synapse with large smooth dendrites (which may originate from motoneurons) by asymmetrical or symmetrical synaptic densities. Their synaptic densities appear immunostained as well. The data support the view that the electrophysiological action of SP in the ventral horn occurs in part by synaptic action along the processes of the ventral horn cells. Other mechanisms of action are considered for the peptide as well. Additional types of membrane specializations (synaptoid junctions) and SP neural circuits are described below.The work, presented at the Histochemical Society's 29 Annual Meeting in Vancouver, B.C. April 1–2, 1978, was partially supported by CCHD 10-12-04-3600-67 (LLV)  相似文献   

14.
Thyrotropin-releasing hormone (TRH) and TRH extended peptides were extracted from rat hypothalamus and spinal cord and resolved by gel exclusion chromatography under dissociating conditions. Peptides related to TRH were detected by trypsin digestion and radioimmunoassay with an antibody to TRH or an antibody raised against the pentapeptide Glp-His-Pro-Gly-Lys. In addition to the tripeptide hormone a series of C-terminally extended forms of TRH was shown to occur in both tissues; no N-terminally extended peptides were detected. The structure of the TRH-related peptides was confirmed by chromatographic identification of the N-terminal pentapeptide sequence released by trypsin. The TRH extended peptides, which accounted for 15-20% of the total TRH, were present in three groups of different molecular size corresponding to predicted fragments of the TRH prohormone. One of the peptides in the spinal cord was identified by chromatographic comparison with a synthetic 16-residue peptide representing residues 154-169 of the prohormone. In the spinal cord the TRH extended peptides differed in their relative concentrations from the corresponding peptides in the hypothalamus, possibly reflecting differences in processing. The finding of extended forms of TRH in which the extension occurs only on the C-terminal side of the hormone sequence shows that the prohormone undergoes highly specific processing.  相似文献   

15.
Summary The high sensitivity of the magnesium-dithizonate silver-dithizonate (MDSD) staining procedure makes this method very suitable for the histochemical localization of copper in different regions of the central nervous system of adult rats. In the telencephalon (bulbus olfactorius, nucleus caudatus-putamen, septum pellucidum and are dentata), diencephalon (nucleus habenulae medialis, nuclei of the hypothalamus in the vicinity of the third ventricle, and corpus mamillare), mesencephalon (substantia nigra), cerebellum (mainly in the nodulus), pons (locus coeruleus, nucleus vestibularis), medulla oblongata (nucleus tractus solitarii) and spinal cord, the glial cells exhibit specific copper staining. The glial cells of some circumventricular organs (e.g. the subfornical organ) are also stained using the MDSD method. The significant staining observed in whitematter glial cells (e.g. in the corpus callosum, cerebellum and spinal cord) further indicates the very high sensitivity of this method. In glial cells of the same regions, the presence of copper can likewise be demonstrated using the modified sulphide silver method. On the basis of the present histochemical results, it is suggested that copper may play an important role in the normal physiological functioning of glial cells and also, via glia-neuron interactions, in neuronal processes.  相似文献   

16.
A highly sensitive and specific radioimmunoassay for prostaglandin D2 has been developed and used to determine the basal level and regional distribution of this prostaglandin in rat brain, spinal cord and pituitary. The assay can detect as little as 20 pg of prostaglandin D2, and the antiserum used shows 20% cross-reactivity to prostaglandin D1, 0.1% cross-reactivity to 13,14-dihydro-15-ketoprostaglandin D2 and even lower cross-reactivity to other prostaglandins. Prostaglandin D2-like immunoreactivity was extracted with ethanol from the rat tissues. The immunoreactivity comigrated with authentic prostaglandin D2 on silica gel thin layer chromatography, showed the dilution curve parallel to that of the authentic compound, and decreased in amounts by the pretreatment of animals with indomethacin, suggesting that it was prostaglandin D2 itself. To avoid a postmortem formation of prostaglandins, we sacrificed animals by microwave irradiation at 4.5 kW for 1.2 sec under which conditions both prostaglandin D synthetase and prostaglandin D dehydrogenase were completely inactivated. The amount of prostaglandin D2 in whole brain measured under these conditions was 3.42±0.59 ng (mean+S.E.M.), and those of prostaglandin E2 and F measured by the respective radioimmunoassays were 1.32±0.24 and 0.96±0.20 ng, respectively. Prostaglandin D2 was widely distributed in rat brain, spinal cord and pituitary. The highest concentrations were seen in pineal gland and neurointermediate pituitary followed by anterior pituitary. Lower but significant concentrations were observed in other parts of brain, among which hypothalamus and septum showed the relatively high concentrations.  相似文献   

17.
18.
19.
Diazepam elevates serotonin (5HT) and 5-hydroxyindoleacetic acid (5HIAA) concentrations in rat brain and spinal cord. The maximal effect occurs 1–2 hrs after drug injection and is dose related between 5–20 mg/kg (intraperitoneal). The action of diazepam on brain 5HT and 5HIAA concentrations is modified by previous food consumption: the ingestion of a diet that raises brain 5HT and 5HIAA one hour before drug injection enhances the diazepam-induced increase in brain indoles; consumption of a diet that lowers brain 5HT and 5HIAA partially blocks the elevation in brain indoles that follows diazepam injection.  相似文献   

20.
The present communication deals with the cytochemical localization of angiotensinogen (ATG) immunoactivity in the hind-brain and spinal cord of neonatal (1-day-old) and adult (3-month-old pregnant) female rats. In the neonatal hind-brain, the immunoreactive cells were more numerous than in that of adult rats. In the adult rat hind-brain, the number of ATG-positive cells was quite limited in each nucleus. Further, in some nuclei, only neurons or neuroglia were positive, while in others the immunoactivity was observed in both the components. Spinal cords of neonatal rats showed a few undifferentiated ATG-positive cells in the grey matter. Contrary to this, the spinal cord of adult animals contained numerous immunoreactive glial cells in the grey matter, fasciculus cuneatus and fasciculus gracilis. Immunoactivity in the neurons was localized in the Nissl bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号