首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were prepared by electrospinning and subsequent thermal treatment processes. Pd/CNFs modified carbon paste electrode (Pd/CNF-CPE) displayed excellent electrochemical catalytic activities towards dopamine (DA), uric acid (UA) and ascorbic acid (AA). The oxidation overpotentials of DA, UA and AA were decreased significantly compared with those obtained at the bare CPE. Differential pulse voltammetry was used for the simultaneous determination of DA, UA and AA in their ternary mixture. The peak separation between UA and DA, DA and AA was 148 mV and 244 mV, respectively. The calibration curves for DA, UA and AA were obtained in the range of 0.5-160 microM, 2-200 microM, and 0.05-4mM, respectively. The lowest detection limits (S/N=3) were 0.2 microM, 0.7 microM and 15 microM for DA, UA and AA, respectively. With good selectively and sensitivity, the present method was applied to the determination of DA in injectable medicine and UA in urine sample.  相似文献   

2.
Hollow nitrogen-doped carbon microspheres (HNCMS) as a novel carbon material have been prepared and the catalytic activities of HNCMS-modified glassy carbon (GC) electrode towards the electro-oxidation of uric acid (UA), ascorbic acid (AA) and dopamine (DA) have also been investigated. Comparing with the bare GC and carbon nanotubes (CNTs) modified GC (CNTs/GC) electrodes, the HNCMS modified GC (HNCMS/GC) electrode has higher catalytic activities towards the oxidation of UA, AA and DA. Moreover, the peak separations between AA and DA, and DA and UA at the HNCMS/GC electrode are up to 212 and 136 mV, respectively, which are superior to those at the CNTs/GC electrode (168 and 114 mV). Thus the simultaneous determination of UA, AA and DA was carried out successfully. In the co-existence system of UA, AA and DA, the linear response range for UA, AA and DA are 5-30 μM, 100-1000 μM and 3-75 μM, respectively and the detection limits (S/N = 3) are 0.04 μM, 0.91 μM and 0.02 μM, respectively. Meanwhile, the HNCMS/GC electrode can be applied to measure uric acid in human urine, and may be useful for measuring abnormally high concentration of AA or DA. The attractive features of HNCMS provide potential applications in the simultaneous determination of UA, AA and DA.  相似文献   

3.
The evaluation of a novel modified glassy carbon electrode modified with iron ion-doped natrolite zeolite-multiwalled carbon nanotube for the simultaneous and sensitive determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp) has been described. The measurements were carried out using cyclic voltammetry in buffer solution with pH 1. This modified electrode exhibits potent and persistent electroxidation behavior followed by well-separated oxidation peaks towards AA, DA, UA and Trp with increasing of the oxidation current. For the quaternary mixture containing AA, DA, UA and Trp, the 4 compounds can well separate from each other at the scan rate of 100 mVs(-1) with a potential difference of 270 mV, 150 mV and 260 mV for the oxidation peak potentials of AA-DA, DA-UA and UA-Trp, respectively, which was large enough to simultaneous determine AA, DA, UA and Trp. The catalytic peak current obtained, was linearly dependent on the AA, DA, UA and Trp concentrations in the range of 7.77-833 μM, 7.35-833 μM, 0.23-83.3 μM and 0.074-34.5 μM and the detection limits for AA, DA, UA and Trp were 1.11, 1.05, 0.033 and 0.011 μM, respectively. The analytical performance of this sensor has been evaluated for simultaneous detection of AA, DA, UA and Trp in human serum and urine samples.  相似文献   

