首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects on thyroid hormone-dependent gene biomarker responses of the persistent organochlorine pesticide metabolite 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) were investigated after exposure of 4-week-old European common frog (Rana temporaria) (stage 36) tadpoles to two (0.001 and 0.01 ppm) DDE concentrations. Total body weight, total length, and tail length and width increased after 3-day exposure to DDE. Expression patterns of genes encoding for growth hormone, thyroid-stimulating hormone (TSHbeta) and thyroid hormone receptor (TRalpha and TRbeta) isoforms were evaluated in the head, body and tail regions using a validated real-time polymerase chain reaction (PCR) method. The mRNA expression of growth hormone in the body, and TSHbeta in the head showed significant DDE concentration-dependent decreases. While DDE caused variable effects on TRalpha mRNA steady-state, the expression of TRbeta was significantly decreased in the tail by DDE in a concentration-specific manner. The effect of DDE exposure on TRbeta mRNA expression showed a negative correlation with tail length and width during the exposure period. The unique pattern of a DDE-induced decrease of tail TRbeta expression probably reflects the significant role of this thyroid hormone receptor isoform in tail re-absorption and overall metamorphosis in anuran species. Therefore, the present study shows that the evaluation of thyroid hormone-dependent genes may represent quantitative biomarkers of acute exposure to organochlorine pesticides in anuran species during critical developmental periods such as metamorphosis. Given the widespread environmental levels of DDT and its metabolites, these pollutants will remain a subject of concern and their effects on anuran species should be studied in more detail.  相似文献   

2.
Iwamuro S  Yamada M  Kato M  Kikuyama S 《Life sciences》2006,79(23):2165-2171
We investigated effects of different concentrations (10(-7) - 10(-5) M) of bisphenol A (BPA), which is known as an estrogenic and anti-thyroid hormonal endocrine disrupter, on the expression of thyroid hormone receptor (TR) alpha and beta and retinoid X receptor (RXR) gamma mRNA in tails of stage 52-54 Xenopus tadpoles in organ culture in the presence or absence of different concentrations of triiodo-thyronine (T(3)). In the absence of T(3), BPA at any concentration examined did not show remarkable effects on tail length but blocked 10(-7) M T(3)-induced tail resorption in a concentration-dependent manner. Semi-quantitative analyses of TRalpha and TRbeta mRNAs by RT-PCR in the tail specimens indicated that BPA shows an apparent antagonistic effect towards the receptors and reduced their mRNA levels relative to controls. When administered together with 10(-7) M T(3), the antagonistic effects of BPA were detected more clearly and dose-dependently. While BPA prevented the autoinduction of both TRalpha and TRbeta genes by T(3), the effect was less marked on TRalpha than on TRbeta. BPA also moderately suppressed RXRgamma gene expression. Gene expression of RXRgamma, a partner for heterodimer formation of TRs, was supressed by T(3) alone and also by BPA alone, but no additive effects were observed so far as studied. The present study indicates that a relatively low concentration of BPA, 10(-7) M, as compared with those examined previously (10(-5) to 10(-4) M) by us and other investigators, acts as an antagonist of T(3) through suppression of TRalpha and TRbeta gene expression in Xenopus tail in culture.  相似文献   

3.
4.
5.
6.
7.
8.
T3 potently influences cholesterol metabolism through the nuclear thyroid hormone receptor beta (TRbeta), the most abundant TR isoform in rodent liver. Here, we have tested if TRalpha1, when expressed at increased levels from its normal locus, can replace TRbeta in regulation of cholesterol metabolism. By the use of TRalpha2-/-beta-/- animals that overexpress hepatic TRalpha1 6-fold, a near normalization of the total amount of T3 binding receptors was achieved. These mice are similar to TRbeta-/- and TRalpha1-/-beta-/- mice in that they fail to regulate cholesterol 7alpha-hydroxylase expression properly, and that their serum cholesterol levels are unaffected by T3. Thus, hepatic overexpression of TRalpha1 cannot substitute for absence of TRbeta, suggesting that the TRbeta gene has a unique role in T3 regulation of cholesterol metabolism in mice. However, examination of T3 regulation of hepatic target genes revealed that dependence on TRbeta is not general: T3 regulation of type I iodothyronine deiodinase and the low density lipoprotein receptor were partially rescued by TRalpha1 overexpression. These in vivo data show that TRbeta is necessary for the effects of T3 on cholesterol metabolism. That TRalpha1 only in some instances can substitute for TRbeta indicates that T3 regulation of physiological and molecular processes in the liver occurs in an isoform-specific fashion.  相似文献   

