首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre‐eminent system for the study of selective pressures that arise from host–pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population‐genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.  相似文献   

2.
The fragmentation of populations typically enhances depletion of genetic variation, but highly polymorphic major histocompatibility complex (MHC) genes are thought to be under balancing selection and therefore retain polymorphism despite population bottlenecks. In this study, we investigate MHC DRB (class II) exon 2 variation in 14 spotted suslik populations from two regions differing in their degree of habitat fragmentation and gene flow. We found 16 alleles that segregated in a sample of 248 individuals. The alleles were highly divergent and revealed the hallmark signs of positive selection acting on them in the past, showing a significant excess of nonsynonymous substitutions. This excess was concentrated in putative antigen‐binding sites, which suggests that past selection was driven by pathogens. MHC diversity was significantly lower in fragmented western populations than in the eastern populations, characterized by significant gene flow. In contrast to neutral variation, amova did not reveal genetic differentiation between the two regions. This may indicate similar selective pressures shaping MHC variation in both regions until the recent past. However, MHC allelic richness within a population was correlated with that for microsatellites. FST outlier analyses have shown that population differentiation at DRB was neither higher nor lower than expected under neutrality. The results suggest that selection on MHC is not strong enough to counteract drift that results from recent fragmentation of spotted suslik populations.  相似文献   

3.
Huang SW  Yu HT 《Genetica》2003,119(2):201-218
Major histocompatibility complex (MHC) genes are the most polymorphic loci known for vertebrates. Here we employed five microsatellite loci closely linked to the MHC region in an attempt to study the amount of genetic variation in 19 populations of the southeast Asian house mouse (Mus musculus castaneus) in Taiwan. The overall polymorphism at the five loci was high (He = 0.713), and the level of polymorphism varied from locus to locus. Furthermore, in order to investigate if selection is operating on MHC genes in natural mouse populations, we compared the extent and pattern of genetic variation for the MHC-linked microsatellite loci (the MHC loci) with those for the microsatellite loci located outside the MHC region (the non-MHC loci). The number of alleles and the logarithm of variance in repeat number were significantly higher for the MHC loci than for the non-MHC loci, presumably reflecting linkage to a locus under balancing selection. Although three statistical tests used do not provide support for selection, their lack of support may be due to low statistical power of the tests, to weakness of selection, or to a profound effect of genetic drift reducing the signature of balancing selection. Our results also suggested that the populations in the central and the southwestern regions of Taiwan might be one part of a metapopulation structure.  相似文献   

4.
Miller HC  Lambert DM 《Molecular ecology》2004,13(12):3709-3721
The Chatham Island black robin, Petroica traversi, is a highly inbred, endangered passerine with extremely low levels of variation at hypervariable neutral DNA markers. In this study we investigated variation in major histocompatibility complex (MHC) class II genes in both the black robin and its nonendangered relative, the South Island robin Petroica australis australis. Previous studies have shown that Petroica have at least four expressed class II B MHC genes. In this study, the sequences of introns flanking exon 2 of these loci were characterized to design primers for peptide-binding region (PBR) sequence analysis. Intron sequences were comprised of varying numbers of repeated units, with highly conserved regions immediately flanking exon 2. Polymerase chain reaction primers designed to this region amplified three or four sequences per black robin individual, and eight to 14 sequences per South Island robin individual. MHC genes are fitness-related genes thought to be under balancing selection, so they may be more likely to retain variation in bottlenecked populations. To test this, we compared MHC variation in the black robin with artificially bottlenecked populations of South Island robin, and with their respective source populations, using restriction fragment length polymorphism analyses and DNA sequencing of the PBR. Our results indicate that the black robin is monomorphic at class II B MHC loci, while both source and bottlenecked populations of South Island robin have retained moderate levels of variation. Comparison of MHC variation with minisatellite DNA variation indicates that genetic drift outweighs balancing selection in determining MHC diversity in the bottlenecked populations. However, balancing selection appears to influence MHC diversity over evolutionary timescales, and the effects of gene conversion are evident.  相似文献   