4.
A stable electroactive thin film of poly(caffeic acid) has been deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. Poly(caffeic acid) was used as a modified electrode for the detection of ascorbic acid (AA), epinephrine (EP), uric acid (UA) and their mixture by cyclic voltammetry. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards AA, EP and UA with activation overpotential. For the ternary mixture containing AA, EP and UA, the three compounds can well separate from each other at the scan rate of 20 mVs(-1) with a potential difference of 156, 132 and 288 mV between AA and EP, EP and UA and AA and UA, respectively, which was large enough to determine AA, EP and UA individually and simultaneously. The catalytic peak current obtained, was linearly dependent on the AA, EP and UA concentrations in the range of 2.0 x 10(-5) to 1.0 x 10(-3) mol l(-1), 2.0 x 10(-6) to 8.0 x 10(-5) mol l(-1) and 5.0 x 10(-6) to 3.0 x 10(-4) mol l(-1), and the detection limits for AA, EP and UA were 7.0 x 10(-6), 2.0 x 10(-7) and 6.0 x 10(-7) mol l(-1), respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of EP in practical injection samples and that of EP, UA and AA simultaneously with satisfactory results.  相似文献   

5.
Wu S  Wang T  Gao Z  Xu H  Zhou B  Wang C 《Biosensors & bioelectronics》2008,23(12):1776-1780
A beta-cyclodextrin (CD) modified copolymer membrane of sulfanilic acid (p-ASA) and N-acetylaniline (SPNAANI) on glassy carbon electrode (GCE) was prepared and used to determine uric acid (UA) in the presence of a large excess of ascorbic acid (AA) by differential pulse voltammetry (DPV). The properties of the copolymer were characterized by X-ray photoelectron spectra (XPS) and Raman spectroscopy. The oxidation peaks of AA and UA were well separated at the composite membrane modified electrode in phosphate buffer solution (PBS, pH 7.4). A linear relationship between the peak current and the concentration of UA was obtained in the range from 1.0 x 10(-5) to 3.5 x 10(-4)mol L(-1), and the detection limit was 2.7 x 10(-6)mol L(-1) at a signal-to-noise ratio of 3. Two hundred and fifty-fold excess of AA did not interfere with the determination of UA. The application of the prepared electrode was demonstrated by measuring UA in human serum samples without any pretreatment, and the results were comparatively in agreement with the spectrometric clinical assay method.  相似文献   

6.
An interesting electrochemical sensor has been constructed by the electrodeposition of palladium nanoclusters (Pdnano) on poly(N-methylpyrrole) (PMPy) film-coated platinum (Pt) electrode. Cyclic voltammetry, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy were used to characterize the properties of the modified electrode. It was demonstrated that the electroactivity of the modified electrode depends strongly on the electrosynthesis conditions of the PMPy film and Pdnano. Moreover, the modified electrode exhibits strong electrocatalytic activity toward the oxidation of a mixture of dopamine (DA), ascorbic acid (AA), and uric acid (UA) with obvious reduction of overpotentials. The simultaneous analysis of this mixture at conventional (Pt, gold [Au], and glassy carbon) electrodes usually struggles. However, three well-resolved oxidation peaks for AA, DA, and UA with large peak separations allow this modified electrode to individually or simultaneously analyze AA, DA, and UA by using differential pulse voltammetry (DPV) with good stability, sensitivity, and selectivity. This sensor is also ideal for the simultaneous analysis of AA, UA and either of epinephrine (E), norepinephrine (NE) or l-DOPA. Additionally, the sensor shows strong electrocatalytic activity towards acetaminophen (ACOP) and other organic compounds. The calibration curves for AA, DA, and UA were obtained in the ranges of 0.05 to 1 mM, 0.1 to 10 μM, and 0.5 to 20 μM, respectively. The detection limits (signal/noise [S/N] = 3) were 7 μM, 12 nM, and 27 nM for AA, DA, and UA, respectively. The practical application of the modified electrode was demonstrated by measuring the concentrations of AA, DA, and UA in injection sample, human serum, and human urine samples, respectively, with satisfactory results. The reliability and stability of the modified electrode gave a good possibility for applying the technique to routine analysis of AA, DA, and UA in clinical tests.  相似文献   