9.
Amphibian metamorphosis is under the strict control of thyroid hormones (TH). These hormones induce metamorphosis by controlling gene expression through binding to thyroid hormone receptors (TRs). Necturus maculosus is considered to be an obligatory paedomorphic Amphibian since metamorphosis never occurs spontaneously and cannot be induced by pharmacological means. Since metamorphosis depends on the acquisition of response of tadpole tissues to thyroid hormone, we aimed to determine TR gene expression patterns in Necturus maculosus as well as the expression of two TH-related genes: Cytosolic Thyroid Hormone-Binding Protein (CTHBP)-M2-pyruvate kinase, a gene encoding a cytosolic TH binding protein and stromelysin 3, a direct TH target gene in Xenopus laevis. Tissue samples were obtained from specimens of Necturus maculosus. We performed in situ hybridization using non-cross-hybridizing RNA probes obtained from the cloned Necturus TRalpha and TRbeta genes. We found clear expression of Necturus TRalpha gene in several tissues including the central nervous system, epithelial cells of digestive and urinary organs, as well as myocardium and skeletal muscle. TRbeta was also expressed in the brain. In other tissues, hybridization signals were too low to draw reliable conclusions about their precise distribution. In addition, we observed that the expression of CTHBP and ST3 is largely distinct from that of TRs. The fact that we observed a clear expression of TRalpha and TRbeta which are evolutionary conserved, suggests that Necturus tissues express TRs. Our results thus indicate that, in contrast to previously held hypotheses, Necturus tissues are TH responsive.  相似文献   

10.
Thyroid hormones are responsible for the specific biochemical and structural changes that occur during amphibian metamorphosis. In this study we screened a series of cDNAs from a library constructed from T4-treated premetamorphic tadpole liver poly(A)+ RNA in order to identify a clone that could be used to study the influence of T3 on liver-specific gene expression during Rana catesbeiana metamorphosis. The cDNA from one clone exhibited a greater degree of hybridization to liver RNA from thyroid hormone-treated tadpoles than untreated tadpoles and no hybridization to RNA from tail fins of tadpoles of either group. On Northern blots, the mRNA to which the cDNA hybridized was 2.3 kilobases in size. The pattern of hybridization to genomic DNA digested by various restriction enzymes was consistent with the presence of a single gene. Using slot blot analysis we found that the mRNA levels first rose above basal levels only after 5 days of immersion of tadpoles in 12.5 micrograms/liter T3. The mRNA levels increased approximately 10-fold after 7 and 9 days of treatment. Frog livers had mRNA levels that were intermediate between those in untreated tadpoles and tadpoles immersed in T3 for 7 days. Sequence analysis revealed a significant degree of homology to serum albumin and alpha-fetoprotein. While it is known that serum albumin levels rise dramatically during metamorphosis in Rana species, presumably playing a critical role in maintaining water and electrolyte balance during the animals' terrestrial phase, the molecular basis of the induction has not been fully explained.  相似文献   

11.
Several metabolic processes in the liver are regulated by thyroid hormone (T3). Gene expression profiles of livers from normal and TRbeta-deficient mouse strains should allow the classification of rapid and sustained effects of T3, as well as identification of target genes that are dependent on TRbeta. The immediate and long-term T3 regulation of about 4000 genes in livers from hypo- and hyperthyroid wild-type and TRbeta-deficient mice was analyzed using cDNA microarrays. T3 was found to regulate more than 200 genes, and among these, more than 100 were previously not described. Sixty percent of all these genes show dependence on the TRbeta gene for T3 regulation, indicating that TRalpha1 may have previously unknown functions in the liver. Analysis of the gene expression patterns showed a clear functional distinction between rapid (2 h) actions of T3 and late effects, seen after 5 d of sustained T3 treatment. Many metabolic actions were rapidly executed, whereas effects on mitochondrial function, for example, were seen after the sustained T3 treatment. As compared with wild-type controls, TRbeta-/-mice exhibited elevated expression of some target genes and reduced levels of others, indicating that both direct and indirect gene regulation by TRs in liver is complex and involves both ligand-dependent and -independent actions by the major TR isoforms.  相似文献   

12.
13.
A pituitary hormone, prolactin (PRL) shows various effects on cellular metabolism in amphibians, such as stimulation of larval tissue growth and inhibition of metamorphic changes. All these effects are mediated by its cell surface receptor. However, lack of information on PRL receptor (PRL-R) gene expression has made the physiological importance of the PRL/PRL-R system obscure in amphibian metamorphosis. Hence, a Xenopus PRL-R cDNA was cloned, its structure was characterized, and specific binding of PRL to Xenopus PRL-R expressed in COS-7 cells was confirmed. In adult tissues, high level expression was found in the lung, heart, brain, thymus and skin, and low level in the oviduct, kidney and spinal cord. The developmental expression pattern showed that PRL-R messenger ribonucleic acid (mRNA) was expressed in the brain and tail from premetamorphosis and the level increased toward late metamorphosis, suggesting that PRL may inhibit the metamorphic changes in those organs. The level of brain PRL-R mRNA reached a peak just at the start of the metamorphic climax stages and then decreased, whereas in the tail, mRNA expression peaked at late metamorphosis. In the kidney, mRNA expression increased and reached a maximum level at the end of metamorphosis. The results obtained were discussed in relation to metamorphosis.  相似文献   

