首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Pelkonen  J Aalto    J Finne 《Journal of bacteriology》1992,174(23):7757-7761
Host range mutants were derived from bacteriophages PK1A and PK1E specific for the K1 polysialic acid capsule of Escherichia coli. The mutants were selected for their ability to infect E. coli bacteria with a low level of the K1 capsule. A specific loss of the cleaving activity of the phage endosialidase was observed in all the mutants, while the ability to bind specifically to the polysialic acid capsule was retained. The results indicate that the polysaccharide-binding activity of the bacteriophage enzyme is essential for the infection process. The cleaving activity, in contrast, is required for the penetration of the dense polysaccharide of wild-type bacteria but is inhibitory in the infection of bacteria with a sparse capsular polysaccharide.  相似文献   

2.
Phages infecting the polysialic acid (polySia)-encapsulated human pathogen Escherichia coli K1 are equipped with capsule-degrading tailspikes known as endosialidases, which are the only identified enzymes that specifically degrade polySia. As polySia also promotes cellular plasticity and tumor metastasis in vertebrates, endosialidases are widely applied in polySia-related neurosciences and cancer research. Here we report the crystal structures of endosialidase NF and its complex with oligomeric sialic acid. The structure NF, which reveals three distinct domains, indicates that the unique polySia specificity evolved from a combination of structural elements characteristic of exosialidases and bacteriophage tailspike proteins. The endosialidase assembles into a catalytic trimer stabilized by a triple beta-helix. Its active site differs markedly from that of exosialidases, indicating an endosialidase-specific substrate-binding mode and catalytic mechanism. Residues essential for endosialidase activity were identified by structure-based mutational analysis.  相似文献   

3.
Polysialic acid (polySia), a unique acidic glycan modifying neural cell adhesion molecule (NCAM), is known to regulate embryonic neural development and adult brain functions. Polysialyltransferase STX is responsible for the synthesis of polySia, and two single nucleotide polymorphisms (SNPs) of the coding region of STX are reported from schizophrenic patients: SNP7 and SNP9, respectively, giving STX(G421A) with E141K and STX(C621G) with silent mutations. In this study, we focused on these mutations and a binding activity of polySia to neural materials, such as brain-derived neurotrophic factor (BDNF). Here we describe three new findings. First, STX(G421A) shows a dramatic decrease in polySia synthetic activity on NCAM, whereas STX(C621G) does not. The STX(G421A)-derived polySia-NCAM contains a lower amount of polySia with a shorter chain length. Second, polySia shows a dopamine (DA) binding activity, which is a new function of polySia as revealed by frontal affinity chromatography for measuring the polySia-neurotransmitter interactions. Interestingly, the STX(G421A)-derived polySia-NCAM completely loses the DA binding activity, whereas it greatly diminishes but does not lose the BDNF binding activity. Third, an impairment of the polySia structure with an endosialidase modulates the DA-mediated Akt signaling. Taken together, impairment of the amount and quality of polySia may be involved in psychiatric disorders through impaired binding to BDNF and DA, which are deeply involved in schizophrenia and other psychiatric disorders, such as depression and bipolar disorder.  相似文献   

4.
An α-2,8-linked polysialic acid (polySia) capsule confers immune tolerance to neuroinvasive, pathogenic prokaryotes such as Escherichia coli K1 and Neisseria meningitidis and supports host infection by means of molecular mimicry. Bacteriophages of the K1 family, infecting E. coli K1, specifically recognize and degrade this polySia capsule utilizing tailspike endosialidases. While the crystal structure for the catalytic domain of the endosialidase of bacteriophage K1F (endoNF) has been solved, there is yet no structural information on the mode of polySia binding and cleavage available. The crystal structure of activity deficient active-site mutants of the homotrimeric endoNF cocrystallized with oligomeric sialic acid identified three independent polySia binding sites in each endoNF monomer. The bound oligomeric sialic acid displays distinct conformations at each site. In the active site, a Sia3 molecule is bound in an extended conformation representing the enzyme-product complex. Structural and biochemical data supported by molecular modeling enable to propose a reaction mechanism for polySia cleavage by endoNF.  相似文献   