7.
A disposable and sensitive screen-printed electrode using an ink containing graphene was developed. This electrode combined the advantages of graphene and the disposable characteristic of electrode, which possessed wide potential window, low background current and fast electron transfer kinetics. Compared with the electrodes made from other inks, screen-printed graphene electrode (SPGNE) showed excellent electrocatalytic activity for the oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA). Three well-defined sharp and fully resolved anodic peaks were found at the developed electrode. Differential pulse voltammetry was used to simultaneous determination of AA, DA, and UA in their ternary mixture. In the co-existence system of these three species, the linear response ranges for the determination of AA, DA, and UA were 4.0-4500 μM, 0.5-2000 μM, and 0.8-2500 μM, respectively. The detection limits (S/N=3) were found to be 0.95 μM, 0.12 μM, and 0.20 μM for the determination of AA, DA, and UA, respectively. Furthermore, the SPGNE displayed high reproducibility and stability for these species determination. The feasibility of the developed electrode for real sample analysis was investigated. Results showed that the SPGNE could be used as a sensitive and selective sensor for simultaneous determination of AA, DA, and UA in biological samples, which may provide a promising alternative in routine sensing applications.  相似文献   

8.
A novel polycalconcarboxylic acid (CCA) modified glassy carbon electrode (GCE) was fabricated by electropolymerization and then successfully used to simultaneously determine ascorbic acid (AA), norepinephrine (NE) and uric acid (UA). The characterization of electrochemically synthesized Poly-CCA film was investigated by atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and voltammetric methods. It was found that the electrochemical behavior of the polymer-modified electrode depended on film thickness, i.e., the electropylmyerization time. Based on the electrochemical data, the charge transfer coefficient (alpha) and the surface coverage (Gamma) were calculated. This poly-CCA modified GCE could reduce the overpotential of ascorbic acid (AA), norepinephrine (NE) and uric acid (UA) oxidation in phosphate buffer solution (pH 6.0), while it increases the peak current significantly. The current peak separations of AA/NE, NE/UA and AA/UA on this modified electrode are 91mV, 256mV and 390mV in CV at 100mVs(-1), respectively. Therefore, the voltammetric responses of these three compounds can be well resolved on the polymer-modified electrode, and simultaneously determination of these three compounds can be achieved. In addition, this modified electrode can be successfully applied to determine AA and NE in injection and UA in urine samples without interferences.  相似文献   

9.
In this study, a graphene/Pt-modified glassy carbon (GC) electrode was created to simultaneously characterize ascorbic acid (AA), dopamine (DA), and uric acid (UA) levels via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). During the preparation of the nanocomposite, size-selected Pt nanoparticles with a mean diameter of 1.7 nm were self-assembled onto the graphene surface. In the simultaneous detection of the three aforementioned analytes using CV, the electrochemical potential differences among the three detected peaks were 185 mV (AA to DA), 144 mV (DA to UA), and 329 mV (AA and UA), respectively. In comparison to the CV results of bare GC and graphene-modified GC electrodes, the large electrochemical potential difference that is achieved via the use of the graphene/Pt nanocomposites is essential to the distinguishing of these three analytes. An optimized adsorption of size-selected Pt colloidal nanoparticles onto the graphene surface results in a graphene/Pt nanocomposite that can provide a good platform for the routine analysis of AA, DA, and UA.  相似文献   

10.
Novel zinc oxide (ZnO) nanosheets and copper oxide (CuxO, CuO, and Cu2O) decorated polypyrrole (PPy) nanofibers (ZnO–CuxO–PPy) have been successfully fabricated for the simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The morphology and structure of ZnO–CuxO–PPy nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Compared with the bare glassy carbon electrode (GCE), PPy/GCE, CuxO–PPy/GCE, and ZnO–PPy/GCE, ZnO–CuxO–PPy/GCE exhibits much higher electrocatalytic activities toward the oxidation of AA, DA, and UA with increasing peak currents and decreasing oxidation overpotentials. Cyclic voltammetry (CV) results show that AA, DA, and UA could be detected selectively and sensitively at ZnO–CuxO–PPy/GCE with peak-to-peak separation of 150 and 154 mV for AA–DA and DA–UA, respectively. The calibration curves for AA, DA, and UA were obtained in the ranges of 0.2 to 1.0 mM, 0.1 to 130.0 μM, and 0.5 to 70.0 μM, respectively. The lowest detection limits (signal/noise = 3) were 25.0, 0.04, and 0.2 μM for AA, DA, and UA, respectively. With good selectivity and sensitivity, the current method was applied to the determination of DA in injectable medicine and UA in urine samples.  相似文献   