5.
Neutral genetic markers are commonly used to understand the effects of fragmentation and population bottlenecks on genetic variation in threatened species. Although neutral markers are useful for inferring population history, the analysis of functional genes is required to determine the significance of any observed geographical differences in variation. The genes of the major histocompatibility complex (MHC) are well‐known examples of genes of adaptive significance and are particularly relevant to conservation because of their role in pathogen resistance. In this study, we survey diversity at MHC class I loci across a range of tuatara populations. We compare the levels of MHC variation with that observed at neutral microsatellite markers to determine the relative roles of balancing selection, diversifying selection and genetic drift in shaping patterns of MHC variation in isolated populations. In general, levels of MHC variation within tuatara populations are concordant with microsatellite variation. Tuatara populations are highly differentiated at MHC genes, particularly between the northern and Cook Strait regions, and a trend towards diversifying selection across populations was observed. However, overall our results indicate that population bottlenecks and isolation have a larger influence on patterns of MHC variation in tuatara populations than selection.  相似文献   

6.
The confounding effects of population structure complicate efforts to identify regions of the genome under the influence of selection in natural populations. Here we test for evidence of selection in three genes involved in vertebrate immune function - the major histocompatibility complex (MHC), interferon gamma (IFNG) and natural resistance associated macrophage polymorphism (NRAMP) - in highly structured populations of wild thinhorn sheep (Ovis dalli). We examined patterns of variation at microsatellite loci linked to these gene regions and at the DNA sequence level. Simple Watterson's tests indicated balancing selection at all three gene regions. However, evidence for selection was confounded by population structure, as the Watterson's test statistics from linked markers were not outside of the range of values from unlinked and presumably neutral microsatellites. The translated coding sequences of thinhorn IFNG and NRAMP are fixed and identical to those of domestic sheep (Ovis aries). In contrast, the thinhorn MHC DRB locus shows significant evidence of overdominance through both an excess of nonsynonymous substitution and trans-species polymorphism. The failure to detect balancing selection at microsatellite loci linked to the MHC is likely the result of recombination between the markers and expressed gene regions.  相似文献   

7.
Understanding the selective forces that shape genetic variation in natural populations remains a high priority in evolutionary biology. Genes at the major histocompatibility complex (MHC) have become excellent models for the investigation of adaptive variation and natural selection because of their crucial role in fighting off pathogens. Here we present one of the first data sets examining patterns of MHC variation in wild populations of a bird of prey, the lesser kestrel, Falco naumanni . We report extensive polymorphism at the second exon of a putatively functional MHC class II gene, Fana- DAB*1. Overall, 103 alleles were isolated from 121 individuals sampled from Spain to Kazakhstan. Bayesian inference of diversifying selection suggests that several amino acid sites may have experienced strong positive selection (ω = 4.02 per codon). The analysis also suggests a prominent role of recombination in generating and maintaining MHC diversity (ρ = 4 Nc  = 0.389 per codon, θ = 0.017 per codon). Both the Fana -DAB*1 locus and a set of eight polymorphic microsatellite markers revealed an isolation-by-distance pattern across the Western Palaearctic ( r  = 0.67; P  = 0.01 and r  = 0.50; P  = 0.04, respectively). Nonetheless, geographical variation at the MHC contrasts with relatively uniform distributions in the frequencies of microsatellite alleles. In addition, we found lower fixation rates in the MHC than those predicted by genetic drift after controlling for neutral mitochondrial sequences. Our results therefore underscore the role of balancing selection as well as spatial variations in parasite-mediated selection regimes in shaping MHC diversity when gene flow is limited.  相似文献   