5.
The Escherichia coli K5 capsular polysaccharide [-4)-betaGlcA-(1, 4)-alphaGlcNAc-(1-] is a receptor for the capsule-specific bacteriophage K5A. Associated with the structure of bacteriophage K5A is a polysaccharide lyase which degrades the K5 capsule to expose the underlying bacterial cell surface. The bacteriophage K5A lyase gene (kflA) was cloned and sequenced. The kflA gene encodes a polypeptide with a predicted molecular mass of 66.9 kDa and which exhibits amino acid homology with ElmA, a K5 polysaccharide lyase encoded on the chromosome of E. coli SEBR 3282. There was only limited nucleotide homology between the kflA and elmA genes, suggesting that these two genes are distinct and either have been derived from separate progenitors or have diverged from a common progenitor for a considerable length of time. Southern blot analysis revealed that kflA was not present on the chromosome of the E. coli strains examined. In contrast, elmA was present in a subset of E. coli strains. Homology was observed between DNA flanking the kflA gene of bacteriophage K5A and DNA flanking a small open reading frame (ORF(L)) located 5' of the endosialidase gene of the E. coli K1 capsule-specific bacteriophage K1E. The DNA homology between these noncoding sequences indicated that bacteriophages K5A and K1E were related. The deduced polypeptide sequence of ORF(L) in bacteriophage K1E exhibited homology to the N terminus of KflA from bacteriophage K5A, suggesting that ORF(L) is a truncated remnant of KflA. The presence of this truncated kflA gene implies that bacteriophage K1E has evolved from bacteriophage K5A by acquisition of the endosialidase gene and subsequent loss of functional kflA. A (His)(6)-KflA fusion protein was overexpressed in E. coli and purified to homogeneity with a yield of 4.8 mg per liter of bacterial culture. The recombinant enzyme was active over a broad pH range and NaCl concentration and was capable of degrading K5 polysaccharide into a low-molecular-weight product.  相似文献   

6.
Inorganic pyrophosphatase of E. coli is rapidly and irreversibly inactivated by 5-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward's reagent K). The appearance in the absorption spectrum of a maximum at 340 nm testifies to the formation of an enzyme enol ester with the inhibitor. The non-hydrolyzable substrate analog CaPP1 partly protects the enzyme from inactivation. A peptide has been isolated from a tryptic hydrolysate of inactivated enzyme which contains an amino acid residue whose modification is critical for the enzyme activity. This peptide corresponds to residues 95-104 of pyrophosphatase and contains four dicarboxylic acid residues. A peptide containing a modified glutamic acid residue was isolated from modified pyrophosphatase hydrolyzed by protease v8. This peptide represents a fragment of a tryptic modified peptide and has a Glu-Ala-Gly-Glu (residues 98-1C1) structure. It is concluded that inactivation of E. coli pyrophosphatase by Woodward's reagent K is a result of selective modification of Glu98, apparently by the most reactive dicarboxylic amino acid within the enzyme active center.  相似文献   

7.
Klein G  Georgopoulos C 《Genetics》2001,158(2):507-517
Genetic experiments have shown that the GroEL/GroES chaperone machine of Escherichia coli is absolutely essential, not only for bacterial growth but also for the propagation of many bacteriophages including lambda. The virulent bacteriophages T4 and RB49 are independent of the host GroES function, because they encode their own cochaperone proteins, Gp31 and CocO, respectively. E. coli groEL44 mutant bacteria do not form colonies above 42 degrees nor do they propagate bacteriophages lambda, T4, or RB49. We found that the vast majority (40/46) of spontaneous groEL44 temperature-resistant colonies at 43 degrees were due to the presence of an intragenic suppressor mutation. These suppressors define 21 different amino acid substitutions in GroEL, each affecting one of 13 different amino acid residues. All of these amino acid residues are located at or near the hinge, which regulates the large en bloc movements of the GroEL apical domain. All of these intragenic suppressors support bacteriophages lambda, T4, and RB49 growth to various extents in the presence of the groEL44 allele. Since it is known that the GroEL44 mutant protein does not interact effectively with Gp31, the suppressor mutations should enhance cochaperone binding. Analogous intragenic suppressor studies were conducted with the groEL673 temperature-sensitive allele.  相似文献   