11.
The use of poly(acrylic acid) (PAA)-multiwalled carbon-nanotubes (MWNTs) composite-coated glassy-carbon disk electrode (GCE) (PAA-MWNTs/GCE) for the simultaneous determination of physiological level dopamine (DA) and uric acid (UA) in the presence of an excess of ascorbic acid (AA) in a pH 7.4 phosphate-buffered solution was proposed. PAA-MWNTs composite was prepared by mixing of MWNTs powder into 1 mg/ml PAA aqueous solution under sonication. GCE surface was modified with PAA-MWNTs film by casting. AA demonstrates no voltammetric peak at PAA-MWNTs/GCE. The PAA-MWNTs composite is of a high surface area and of affinity for DA and UA adsorption. DA exhibits greatly improved electron-transfer rate and is electro-catalyzed at PAA-MWNTs/GCE. Moreover, the electro-catalytic oxidation of UA at PAA-MWNTs/GCE is observed, which makes it possible to detect lower level UA. Therefore, the enhanced electrocatalytic currents for DA and UA were observed. The anodic peak currents at approximately 0.18 V and 0.35 V increase with the increasing concentrations of DA and UA, respectively, which correspond to the voltammetric peaks of DA and UA, respectively. The linear ranges are 40 nM to 3 microM DA and 0.3 microM to 10 microM UA in the presence of 0.3 mM AA. The lowest detection limits (S/N=3) were 20 nM DA and 110 nM UA.  相似文献   

12.
Ordered mesoporous carbon (OMC) functionalized with ferrocenecarboxylic acid (Fc) was used to modify the glassy carbon (GC) electrode. The characterization of OMC–Fc shows that, after anchoring ferrocene on the mesoporous, ordered mesostructure of the material (OMC–Fc) remains intact and Fc is electrochemically accessible. The obtained OMC–Fc-modified electrode was used to investigate the electrochemical behavior of uric acid (UA). UA oxidation is catalyzed by this electrode in aqueous buffer solution (pH 7.3) with a decrease of 200 mV in overpotential compared to GC electrode. The detection and determination of UA in the presence of ascorbic acid (AA), the main interferent, were achieved. The voltammetric signals due to UA and AA were well separated with a potential difference of 308 mV, a separation that can allow the simultaneous determination of UA and AA. With amperometric method, at a constant potential of 375 mV, the catalytic current of UA versus its concentration shows a good linearity in the range 60–390 μM (R = 0.998) with a detection limit of 1.8 μM (S/N = 3). These results are not influenced by the presence of AA in the sample solution. With good stability and reproducibility, the present OMC–Fc-modified electrode was applied in the determination of UA content in urine sample and satisfactory results were obtained.  相似文献   

13.
A new type of porphyrin-functionalized graphene was synthesized and used for highly selective and sensitive detection of dopamine (DA). The aromatic π-π stacking and electrostatic attraction between positively-charged dopamine and negatively-charged porphyrin-modified graphene can accelerate the electron transfer whereas weakening ascorbic acid (AA) and uric acid (UA) oxidation on the porphyrin-functionalized graphene-modified electrode. Differential pulse voltammetry was used for electrochemical detection, the separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA is about 188 mV, 144 mV and 332 mV, which allows selectively determining DA. The detection limit of DA can be as low as 0.01 μM. More importantly, the sensor we presented can detect DA in the presence of large excess of ascorbic acid and uric acid. With good sensitivity and selectivity, the present method was applied to the determination of DA in real hydrochloride injection sample, human urine and serum samples, respectively, and the results was satisfactory.  相似文献   

