首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence has suggested that the dorsal (DH) and the ventral (VH) poles of the hippocampus are structurally, molecularly and functionally different regions. While the DH is preferentially involved in the modulation of spatial learning and memory, the VH modulates defensive behaviors related to anxiety. Acute restraint is an unavoidable stress situation that evokes marked and sustained autonomic changes, which are characterized by elevated blood pressure (BP), intense heart rate (HR) increases, skeletal muscle vasodilatation and cutaneous vasoconstriction, which are accompanied by a rapid skin temperature drop followed by body temperature increases. In addition to those autonomic responses, animals submitted to restraint also present behavioral changes, such as reduced exploration of the open arms of an elevated plus-maze (EPM), an anxiogenic-like effect. In the present work, we report a comparison between the effects of pharmacological inhibition of DH and VH neurotransmission on autonomic and behavioral responses evoked by acute restraint stress in rats. Bilateral microinjection of the unspecific synaptic blocker cobalt chloride (CoCl2, 1mM) into the DH or VH attenuated BP and HR responses, as well as the decrease in the skin temperature, elicited by restraint stress exposure. Moreover, DH or VH inhibition before restraint did not change the delayed increased anxiety behavior observed 24 h later in the EPM. The present results demonstrate for the first time that both DH and VH mediate stress-induced autonomic responses to restraint but they are not involved in the modulation of the delayed emotional consequences elicited by such stress.  相似文献   

2.
ABSTRACT

Maternal deprivation at an early age is a powerful stressor that causes permanent alterations in cognitive and behavioral functions during the later stages of life. We investigated the effects of oxytocin on cognitive defects and anxiety disorders caused by acute infantile maternal deprivation in adult rats. We used 18-day-old Wistar albino rats of both sexes. The experimental groups included control (C), maternally deprived (MD), maternally deprived and treated with 0.02 μg/kg oxytocin (MD-0.02 µg/kg oxy), maternally deprived and treated with 2 μg/kg oxytocin (MD-2 µg/kg oxy). When the rats were 60 days old, the open field (OF) and elevated plus maze (EPM) behavioral tests, and the Morris water maze (MWM) test for spatial learning and memory were performed. In addition, the number of neurons in the hippocampus, prefrontal cortex (PFC) and amygdala were determined using quantitative histology. We also measured vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in the PFC. In both sexes, the MD group failed the learning test and the MD-2 μg/kg oxy group failed in the memory test. The MD-0.02 μg/kg oxy group spent more time in the open arm of the EPM device and their locomotor activities were greater in the OF test. The VEGF and BDNF levels in the PFC were higher in the MD-0.02 μg/kg oxy groups than the other maternally deprived groups (oxytocin ±). The number of PFC neurons was low in all male maternally deprived (oxytocin ±) groups, while the number of amygdala neurons was low in both female and male maternally deprived (oxytocin ±) groups. Male rats were more affected by maternal deprivation; administration of oxytocin had dose-dependent biphasic effects on learning, memory and anxiety.  相似文献   

3.
Corticosterone is released from the adrenal cortex in response to stress, and binds to glucocorticosteroid receptors (GRs) and mineralocorticosteroid receptors (MRs) in the brain. Areas such as the dorsal hippocampus (DH), ventral hippocampus (VH) and medial prefrontal cortex (mPFC) all contain MRs and have been previously implicated in fear and/or memory.The purpose of the following experiments was to examine the role of these distinct populations of MRs in rats’ unconditioned fear and fear memory.The MR antagonist (RU28318) was microinfused into the DH, VH, or mPFC of rats. Ten minutes later, their unconditioned fear was tested in the elevated plus-maze and the shock-probe tests, two behavioral models of rat “anxiety.” Twenty-four hours later, conditioned fear of a non-electrified probe was assessed in rats re-exposed the shock-probe apparatus.Microinfusions of RU28318 into each of the three brain areas reduced unconditioned fear in the shock-probe burying test, but only microinfusions into the VH reduced unconditioned fear in the plus-maze test. RU28318 did not affect conditioned fear of the shock-probe 24 hr later.MRs in all three areas of the brain mediated unconditioned fear to a punctate, painful stimulus (probe shock). However, only MRs in the ventral hippocampus seemed to mediate unconditioned fear of the more diffuse threat of open spaces (open arms of the plus maze). In spite of the known roles of the hippocampus in spatial memory and conditioned fear memory, MRs within these sites did not appear to mediate memory of the shock-probe.  相似文献   