8.
The major virulence factor of the neuroinvasive pathogen Escherichia coli K1 is the K1 capsule composed of α2,8-linked polysialic acid (polySia). K1 strains harboring the CUS-3 prophage modify their capsular polysaccharide by phase-variable O-acetylation, a step that is associated with increased virulence. Here we present the crystal structure of the prophage-encoded polysialate O-acetyltransferase NeuO. The homotrimeric enzyme belongs to the left-handed β-helix (LβH) family of acyltransferases and is characterized by an unusual funnel-shaped outline. Comparison with other members of the LβH family allowed the identification of active site residues and proposal of a catalytic mechanism and highlighted structural characteristics of polySia specific O-acetyltransferases. As a unique feature of NeuO, the enzymatic activity linearly increases with the length of the N-terminal poly-ψ-domain which is composed of a variable number of tandem copies of an RLKTQDS heptad. Since the poly-ψ-domain was not resolved in the crystal structure it is assumed to be unfolded in the apo-enzyme.  相似文献   

9.
7-Aminocephalosporanic acid (7-ACA) is an important material in the production of semisynthetic cephalosporins, which are the best-selling antibiotics worldwide. 7-ACA is produced from cephalosporin C via glutaryl-7-ACA (GL-7-ACA) by a bioconversion process using d-amino acid oxidase and cephalosporin acylase (or GL-7-ACA acylase). Previous studies demonstrated that a single amino acid substitution, D433N, provided GL-7-ACA acylase activity for gamma-glutamyltranspeptidase (GGT) of Escherichia coli K-12. In this study, based on its three-dimensional structure, residues involved in substrate recognition of E. coli GGT were rationally mutagenized, and effective mutations were then combined. A novel screening method, activity staining followed by a GL-7-ACA acylase assay with whole cells, was developed, and it enabled us to obtain mutant enzymes with enhanced GL-7-ACA acylase activity. The best mutant enzyme for catalytic efficiency, with a k(cat)/K(m) value for GL-7-ACA almost 50-fold higher than that of the D433N enzyme, has three amino acid substitutions: D433N, Y444A, and G484A. We also suggest that GGT from Bacillus subtilis 168 can be another source of GL-7-ACA acylase for industrial applications.  相似文献   

10.
The amino acid residues essential for the enzymatic activity of bacteriophage T5 deoxyribonucleoside monophosphate kinase were determined using a computer model of the enzyme active site. By site-directed mutagenesis, cloning, and gene expression in E. coli, a series of proteins were obtained with single substitutions of the conserved active site amino acid residues—S13A, D16N, T17N, T17S, R130K, K131E, Q134A, G137A, T138A, W150F, W150A, D170N, R172I, and E176Q. After purification by ion exchange and affine chromatography electrophoretically homogeneous preparations were obtained. The study of the enzymatic activity with natural acceptors of the phosphoryl group (dAMP, dCMP, dGMP, and dTMP) demonstrated that the substitutions of charged amino acid residues of the NMP binding domain (R130, R172, D170, and E176) caused nearly complete loss of enzymatic properties. It was found that the presence of the OH-group at position 17 was also important for the catalytic activity. On the basis of the analysis of specific activity variations we assumed that arginine residues at positions 130 and 172 were involved in the binding to the donor γ-phosphoryl and acceptor α-phosphoryl groups, as well as the aspartic acid residue at position 16 of the ATP-binding site (P-loop), in the binding to some acceptors, first of all dTMP. Disproportional changes in enzymatic activities of partially active mutants, G137A, T138A, T17N, Q134A, S13A, and D16N, toward different substrates may indicate that different amino acid residues participate in the binding to various substrates.  相似文献   