14.
A poly(3-methylthiophene) modified glassy carbon electrode coated with Nafion/single-walled carbon nanotubes film was fabricated and used for highly selective and sensitive determination of dopamine. The hybrid film surface of the modified electrode was characterized by scanning electrochemical microscopy (SECM) and the results indicated that the carbon nanotubes were dispersed uniformly on the conductive polymer. The experimental results suggest that the hybrid film modified electrode combining the advantages of poly(3-methylthiophene), carbon nanotubes with Nafion exhibits dramatic electrocatalytic effect on the oxidation of dopamine (DA) and results in a marked enhancement of the current response. In 0.1M phosphate buffer solution (PBS) of pH 7.0, the differential pulse voltammetric (DPV) peak heights are linear with DA concentration in three intervals, viz. 0.020-0.10 microM, 0.10-1.0 microM and 1.0-6.0 microM, with correlation coefficients of 0.9993, 0.9996 and 0.9993, respectively. The detection limit of 5.0 nM DA could be estimated (S/N=3). Moreover, the interferences of ascorbic acid (AA) and uric acid (UC) are effectively diminished. This hybrid film modified electrode can be applied to the determination of DA contents in dopamine hydrochloride injection and human serum. These attractive features provide a potential application for either in vitro measurement of DA in the presence of excess AA and UA or as detectors in flow injection analysis (FIA) and high performance liquid chromatography (HPLC).  相似文献   

15.
RuOx x nH2O film was electrochemically synthesized conveniently using cyclic voltammetric technique. The film formation was ascertained by the Electrochemical quartz crystal microbalance (EQCM) method and 45 ng of deposit per cycle was obtained. Stoichiometric ratio of the ruthenium and ruthenium oxide have been studied with different pH of phosphate buffer. The stability of the modified electrode in the presence of different cations and anions with different concentrations and pH were examined. Electrochemical studies have shown that the ascorbic acid (AA) and dopamine (DA) catalytic oxidation on ruthenium oxide modified electrode (RME) with a span of 300 mV separation even in the presence of uric acid (UA) with a large decrease in their respective over potential compared with bare glassy carbon electrode (GC). Accidentally, the reversible redox properties of the AA have been expediently studied on the RME using cyclic voltammetry and this peculiarity was interrogated through rotating ring disc electrode (RRDE) experiments. RRDE experiment results are conformed to the CV studies result and thus reversible redox property of AA have been reiterated. Amperometric detection under stirred condition up to approximately 0.8mM of AA and DA was carried out at free of electrode fouling. Interestingly, the regeneration of used RME electrode even after many consequent analysis, 100% was obtained.  相似文献   

16.
Nitrogen doped graphene (NG) was prepared by thermally annealing graphite oxide and melamine mixture. After characterization by atomic force microscopy and X-ray photoelectron spectroscopy etc., the electrochemical sensor based on NG was constructed to simultaneously determine small biomolecules such as ascorbic acid (AA), dopamine (DA) and uric acid (UA). Due to its unique structure and properties originating from nitrogen doping, NG shows highly electrocatalytic activity towards the oxidation of AA, DA and UA. The electrochemical sensor shows a wide linear response for AA, DA and UA in the concentration range of 5.0×10(-6) to 1.3×10(-3)M, 5.0×10(-7) to 1.7×10(-4)M and 1.0×10(-7) to 2.0×10(-5)M with detection limit of 2.2×10(-6)M, 2.5×10(-7)M and 4.5×10(-8)M at S/N=3, respectively. These results demonstrate that NG is a promising candidate of advanced electrode material in electrochemical sensing and other electrocatalytic applications.  相似文献   