8.
Miller KM  Kaukinen KH  Beacham TD  Withler RE 《Genetica》2001,111(1-3):237-257
Balancing selection maintains high levels of polymorphism and heterozygosity in genes of the MHC (major histocompatibility complex) of vertebrate organisms, and promotes long evolutionary persistence of individual alleles and strongly differentiated allelic lineages. In this study, genetic variation at the MHC class II DAB-beta1 locus was examined in 31 populations of sockeye salmon (Oncorhynchus nerka) inhabiting the Fraser River drainage of British Columbia, Canada. Twenty-five percent of variation at the locus was partitioned among sockeye populations, as compared with 5% at neutral genetic markers. Geographic heterogeneity of balancing selection was detected among four regions in the Fraser River drainage and among lake systems within regions. High levels of beta1 allelic diversity and heterozygosity, as well as distributions of alleles and allelic lineages that were more even than expected for a neutral locus, indicated the presence of balancing selection in populations throughout much of the interior Fraser drainage. However, proximate populations in the upper Fraser region, and four of six populations from the lower Fraser drainage, exhibited much lower levels of genetic diversity and had beta1 allele frequency distributions in conformance with those expected for a neutral locus, or a locus under directional selection. Pair-wise FST values for beta1 averaged 0.19 and tended to exceed the corresponding values estimated for neutral loci at all levels of population structure, although they were lower among populations experiencing balancing selection than among other populations. The apparent heterogeneity in selection resulted in strong genetic differentiation between geographically proximate populations with and without detectable levels of balancing selection, in stark contrast to observations at neutral loci. The strong partitioning and complex structure of beta1 diversity within and among sockeye populations on a small geographic scale illustrates the value of incorporating adaptive variation into conservation planning for the species.  相似文献   

9.
Understanding genetic diversity in natural populations is a fundamental objective of evolutionary biology. The immune genes of the major histocompatibility complex (MHC) are excellent candidates to study such diversity because they are highly polymorphic in populations. Although balancing selection may be responsible for maintaining diversity at these functionally important loci, temporal variation in selection pressure has rarely been examined. We examine temporal variation in MHC class IIB diversity in nine guppy (Poecilia reticulata) populations over two years. We found that five of the populations changed significantly more at the MHC than at neutral (microsatellite) loci as measured by FST, which suggests that the change at the MHC was due to selection and not neutral processes. Additionally, pairwise population differentiation measures at the MHC were higher in 2007 than in 2006, with the signature of selection changing from homogenizing to diversifying selection or neutral evolution. Interestingly, within the populations the magnitude of the change at the MHC between years was related to the change in the proportion of individuals infected by a common parasite, indicating a link between genetic structure and the parasite. Our data thereby implicate temporal variation in selective pressure as an important mechanism maintaining diversity at the MHC in wild populations.  相似文献   

10.
The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.  相似文献   

11.
The extraordinary polymorphism of major histocompatibility complex (MHC) genes is considered a paradigm of pathogen‐mediated balancing selection, although empirical evidence is still scarce. Furthermore, the relative contribution of balancing selection to shape MHC population structure and diversity, compared to that of neutral forces, as well as its interaction with other evolutionary processes such as hybridization, remains largely unclear. To investigate these issues, we analyzed adaptive (MHC‐DAB gene) and neutral (11 microsatellite loci) variation in 156 brown trout (Salmo trutta complex) from six wild populations in central Italy exposed to introgression from domestic hatchery lineages (assessed with the LDH gene). MHC diversity and structuring correlated with those at microsatellites, indicating the substantial role of neutral forces. However, individuals carrying locally rare MHC alleles/supertypes were in better body condition (a proxy of individual fitness/parasite load) regardless of the zygosity status and degree of sequence dissimilarity of MHC, hence supporting balancing selection under rare allele advantage, but not heterozygote advantage or divergent allele advantage. The association between specific MHC supertypes and body condition confirmed in part this finding. Across populations, MHC allelic richness increased with increasing admixture between native and domestic lineages, indicating introgression as a source of MHC variation. Furthermore, introgression across populations appeared more pronounced for MHC than microsatellites, possibly because initially rare MHC variants are expected to introgress more readily under rare allele advantage. Providing evidence for the complex interplay among neutral evolutionary forces, balancing selection, and human‐mediated introgression in shaping the pattern of MHC (functional) variation, our findings contribute to a deeper understanding of the evolution of MHC genes in wild populations exposed to anthropogenic disturbance.  相似文献   