11.
Berg L  Lopper ME 《PloS one》2011,6(9):e24494
Primosome protein PriB is a single-stranded DNA-binding protein that serves as an accessory factor for PriA helicase-catalyzed origin-independent reinitiation of DNA replication in bacteria. A recent report describes the identification of a novel PriB protein in Klebsiella pneumoniae that is significantly shorter than most sequenced PriB homologs. The K. pneumoniae PriB protein is proposed to comprise 55 amino acid residues, in contrast to E. coli PriB which comprises 104 amino acid residues and has a length that is typical of most sequenced PriB homologs. Here, we report results of a sequence analysis that suggests that the priB gene of K. pneumoniae encodes a 104-amino acid PriB protein, akin to its E. coli counterpart. Furthermore, we have cloned the K. pneumoniae priB gene and purified the 104-amino acid K. pneumoniae PriB protein. Gel filtration experiments reveal that the K. pneumoniae PriB protein is a dimer, and equilibrium DNA binding experiments demonstrate that K. pneumoniae PriB's single-stranded DNA-binding activity is similar to that of E. coli PriB. These results indicate that the PriB homolog of K. pneumoniae is similar in structure and in function to that of E. coli.  相似文献   

12.
The members of the Endo IV family of DNA repair enzymes, including Saccharomyces cerevisiae Apn1 and Escherichia coli endonuclease IV, possess the capacity to cleave abasic sites and to remove 3'-blocking groups at single-strand breaks via apurinic/apyrimidinic (AP) endonuclease and 3'-diesterase activities, respectively. In addition, Endo IV family members are able to recognize and incise oxidative base damages on the 5'-side of such lesions. We previously identified eight amino acid substitutions that prevent E. coli endonuclease IV from repairing damaged DNA in vivo. Two of these substitutions were glycine replacements of Glu145 and Asp179. Both Glu145 and Asp179 are among nine amino acid residues within the active site pocket of endonuclease IV that coordinate the position of a trinuclear Zn cluster required for efficient phosphodiester bond cleavage. We now report the first structure-function analysis of the eukaryotic counterpart of endonuclease IV, yeast Apn1. We show that glycine substitutions at the corresponding conserved amino acid residues of yeast Apn1, i.e., Glu158 and Asp192, abolish the biological function of this enzyme. However, these Apn1 variants do not exhibit the same characteristics as the corresponding E. coli mutants. Indeed, the Apn1 Glu158Gly mutant, but not the E. coli endonuclease IV Glu145Gly mutant, is able to bind DNA. Moreover, Apn1 Asp192Gly completely lacks enzymatic activity, while the activity of the E. coli counterpart Asp179Gly is reduced by approximately 40-fold. The data suggest that although yeast Apn1 and E. coli endonuclease IV exhibit a high degree of structural and functional similarity, differences exist within the active site pockets of these two enzymes.  相似文献   