4.
Acetylcholine (ACh) signaling in the hippocampus is important for behaviors related to learning, memory and stress. In this study, we investigated the role of two ACh receptor subtypes previously shown to be involved in fear and anxiety, the M1 mAChR and the α2 nAChR, in mediating the effects of hippocampal ACh on stress‐related behaviors. Adeno‐associated viral vectors containing short‐hairpin RNAs targeting M1 or α2 were infused into the hippocampus of male C57BL/6J mice, and behavior in a number of paradigms related to stress responses and fear learning was evaluated. There were no robust effects of hippocampal M1 mAChR or α2 nAChR knockdown (KD) in the light/dark box, tail suspension, forced swim or novelty‐suppressed feeding tests. However, effects on fear learning were observed in both KD groups. Short term learning was intact immediately after training in all groups of mice, but both the M1 and α2 hippocampal knock down resulted in impaired cued fear conditioning 24 h after training. In addition, there was a trend for a deficit in contextual memory the M1 mAChR KD group 24 h after training. These results suggest that α2 nicotinic and M1 muscarinic ACh receptors in the hippocampus contribute to fear learning and could be relevant targets to modify brain circuits involved in stress‐induced reactivity to associated cues.  相似文献   

5.
Kenney JW  Raybuck JD  Gould TJ 《Hippocampus》2012,22(8):1681-1690
Nicotine administration alters various forms of hippocampus-dependent learning and memory. Increasing work has found that the dorsal and ventral hippocampus differentially contribute to multiple behaviors. Thus, the present study examined whether the effects of nicotine in the dorsal and ventral hippocampus have distinct influences on contextual fear learning in male C57BL/6J mice. Direct infusion of nicotine into the dorsal hippocampus resulted in an enhancement of contextual fear learning, whereas nicotine infused into the ventral hippocampus resulted in deficits. Nicotine infusions into the ventral hippocampus did not alter hippocampus-independent cued fear conditioning or time spent in the open arm of the elevated plus maze, a measure of anxiety, suggesting that the effects are due to alterations in contextual learning and not other general processes. Finally, results from using direct infusions of MLA, a low-affinity α7 nicotinic acetylcholine receptor (nAChR) antagonist, in conjunction with systemic nicotine, provide evidence that α7-nAChRs in the ventral hippocampus mediate the detrimental effect of ventral hippocampal nicotine on contextual fear learning. These results suggest that with systemic nicotine administration, competition exists between the dorsal and ventral hippocampus for behavioral control over contextual learning.  相似文献   

6.
Neuropeptide substance P (SP) has reinforcing and memory facilitating effects after its peripheral or central application. Rats self-inject SP into the ventromedial caudate-putamen and SP microinjections into the basal forebrain induce place preference with a simultaneous increase of dopamine level. In the amygdaloid body SP positive neurones and terminals have been identified. The aim of the present study was to examine the possible reinforcing effects of SP in the basolateral amygdala (ABL). CFY male rats were conditioned in two-compartment passive avoidance paradigm and place preference was examined in two-compartment-box and in circular open field. Animals were microinjected bilaterally with 10 ng SP, 100 ng SP or vehicle solution (0.4 microl/side) into the ABL. Results showed that post-shock infusion of 10 ng SP significantly enhanced passive avoidance learning while 100 ng SP was ineffective. In two-compartment-box and in circular open field place preference did not develop after SP treatments, however. Our data are the first to demonstrate that SP in the ABL is involved in learning and memory processes related to aversive situations. Results that SP microinjections were not followed by rewarding-reinforcing consequences in place preference paradigms indicate that the local SP network in the ABL is not involved in neuronal circuitry responsible for addictive behaviour.  相似文献   