14.
15.
A major challenge in understanding nuclear hormone receptor function is to determine how the same ligand can cause very different tissue-specific responses. Tissue specificity may result from the presence of more than one receptor subtype arising from multiple receptor genes or alternative splicing. Recently, high affinity analogs of nuclear receptor ligands have been synthesized that show subtype selectivity. These analogs can greatly facilitate the study of receptor subtype-specific functions in organisms where mutational analysis is problematic or where it is desirable for receptors to be expressed in their normal physiological contexts. We describe here the effects of the synthetic thyroid hormone analog GC-1 on the metamorphosis of the frog Xenopus laevis. The most potent natural thyroid hormone, 3,5,3'-triidothyronine or T3, shows similar binding affinity and transactivation dose-response curves for both thyroid hormone receptor isotypes, designated TRalpha and TRbeta. GC-1, however, binds to and activates TRbeta at least an order of magnitude better than it does TRalpha. GC-1 efficiently induces death and resorption of premetamorphic tadpole tissues such as the gills and the tail, two tissues that strongly induce thyroid hormone receptor beta during metamorphosis. GC-1 has less effect on the growth of adult tissues such as the hindlimbs, which express high TRalpha levels. The effectiveness of GC-1 in inducing tail resorption and tail gene expression correlates with increasing TRbeta levels. These results illustrate the utility of subtype selective ligands as probes of nuclear receptor function in vivo.  相似文献   

16.
17.
Numerous coactivators that bind nuclear hormone receptors have been isolated and characterized in vitro. Relatively few studies have addressed the developmental roles of these cofactors in vivo. By using the total dependence of amphibian metamorphosis on thyroid hormone (T3) as a model, we have investigated the role of steroid receptor coactivator 3 (SRC3) in gene activation by thyroid hormone receptor (TR) in vivo. First, expression analysis showed that SRC3 was expressed in all tadpole organs analyzed. In addition, during natural as well as T3-induced metamorphosis, SRC3 was up-regulated in both the tail and intestine, two organs that undergo extensive transformations during metamorphosis and the focus of the current study. We then performed chromatin immunoprecipitation assays to investigate whether SRC3 is recruited to endogenous T3 target genes in vivo in developing tadpoles. Surprisingly, we found that SRC3 was recruited in a gene- and tissue-dependent manner to target genes by TR, both upon T3 treatment of premetamorphic tadpoles and during natural metamorphosis. In particular, in the tail, SRC3 was not recruited in a T3-dependent manner to the target TRbetaA promoter, suggesting either no recruitment or constitutive association. Finally, by using transgenic tadpoles expressing a dominant negative SRC3 (F-dnSRC3), we demonstrated that F-dnSRC3 was recruited in a T3-dependent manner in both the intestine and tail, blocking the recruitment of endogenous coactivators and histone acetylation. These results suggest that SRC3 is utilized in a gene- and tissue-specific manner by TR during development.  相似文献   

18.
19.
20.
Amphibian metamorphosis affords a useful experimental system in which to study thyroid hormone regulation of gene expression during postembryonic vertebrate development. In order to isolate gene-specific cDNA probes which correspond to thyroid hormone-responsive mRNAs, we employed differential colony hybridization of a cDNA library constructed from poly(A)+ RNA of thyroxine-treated premetamorphic tadpole liver. From an initial screening of about 6000 transformants, 32 "potentially positive" colonies were obtained. The recombinant cDNA-plasmids from 13 of these colonies plus two "potentially negative" colonies were purified for further study. Southern blot analysis of the plasmid DNA was employed to determine whether different cDNAs encoded for the same mRNA. The effect of thyroid hormone on the relative levels of specific mRNA species was examined by Northern analysis of liver RNA from premetamorphic tadpoles, thyroxine-treated tadpoles, and adult bullfrogs. Three independent cDNA clones were obtained which encoded thyroid hormone-enhanced mRNAs. We also obtained two independent cDNA clones encoding thyroid hormone-inhibited mRNAs and three independent clones encoding thyroid hormone-unresponsive mRNAs. The levels of two thyroid hormone-enhanced mRNAs and one thyroid hormone-inhibited mRNA were essentially the same in the thyroid hormone-treated tadpole liver and adult liver, suggesting that thyroid hormone induces stable changes in liver gene expression during spontaneous metamorphosis. Using selected cDNAs, RNA dot blot analysis of liver mRNA from tadpoles at different stages of metamorphosis showed that the level of one thyroid hormone-enhanced mRNA increased during late prometamorphosis and metamorphic climax. Similarly, a mRNA which was strongly inhibited by thyroid hormone treatment was observed to decline during prometamorphosis and reach undetectable levels during metamorphic climax. One mRNA was detected which was reproducibly inhibited by thyroid hormone treatment but which remained essentially unchanged during spontaneous metamorphosis. These results provide the first direct evidence for the coordinate and selective pretranslational regulation by thyroid hormone of several liver genes during the developmental process of metamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号