12.
The major histocompatibility complex (MHC) plays a key role in pathogen recognition as a part of the vertebrate adaptive immune system. The great diversity of MHC genes in natural populations is maintained by different forms of balancing selection and its strength should correlate with the diversity of pathogens to which a population is exposed and the rate of exposure. Despite this prediction, little is known about how life‐history characteristics affect selection at the MHC. Here, we examined whether the strength of balancing selection on MHC class II genes in birds (as measured with nonsynonymous nucleotide substitutions, dN) was related to their social or migratory behavior, two life‐history characteristics correlated with pathogen exposure. Our comparative analysis indicated that the rate of nonsynonymous substitutions was higher in colonial and migratory species than solitary and resident species, suggesting that the strength of balancing selection increases with coloniality and migratory status. These patterns could be attributed to: (1) elevated transmission rates of pathogens in species that breed in dense aggregations, or (2) exposure to a more diverse fauna of pathogens and parasites in migratory species. Our study suggests that differences in social structure and basic ecological traits influence MHC diversity in natural vertebrate populations.  相似文献   

13.
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.  相似文献   

14.
The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans‐species evolution).  相似文献   

15.
The immune genes of the major histocompatibility complex (MHC) are characterized by extraordinarily high levels of nucleotide and haplotype diversity. This variation is maintained by pathogen-mediated balancing selection that is operating on the peptide-binding region (PBR). Several recent studies have found, however, that some populations possess large clusters of alleles that are translated into virtually identical proteins. Here, we address the question of how this nucleotide polymorphism is maintained with little or no functional variation for selection to operate on. We investigate circa 750-850 bp of MHC class II DAB genes in four wild populations of the guppy Poecilia reticulata. By sequencing an extended region, we uncovered 40.9% more sequences (alleles), which would have been missed if we had amplified the exon 2 alone. We found evidence of several gene conversion events that may have homogenized sequence variation. This reduces the visible copy number variation (CNV) and can result in a systematic underestimation of the CNV in studies of the MHC and perhaps other multigene families. We then focus on a single cluster, which comprises 27 (of a total of 66) sequences. These sequences are virtually identical and show no signal of selection. We use microsatellites to reconstruct the populations' demography and employ simulations to examine whether so many similar nucleotide sequences can be maintained in the populations. Simulations show that this variation does not behave neutrally. We propose that selection operates outside the PBR, for example, on linked immune genes or on the "sheltered load" that is thought to be associated to the MHC. Future studies on the MHC would benefit from extending the amplicon size to include polymorphisms outside the exon with the PBR. This may capture otherwise cryptic haplotype variation and CNV, and it may help detect other regions in the MHC that are under selection.  相似文献   

16.
The major histocompatibility complex (MHC) harbours some of the most polymorphic loci in vertebrate genomes. MHC genes are thought to be subject to some form of balancing selection, most likely pathogen‐mediated selection. Hence, MHC genes are excellent candidates for exploring adaptive processes. In this study, we investigated the genetic variation at exon 2 of the DRB class II MHC locus in 191 alpine chamois (Rupicapra rupicapra) from 10 populations in the eastern Alps of Italy. In particular, we were interested in distinguishing and estimating the relative impact of selective and demographic factors, while taking into account the confounding effect of recombination. The extremely high dn/ds ratio and the presence of trans‐species polymorphisms suggest that a strong long‐term balancing selection effect has been operating at this locus throughout the evolutionary history of this species. We analysed patterns of genetic variation within and between populations, and the mitochondrial D‐loop polymorphism patterns were analysed to provide a baseline indicator of the effects of demographic processes. These analyses showed that (i) the chamois experienced a demographic decline in the last 5000–30 000 years, most likely related to the postglacial elevation in temperature; (ii) this demographic process can explain the results of neutrality tests applied to MHC variation within populations, but cannot justify the much weaker divergence between populations implied by MHC as opposed to mitochondrial DNA; (iii) similar sets of divergent alleles are probably maintained with similar frequencies by balancing selection in different populations, and this mechanism is also operating in small isolated populations, which are strongly affected by drift.  相似文献   