7.
Oxidative stress is associated with human diseases and the developmental retardation of animals. The hippocampus is particularly vulnerable to oxidative stress. MicroRNAs (miRNAs), expressed largely in the mammalian brain, are emerging as robust players and have been implicated in many cellular processes. The present study investigated the sub-tissue specificity of miRNA expression in the dorsal hippocampus (DH) and ventral hippocampus (VH) and evaluated the effects of oxidative stress induced by iron dextran (FeDex) treatment on miRNA expression in the DH and VH of pigs using RNA-sequencing technology and bioinformatics, respectively. The results demonstrated that the injection of FeDex significantly increased the levels of several markers of oxidative stress in serum of Rongchang piglets, which indicated that oxidative stress was successfully induced. Sub-tissue specificity was displayed with 54 differentially expressed miRNAs between the VH and DH. The induced oxidative stress emphasized 59 and 46 differentially expressed miRNAs in the DH and VH, respectively. GO and KEGG pathway analyses revealed that the predicted targets of these differentially expressed miRNAs were involved in the pathways that regulate the expression of genes associated with nervous system development, immune response and oxidative stress, which not only revealed the ability of miRNAs to influence complex gene networks in the DH and VH but also further corroborated the successful induction of oxidative stress. Collectively, the results of this study provide a valuable basis for future studies aimed at contributions of miRNAs induced by oxidative stress in growth retardation and neurodegenerative diseases of animals and human.  相似文献   

8.
Sandy mice have a deletion mutation in the gene encoding dysbindin‐1, Dtnbp1, with consequent reduction of the protein in heterozygotes and its loss in homozygotes. The sandy mouse thus serves as an animal model of dysbindin‐1 function. As this protein is concentrated in synaptic tissue and affects transmitter release, it may affect neuronal processes that mediate behavior. To investigate the neurobehavioral effects of the Dtnbp1 mutation, we studied littermate sandy and wild‐type controls on a C57BL/6J genetic background. The three animal groups were indistinguishable in their external physical characteristics, sensorimotor skills and indices of anxiety‐like behaviors. In the open field, however, homozygous animals were hyperactive and appeared to show less habituation to the initially novel environment. In the Morris water maze, homozygous animals displayed clear deficits in spatial learning and memory with marginal deficits in visual association learning. Apart from the last mentioned deficits, these abnormalities are consistent with hippocampal dysfunction and in some cases with elevated dopaminergic transmission via D2 dopamine receptors. As similar deficits in spatial learning and memory have been found in schizophrenia, where decreased dysbindin‐1 has been found in the hippocampus, the sandy mouse may also model certain aspects of cognition and behavior relevant to schizophrenia.  相似文献   

9.
Mice with cytotoxic lesions of the dorsal hippocampus (DH) underestimated 15 s and 45 s target durations in a bi-peak procedure as evidenced by proportional leftward shifts of the peak functions that emerged during training as a result of decreases in both ‘start’ and ‘stop’ times. In contrast, mice with lesions of the ventral hippocampus (VH) displayed rightward shifts that were immediately present and were largely limited to increases in the ‘stop’ time for the 45 s target duration. Moreover, the effects of the DH lesions were congruent with the scalar property of interval timing in that the 15 s and 45 s functions superimposed when plotted on a relative timescale, whereas the effects of the VH lesions violated the scalar property. Mice with DH lesions also showed enhanced reversal learning in comparison to control and VH lesioned mice. These results are compared with the timing distortions observed in mice lacking δ-opioid receptors (Oprd1−/−) which were similar to mice with DH lesions. Taken together, these results suggest a balance between hippocampal–striatal interactions for interval timing and demonstrate possible functional dissociations along the septotemporal axis of the hippocampus in terms of motivation, timed response thresholds and encoding in temporal memory.  相似文献   

10.
It is known that regular aerobic exercise enhances cognitive functions and increases blood insulin-like growth factor 1 (IGF-1) levels. People living in urban areas spend most of their time indoors and indoor air quality can affect health. We investigated the effects of aerobic exercise in poor and good air quality environments on hippocampus and prefrontal cortex (PFC) neurons, anxiety, and spatial learning and memory in adolescent mice. Poor air quality impaired spatial learning and memory; exercise did not affect learning or memory impairment. Exercise in a good air quality environment improved spatial learning and memory. Poor air quality increased apoptosis in the hippocampus and PFC. Both exercised and sedentary groups living in a poor air quality environment had lower serum IGF-1 levels than those living in a good air quality environment. Living in a poor air quality environment has negative effects on the hippocampus, PFC and blood IGF-1 levels in adolescent mice, but exercise did not alter the negative effects of poor air quality.  相似文献   