13.
14.
The study of new biomaterials is the objective of many current research projects in biotechnological medicine. A promising scaffold material for the application in tissue engineering or other biomedical applications is polysialic acid (polySia), a homopolymer of alpha2,8-linked sialic acid residues, which represents a posttranslational modification of the neural cell adhesion molecule and occurs in all vertebrate species. Some neuroinvasive bacteria like, e.g. Escherichia coli K1 (E. coli K1) use polySia as capsular polysaccharide. In this latter case long polySia chains with a degree of polymerization of >200 are linked to lipid anchors. Since in vertebrates no polySia degrading enzymes exist, the molecule has a long half-life in the organism, but degradation can be induced by the use of endosialidases, bacteriophage-derived enzymes with pronounced specificity for polySia. In this work a biotechnological process for the production of bacterial polysialic acid is presented. The process includes the development of a multiple fed-batch cultivation of the E. coli K1 strain and a complete downstream strategy of polySia. A controlled feed of substrate at low concentrations resulted in an increase of the carbon yield (C(product)/C(substrate)) from 2.2 to 6.6%. The downstream process was optimized towards purification of long polySia chains. Using a series of adjusted precipitation steps an almost complete depletion of contaminating proteins was achieved. The whole process yielded 1-2g polySia from a 10-l bacterial culture with a purity of 95-99%. Further product analysis demonstrated maximum chain length of >130 for the final product.  相似文献   

15.
Catalytically active, recombinant fusion proteins of bacteriophage E endosialidase were expressed and purified from Escherichia coli. Constructs with different fusion partners added to the amino terminus of the endosialidase were enzymatically active. A post-translational proteolytic cleavage was shown to occur between serine 706 and aspartate 707 to generate the 76 kDa mature enzyme from the 90 kDa translation product. Endosialidase truncated at the C-terminus from aspartate 707 was observed to have the same 76 kDa molecular weight as wild-type enzyme using denaturing SDS-PAGE but, under native PAGE conditions, was not observed to form the approximately 250 kDa trimeric wild-type enzyme, implying that the C-terminus of the enzyme may be required for correct assembly of active trimer, rather than as part of the active site as has been previously suggested. Mutagenesis of aspartate 138 to alanine greatly reduced enzyme activity whereas conversion of other selected aspartate residues to alanine had less effect, consistent with similarities between the structure and cata-lytic mechanism of bacteriophage E endosialidase and those of exosialidases.  相似文献   

16.
Glutathione synthetase from Escherichia coli B showed amino acid sequence homology with mammalian and bacterial dihydrofolate reductases over 40 residues, although these two enzymes are different in their reaction mechanisms and ligand requirements. The effects of ligands of dihydrofolate reductase on the reaction of E. coli B glutathione synthetase were examined to find resemblances in catalytic function to dihydrofolate reductase. The E. coli B enzyme was potently inhibited by 7,8-dihydrofolate, methotrexate, and trimethoprim. Methotrexate was studied in detail and proved to bind to an ATP binding site of the E. coli B enzyme with K1 value of 0.1 mM. The homologous portion of the amino acid sequence in dihydrofolate reductases, which corresponds to the portion coded by exon 3 of mammalian dihydrofolate reductase genes, provided a binding site of the adenosine diphosphate moiety of NADPH in the crystal structure of dihydrofolate reductase. These analyses would indicate that the homologous portion of the amino acid sequence of the E. coli B enzyme provides the ATP binding site. This report gives experimental evidence that amino acid sequences related by sequence homology conserve functional similarity even in enzymes which differ in their catalytic mechanisms.  相似文献   

17.
The Escherichia coli Orf135 protein, a MutT-type enzyme, hydrolyzes mutagenic 2-hydroxy-dATP (2-OH-dATP) and 8-hydroxy-dGTP, in addition to dCTP and 5-methyl-dCTP, and its deficiency causes increases in both the spontaneous and H(2)O(2)-induced mutation frequencies. To identify the amino acid residues that interact with these nucleotides, the Glu-33, Arg-72, Arg-77, and Asp-118 residues of Orf135, which are candidates for residues interacting with the base, were substituted, and the enzymatic activities of these mutant proteins were examined. The mutant proteins with a substitution at the 33rd, 72nd, and 118th amino acid residues displayed activities affected to various degrees for each substrate, suggesting the involvement of these residues in substrate binding. On the other hand, the mutant protein with a substitution at the 77th Arg residue had activitiy similar to that of the wild-type protein, excluding the possibility that this Arg side chain is involved in base recognition. In addition, the expression of some Orf135 mutants in orf135(-) E. coli reduced the level of formation of rpoB mutants elicited by H(2)O(2). These results reveal the residues involved in the substrate binding of the E. coli Orf135 protein.  相似文献   