17.
Selection pressure from parasites is thought to be a major force shaping the extreme polymorphism of the major histocompatibility complex (MHC) genes, but the modes and consequences of selection remain unclear. Here, we analyse MHC class II and microsatellite diversity in 16 guppy (Poecilia reticulata) populations from two islands (Trinidad and Tobago) that have been separated for at least 10 ky. Within-population MHC diversity was high, but allele sharing was limited within islands and even lower between islands, suggesting relatively fast turnover of alleles. Allelic lineages strongly supported in phylogenetic analyses tended to be island-specific, suggesting rapid lineage sorting, and an expansion of an allelic lineage private to Tobago was observed. New alleles appear to be generated locally at a detectably high frequency. We did not detect a consistent signature of local adaptation, but FST outlier analysis suggested that balancing selection may be the more general process behind spatial variation in MHC allele frequencies in this system, particularly within Trinidad. We found no evidence for divergent allele advantage within populations, or for decreased genetic structuring of MHC supertypes compared to MHC alleles. The dynamic and complex nature of MHC evolution we observed in guppies, coupled with some evidence for balancing selection shaping MHC allele frequencies, are consistent with Red Queen processes of host-parasite coevolution.Subject terms: Population genetics, Evolutionary genetics  相似文献   

18.
Elucidating the adaptive genetic potential of wildlife populations to environmental selective pressures is fundamental for species conservation. Genes of the major histocompatibility complex (MHC) are highly polymorphic, and play a key role in the adaptive immune response against pathogens. MHC polymorphism has been linked to balancing selection or heterogeneous selection promoting local adaptation. However, spatial patterns of MHC polymorphism are also influenced by gene flow and drift. Wolverines are highly vagile, inhabiting varied ecoregions that include boreal forest, taiga, tundra, and high alpine ecosystems. Here, we investigated the immunogenetic variation of wolverines in Canada as a surrogate for identifying local adaptation by contrasting the genetic structure at MHC relative to the structure at 11 neutral microsatellites to account for gene flow and drift. Evidence of historical positive selection was detected at MHC using maximum likelihood codon-based methods. Bayesian and multivariate cluster analyses revealed weaker population genetic differentiation at MHC relative to the increasing microsatellite genetic structure towards the eastern wolverine distribution. Mantel correlations of MHC against geographical distances showed no pattern of isolation by distance (IBD: r = -0.03, p = 0.9), whereas for microsatellites we found a relatively strong and significant IBD (r = 0.54, p = 0.01). Moreover, we found a significant correlation between microsatellite allelic richness and the mean number of MHC alleles, but we did not observe low MHC diversity in small populations. Overall these results suggest that MHC polymorphism has been influenced primarily by balancing selection and to a lesser extent by neutral processes such as genetic drift, with no clear evidence for local adaptation. This study contributes to our understanding of how vulnerable populations of wolverines may respond to selective pressures across their range.  相似文献   

19.
Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite‐mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter‐ and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.  相似文献   

20.
Signatures of balancing selection are often found when investigating the extremely polymorphic regions of major histocompatibility complex (MHC) genes, and it is generally accepted that selective forces maintain this polymorphism. However, the exact nature of the selection is controversial. Theoretical studies have mainly focused on overdominance and/or frequency dependent selection while laboratory studies have emphasised the role of mate choice. Empirical field data, on the other hand, have been relatively scarce. Previously we have found that geographic structure in MHC class II genes of the Great Snipe (Gallinago media) is too pronounced to be explained by neutral forces alone. Here we test the hypothesis that sexual selection on MHC alleles may be influencing this geographic structure between mountain and lowland populations. We found evidence of balancing selection acting on MHC genes in the form of a higher rate of amino-acid changing substitutions compared to silent substitutions in the peptide binding regions. Not only natural selection but also sexual selection may influence MHC polymorphism in this bird because certain MHC alleles have been found to be associated with higher male mating success. Contrary to predictions from negative frequency dependent selection, males carrying locally rare alleles did not have a mating advantage. Instead, the mating success of alleles in a mountain population was positively correlated to their relative frequency in the mountains compared to the lowlands, implying that locally adapted MHC alleles may also be favoured by sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号