11.
Models of anxiety and fear of novelty were evaluated using correlations and principal component analysis. A total of 84 pigs (LandracexYorkshire) from nine different litters were subjected to a tonic immobility (TI) test at the age of 2.5 weeks, an elevated plus-maze (EPM) at the age of 6 weeks, a light/dark (L/D) exploration test at the age of 7 weeks and an open-field (OF) test at the age of 8 weeks.The first component from the principal component analysis had the highest correlation with number of entries into open arms in the EPM but was also highly correlated to variables from the other three tests confirming a common aversion-related element in the four experimental tests. The second component was negatively correlated with percent entries into and time spent on open arms in the EPM, but positively correlated with the number of entries into closed arms in the same test, number of lines crossed in the OF and time spent in the lit compartment of the L/D test. The last point illustrates a negative relationship between "anxiety" and "activity" in the EPM and OF. To achieve purer measures of fear of novelty and activity in the tests, the components were rotated using the Varimax criterion. The rotated factor pattern demonstrated a simple structure where variables related to "anxiety" or "fear of novelty" (i.e., percent entries into open arms and time spent on open arms of the EPM) had the highest loading on factor 1, whereas variables related to activity (i.e., number of entries into the closed arms in the EPM, number of lines crossed in the OF and time spent in the lit compartment of the L/D test) had the highest loading on factor 2. TI duration loaded more strongly on factor 1 ("fear of novelty") than on factor 2 ("activity"), but did not represent any pure measure of either fear of novelty or activity.In conclusion, all of the test variables were related to one another. Open-arm avoidance represented the purest measure of fear of novelty, whereas entries into closed arms and number of lines crossed in the OF were the purest measures of activity. The EPM appeared to provide the best way to separate the fear of novelty and activity-related elements, indicating that the EPM may be a useful behavioural model of fear of novelty or avoidance in pigs.  相似文献   

12.
The developing brain is vulnerable to environmental factors. We investigated the effects of air that contained 0.05, 0.1 and 0.3% CO2 on the hippocampus, prefrontal cortex (PFC) and amygdala. We focused on the circuitry involved in the neurobiology of anxiety, spatial learning, memory, and on insulin-like growth factor-1 (IGF-1), which is known to play a role in early brain development in rats. Spatial learning and memory were impaired by exposure to 0.3% CO2 air, while exposure to 0.1 and 0.3% CO2 air elevated blood corticosterone levels, intensified anxiety behavior, increased superoxide dismutase (SOD) enzyme activity and MDA levels in hippocampus and PFC; glutathione peroxidase (GPx) enzyme activity decreased in the PFC with no associated change in the hippocampus. IGF-1 levels were decreased in the blood, PFC and hippocampus by exposure to both 0.1 and 0.3% CO2. In addition, apoptosis was increased, while cell numbers were decreased in the CA1 regions of hippocampus and PFC after 0.3% CO2 air exposure in adolescent rats. A positive correlation was found between the blood IGF-1 level and apoptosis in the PFC. We found that chronic exposure to 0.3% CO2 air decreased IGF-1 levels in the serum, hippocampus and PFC, and increased oxidative stress. These findings were associated with increased anxiety behavior, and impaired memory and learning.  相似文献   

13.
For more than a century dendritic spines have been a source of fascination and speculation. The long-held belief that these anatomical structures are involved in learning and memory are addressed. Specifically, two lines of evidence that support this claim are reviewed. In the first, we review evidence that experimental manipulations that affect dendritic spine number in the hippocampus also affect learning processes of various sorts. In the second, we review evidence that learning itself affects the presence of dendritic spines in the hippocampus. Based on these observations, we propose that the presence of spines enhances synaptic efficacy and thereby the excitability of the network involved in the learning process. With this scheme, learning is not dependent on changes in spine density but rather changes in the presence of dendritic spines provide anatomical support for the processing of novel information used in memory formation.  相似文献   