18.
The creatine transporter (CRT) is a member of a large family of sodium-dependent neurotransmitter and amino acid transporters. The CRT is closely related to the gamma-aminobutyric acid (GABA) transporter, GAT-1, yet GABA is not an effective substrate for the CRT. The high resolution structure of a prokaryotic homologue, LeuT has revealed precise details of the substrate binding site for leucine (Yamashita, A., Singh, S. K., Kawate, T., Jin, Y., and Gouaux, E. (2005) Nature 437, 215-223). We have now designed mutations based on sequence comparisons of the CRT with GABA transporters and the LeuT structural template in an attempt to alter the substrate specificity of the CRT. Combinations of two or three amino acid substitutions at four selected positions resulted in the loss of creatine transport activity and gain of a specific GABA transport function. GABA transport by the "gain of function" mutants was sensitive to nipecotic acid, a competitive inhibitor of GABA transporters. Our results show LeuT to be a good structural model to identify amino acid residues involved in the substrate and inhibitor selectivity of eukaryotic sodium-dependent neurotransmitter and amino acid transporters. However, modification of the binding site alone appears to be insufficient for efficient substrate translocation. Additional residues must mediate the conformational changes required for the diffusion of substrate from the binding site to the cytoplasm.  相似文献   

19.
Incubation of purified Escherichia coli biodegradative threonine dehydratase with glyoxylate resulted in covalent binding of 1 mol of glyoxylate per mol of protein with concomitant loss of enzyme activity. The glyoxylate-binding site was identified as a heptapeptide representing amino acid residues Ser-33-Asn-Tyr-Phe-Ser-Glu-Arg-39 in the protein primary structure. Addition of glyoxylate to a culture of E. coli cells led to time-dependent enzyme inactivation. Immunoprecipitation with anti-dehydratase antibody of extract from [14C]glyoxylate-treated cells revealed labeled dehydratase polypeptide. These results are interpreted to mean that enzyme inactivation by glyoxylate in E. coli cells is associated with covalent protein modification.  相似文献   

20.
The E and S isoenzymes of horse liver alcohol dehydrogenase differ by 10 amino acid residues, but only the S isoenzyme is active on 3 beta-hydroxysteroids. This functional difference was correlated to the differences in structures of the isoenzymes by characterizing a series of chimeric enzymes, which could represent intermediates in the evolution of catalytic activity. Deletion of Asp-115 from the E isoenzyme created the E/D115 delta enzyme that is active on steroids. The deletion alters the substrate binding pocket by moving Leu-116, which sterically hinders binding of steroids in the E isoenzyme. A chimeric enzyme (ESE) that has four changes in or near the substrate binding pocket (T94I/R101S/F110L/D115 delta) was 15-30-fold more catalytically efficient (V/Km) on uncharged steroids than was the E/D115 delta enzyme. Molecular modeling suggests that the substitutions at residues 94 and 110 indirectly affect the activity on steroids. ESE enzyme was 6-fold more active than the S isoenzyme on neutral steroids, due to substitutions not in the substrate binding pocket. The K366E and the Q17E/A43T/A59T substitutions in the S isoenzyme gave 2-fold increases in V/Km on steroids, which together can account for the changes observed with the ESE enzyme. The enzymes that are active on steroids did not bind 2,2,2-trifluoroethanol as tightly and were catalytically less efficient than the E isoenzyme with small alcohols. However, these enzymes were two to three and four to five orders of magnitude more efficient with 1-hexanol and 5 beta-androstane-3 beta,17 beta-diol, respectively, than with ethanol. These results demonstrate that several residues not directly participating in substrate binding or chemical catalysis contribute to catalytic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号