17.
Electrochemical oxidation of serotonin (SN) onto zinc oxide (ZnO)-coated glassy carbon electrode (GCE) results in the generation of redox mediators (RMs) that are strongly adsorbed on electrode surface. The electrochemical properties of zinc oxide-electrogenerated redox mediator (ZnO/RM) (inorganic/organic) hybrid film-coated electrode has been studied using cyclic voltammetry (CV). The scanning electron microscope (SEM), atomic force microscope (AFM), and electrochemical techniques proved the immobilization of ZnO/RM core/shell microparticles on the electrode surface. The GCE modified with ZnO/RM hybrid film showed two reversible redox peaks in acidic solution, and the redox peaks were found to be pH dependent with slopes of −62 and −60 mV/pH, which are very close to the Nernst behavior. The GCE/ZnO/RM-modified electrode exhibited excellent electrocatalytic activity toward the oxidations of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in 0.1 M phosphate buffer solution (PBS, pH 7.0). Indeed, ZnO/RM-coated GCE separated the anodic oxidation waves of DA, AA, and UA with well-defined peak separations in their mixture solution. Consequently, the GCE/ZnO/RMs were used for simultaneous detection of DA, AA, and UA in their mixture solution. Using CV, calibration curves for DA, AA, and UA were obtained over the range of 6.0 × 10−6 to 9.6 × 10−4 M, 1.5 × 10−5 to 2.4 × 10−4 M, and 5.0 × 10−5 to 8 × 10−4 M with correlation coefficients of 0.992, 0.991, and 0.989, respectively. Moreover, ZnO/RM-modified GCE had good stability and antifouling properties.  相似文献   

18.
The electrochemistry of L-cysteine (CySH) in neutral aqueous media was investigated using carbon ionic liquid electrode (CILE). Comparative experiments were carried out using glassy carbon electrodes. At CILE, highly reproducible and well-defined cyclic voltammograms were obtained for l-cysteine with a peak potential of 0.49V vs Ag/AgCl, showing that CILE manifests a good electrocatalytic activity toward oxidation of l-cysteine. A linear dynamic range of 2-210microM with an experimental detection limit of 2microM was obtained. The method was successfully applied to the determination of l-cysteine in a sample of soya milk. Cysteine oxidation at CILE does not result in deactivation of the electrode surface. Mechanistic studies showed that, at CILE, the overall CySH oxidation is controlled by the oxidation of the CyS(-) electroactive species.  相似文献   

19.
This paper demonstrated the selective determination of folic acid (FA) in the presence of important physiological interferents, ascorbic acid (AA) and uric acid (UA) at physiological pH using electropolymerized film of 5-amino-2-mercapto-1,3,4-thiadiazole (p-AMT) modified glassy carbon (GC) electrode. Bare GC electrode fails to determine the concentration of FA in the presence of AA and UA due to the surface fouling caused by the oxidized products of AA and FA. However, the p-AMT film modified electrode not only separates the voltammetric signals of AA, UA and FA with potential differences of 170 and 410 mV between AA–UA and UA–FA, respectively but also shows higher oxidation current for these analytes. The p-AMT film modified electrode displays an excellent selectivity towards the determination of FA even in the presence of 200-fold AA and 100-fold UA. Using amperometric method, we achieved the lowest detection of 75 nM UA and 100 nM each AA and FA. The amperometric current response was increased linearly with increasing FA concentration in the range of 1.0 × 10−7–8.0 × 10−4 M and the detection limit was found to be 2.3 × 10−10 M (S/N = 3). The practical application of the present modified electrode was successfully demonstrated by determining the concentration of FA in human blood serum samples.  相似文献   

20.
Wu K  Fei J  Hu S 《Analytical biochemistry》2003,318(1):100-106
A chemically modified electrode based on the carbon nanotube film-coated glassy carbon electrode (GCE) is described for the simultaneous determination of dopamine (DA) and serotonin (5-HT). The multiwall carbon nanotube (MWNT) film-coated GCE exhibits a marked enhancement effect on the current response of DA and 5-HT and lowers oxidation overpotentials. The responses of DA and 5-HT merge into a large peak at a bare GCE, but they yield two well-defined oxidation peaks at the MWNT film-coated GCE. The experimental parameters were optimized, and a direct electrochemical method for the simultaneous determination of DA and 5-HT was proposed. The interference of ascorbic acid (AA) was investigated, and the results showed that a large excess of AA did not interfere with the voltammetric responses of DA and 5-HT. The modified electrode has been successfully applied for the assay of 5-HT and DA in human blood serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号