14.
The N-Methyl-d-Aspartate (NMDA) receptor is expressed abundantly in the brain and plays an important role in neuronal development, learning and memory, neurodegenerative diseases, and neurogenesis. In this study, we evaluated the effects of NMDA receptor blockade during the early neurodevelopmental period on exploratory locomotion, anxiety-like behaviors and cognitive functions of adolescent Wistar rats. NMDA receptor hypofunction was induced 7–10 days after birth using MK-801 in rats (0.25 mg/kg twice a day for 4 days via intraperitoneal injection). The open-field (OF), elevated plus maze (EPM) and passive avoidance (PA) tests were used to evaluate exploratory locomotion, anxiety-like behaviors and cognitive functions. In the OF test, MK-801 caused an increase in locomotion behavior (p < 0.01) and in the frequency of rearing (p < 0.05). In the EPM test, MK-801 treatment increased the time spent in the open arms, the number of open arm entries and the amount of head dipping (p < 0.01). MK-801 treatment caused no statistical difference compared to the control group in the PA test (p > 0.05). Chronic NMDA receptor blockade during the critical period of maturation for the glutamatergic brain system (postnatal days 7–10) produces locomotor hyperactivity and decreased anxiety levels, but has no significant main effect on cognitive function during adolescence.  相似文献   

15.
Exposure to stress causes differential neural modifications in various limbic regions, namely the prefrontal cortex, hippocampus and amygdala. We investigated whether α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) phosphorylation is involved with these stress effects. Using an acute inescapable stress protocol with rats, we found opposite effects on AMPA receptor phosphorylation in the medial prefrontal cortex (mPFC) and dorsal hippocampus (DH) compared to the amygdala and ventral hippocampus (VH). After stress, the phosphorylation of Ser831-GluA1 was markedly decreased in the mPFC and DH, whereas the phosphorylation of Ser845-GluA1 was increased in the amygdala and VH. Stress also modulated the GluA2 subunit with a decrease in the phosphorylation of both Tyr876-GluA2 and Ser880-GluA2 residues in the amygdala, and an increase in the phosphorylation of Ser880-GluA2 in the mPFC. These results demonstrate that exposure to acute stress causes subunit-specific and region-specific changes in glutamatergic transmission, which likely lead to the reduced synaptic efficacy in the mPFC and DH and augmented activity in the amygdala and VH. In addition, these findings suggest that modifications of glutamate receptor phosphorylation could mediate the disruptive effects of stress on cognition. They also provide a means to reconcile the contrasting effects that stress has on synaptic plasticity in these regions. Taken together, the results provide support for a brain region-oriented approach to therapeutics.  相似文献   

16.
目的:观察饲料中添加ω-3PUFAs对PTSD-SPS大鼠焦虑/抑郁行为的防护作用。方法:将40只健康成年雄性SD大鼠随机分为正常对照组、PTSD-SPS模型组、60%ω-3PUFAs+PTSD-SPS模型组1、60%ω-3PUFAs+PTSD-SPS模型组2。采用高架十字迷宫实验和旷场实验评价实验组大鼠的焦虑/抑郁行为变化。结果:与对照组相比,SPS模型组大鼠进入开放臂的次数比例和时间比例明显减少;中央格停留时间明显缩短(5.56±0.21)s,穿格次数明显减少(30.23±5.96)次,差异均显著(P<0.05)。与SPS模型组相比,60%ω-3PUFAs的SPS组大鼠进入开放臂的次数比例和时间比例明显增加;中央格停留时间明显延长(9.88±1.14)s,穿格次数明显增加(43.22±4.35)次,差异均显著(P<0.05);与对照组相比没有显著差异。结论:膳食补充ω-3多不饱和脂肪酸可以降低PTSD-SPS大鼠焦虑/抑郁程度。  相似文献   

17.
The dorsal (DH) and ventral (VH) subregions of the hippocampus are involved in contextual fear conditioning. However, it is still unknown whether these two brain areas also play a role in defensive behavior induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into the dPAG to determine freezing and escape response thresholds after sham or bilateral electrolytic lesions of the DH or VH. The duration of freezing behavior that outlasted electrical stimulation of the dPAG was also measured. The next day, these animals were subjected to contextual fear conditioning using footshock as an unconditioned stimulus. Electrolytic lesions of the DH and VH impaired contextual fear conditioning. Only VH lesions disrupted conditioned freezing immediately after footshock and increased the thresholds of aversive freezing and escape responses to dPAG electrical stimulation. Neither DH nor VH lesions disrupted post-dPAG stimulation freezing. These results indicate that the VH but not DH plays an important role in aversively defensive behavior induced by dPAG electrical stimulation. Interpretations of these findings should be made with caution because of the fact that a non-fiber-sparing lesion method was employed.  相似文献   

18.
Obestatin improves memory performance and causes anxiolytic effects in rats   总被引:10,自引:0,他引:10  
Obestatin is a peptide hormone that is derived from the same polypeptide precursor (preprogrelin) as ghrelin, but it acts in opposing way on ingestive behavior. Our previous studies showed that ghrelin affects memory and anxiety. Here, we studied the possible effects of icv obestatin injection in rats upon memory retention (using two different paradigms), anxiety like behavior (plus maze test), and food intake. Obestatin induces an increase in the percentage of open arms entries (Obestatin 3.0nmol/rat: 61.74+/-1.81), and percentage of time spent in open arms (Obestatin 3.0nmol/rat: 72.07+/-4.21) in relation to the control (33.31+/-1.54; 25.82+/-1.68), indicating an anxiolytic effect. The two doses of obestatin increased latency time in a step down test and the percentage time of novel object exploration, suggesting that the peptide influences learning and memory processes that involve the hippocampus and the amygdala. This report provides evidence indicating that obestatin effects are functionally opposite on anxiety and hunger to the ghrelin effects, while both these related peptides increase memory retention.  相似文献   

19.
A single exposure to the elevated plus-maze (EPM) test of anxiety reduces or abolishes the anxiolytic efficacy of benzodiazepines on a second trial. Some possible explanations to the occurrence of this phenomenon (one-trial tolerance-OTT) involve behavioral modifications thought to be consequence of some kind of learning in the first trial. In the present study, the influence of learning-impairing situations on the effects of the benzodiazepine chlordiazepoxide on mice re-tested in the EPM is investigated. The results showed that: (1) as expected, the administration of chlordiazepoxide to mice re-tested in the EPM- under the same conditions of the first trial- failed to induce anxiolysis; (2) a decreased percent time in the open arms was observed on the second trial of mice exposed to both trials under the same experimental conditions; (3) neither the increase in open arm avoidance by mice re-exposed to the EPM nor the OTT to chlordiazepoxide effect were modified by administration of the amnestic agent scopolamine; (4) the decrement of the duration of the first trial to 1 min or the change in light and noise conditions in both trials counteracted the increase in open arm avoidance on trial 2; (5) none of the later procedures modified the phenomenon of OTT. Although not discarding the modulation exerted by other memory processes in the OTT phenomenon, the results indicate that situations that impair the learned avoidance response to the open arms in the EPM do not modify the phenomenon of OTT.  相似文献   

20.
The behavioral characterization of rodent strains in different studies and laboratories can provide unreplicable results even when genotypes are kept constant and environmental control is maximized. In the present study, the influence of common laboratory environmental variables and their interaction with genotype on the results of behavioral tests of anxiety/emotionality were investigated. To this end, the inbred rat strains Lewis (LEW) and spontaneously hypertensive rats (SHR), which are known to differ for numerous emotionality-related behaviors, were tested in the open field (OF), elevated plus maze (EPM) and black/white box (BWB), while three environmental factors were systematically controlled and analyzed: (1) the experimenter handling the animal (familiar or unfamiliar); (2) the position of the home cage (top or bottom shelf of the rack) and (3) the behavioral state of the animal immediately before the test (arousal or rest). Experimenter familiarity did not alter the behavior of rats in the OF. Cage position, on the other hand, influenced the behavior in the OF and BWB, with rats housed in top cages appearing less anxious than those housed in the bottom. In the BWB (but not in the OF), these effects were genotype dependent. Finally, the behavioral state of the animals prior to testing altered the results of the EPM in a strain-dependent manner, with some anxiety-related genotypic differences being found only among rats that were aroused in their home cages. This study showed that common variations in the laboratory environment interact with genotype in behavioral tests of anxiety/emotionality. Recognizing and understanding such variations can help in the design of more effective experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号