首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa remains one of the most important bacterial pathogens in lung diseases and especially in Cystic fibrosis. This unusual predilection is best explained by the existence of defects in host defense mechanisms as resulting from the genetic lesion and the presence of a specific colonization niche within the lungs. The niche has been identified as the mucus layer wherein mucin glycoproteins provide a substrate for binding and allows the persistence of this organism in this milieu by a number of possible mechanisms. While this organism is capable of binding to non CF mucins, it is perhaps a combination of factors e.g. increased binding and decreased mucociliary clearance that is responsible for this marked state of colonization in CF. The organism uses chiefly proteins of its flagellar apparatus to initiate this binding and recognizes a variety of oligosaccharides that have been identified in mucins. Among these are both, neutral oligosaccharides and several forms of acidic oligosaccharides derived from the Lewis antigens. There are more than likely a larger repertoire of receptors than those identified and certainly more adhesins present than those currently known. However, the information gathered to date provides an excellent example of the specificity of bacterial interactions with mucins that will certainly be expanded as we study more pulmonary pathogens.  相似文献   

2.
The surface of hydrated cells of Staphylococcus epidermidis has been probed using an atomic force microscope. While local force measurements over the surface of bacteria reveal a heterogeneous chemical surface, with heterogeneous mechanical properties, different kinds of force curves appear with high frequency, and are thought to provide information on features contributing strongly to the overall mechanical and surface behaviour of the cell. Force curves often present two different mechanical regimes, being the first one (outer) of about 48 nm thick, and presenting a local relative elasticity of about 0.08 N/m, which is about a third of the relative elasticity of the inner part of the cell wall, harder, with a relative elasticity of about 0.24 N/m, in water. Both regimes appears as straight lines in the force versus distance curves (the ‘corresponding’ stress–strain curves in contact mechanics), but hysteresis is observed between the approach and the retraction line in the inner regime, indicating a degree of viscoelasticity. No viscoelasticity is observed in the outer regime, however, which presents quite linear and juxtaposed approach-retraction lines. These kinds of force curves do not present measurable pull-off forces nor snap-in forces, which indicates an almost null interaction between tip and bacterial surface, which could be in agreement with the measured very high hydrophobicity of this strain. Another kind of force curve has been observed recurrently, showing peaks in the retraction curves. Adhesive pull-off forces were measured giving an average of about 2 nN. Interestingly, however, these force curves appear only when quite irregular and wavy retraction curves are present, from the very beginning of its trace (maximum indentation). This leads us to think that these pull-off forces measured by our AFM do not give information on surface forces-unbinding events at the surface of the bacteria, but could be related to events at the sub-surface of the cell surface. Oscillations seen in the retraction curve in the portion corresponding to the contact with the bacteria surface could be due to rupture phenomena within the multilayered cell wall architecture expected in Gram-positive bacteria as Staphylococcus epidermidis, which could result in local irreversible deformations of the cell surface. Imaging with a sharp tip in contact mode sometimes leads to surface damage. Force curves recorded over damaged parts of the cell surface showed a completely different behaviour, in many cases with two well-defined high-adhesion peaks, and also interestingly, with snap-in forces of about 0–2 nN, which seems to indicate a completely different electrical/hydrophobicity state only a few nanometers down from the surface. Similar indentation effects can occur in the contact of a bacterial cell with a solid surface, even when showing only atomic-molecular-scale roughness, thus interacting not only with the very surface of the cell, especially when soft layers are present in the outer. Our results highlight the importance of the cell surface mechanical properties and their interplay with purely surface properties when analyzing cell–material interaction, and show the AFM as a useful method for investigating this.  相似文献   

3.
Jacalin has been found to agglutinate Ehrlich ascites cells. The agglutination was inhibited by α-glycosides of D-Gal and β -D-Gal(1 → 3)-D-GalNAc suggesting that the lectin-ascites interaction was carbohydrate-specific. There was 21.8% inhibition of tumour (ascites) cell growthin vivo in mice administered 50μg of jacalin by injection for 6 days following intraperitoneal injection of ascites cells. Administration of 100, 150 and 200μg jacalin resulted in 40.2, 57.5 and 83% inhibition respectively. Thein vivo inhibition of tumour cells growth by jacalin was due to its preferential binding with D-Gal-α -(1 → 6) present as terminal residues in the glycoprotein on tumour cell surface.  相似文献   

4.
The major heat shock proteins of Staphylococcus aureus had apparent Mrs of 84,000, 76,000, and 60,000, and other prominent proteins of Mrs 66,000, 51,000, 43,000 and 24,000 were also induced. Staphylococcus epidermidis showed a similar response. These proteins were also induced by CdCl2, ethanol and apparently osmotic stress (1.71 M NaCl or 2.25 M sucrose). Most of the proteins sedimented with the membrane fraction, but the Mr 60,000 protein remained in the cytoplasm.  相似文献   

5.
Staphylococcus epidermidis represents the most frequent pathogen involved in nosocomial infections and infections of indwelling medical devices. The strain-to-strain variation of the gene encoding the quorum-sensing pheromone of S. epidermidis as well as the correlation between specificity groups and origin from infection were determined. The pro-pheromone gene was highly conserved and showed infrequent, non-synonymous, single-nucleotide polymorphisms that led to conservative amino acid exchanges only. Importantly, one specificity group was significantly more frequent among strains isolated from infection. The finding that quorum-sensing specificity groups are linked to infection demonstrates the relevance of quorum-sensing for virulence in this critical human pathogen and contributes to the scientific basis needed for the development of quorum-sensing-targeting drugs.  相似文献   

6.
苦参碱对表皮葡萄球菌生物被膜作用初探   总被引:2,自引:0,他引:2  
通过中药有效成分苦参碱对表皮葡萄球菌生物被膜抑制作用的研究,为表皮葡萄球菌生物被膜引起的相关感染提供新的治疗途径。利用XTT减低法评价苦参碱对表皮葡萄球菌初始粘附及生物被膜内细菌代谢的影响,镜下观察该药对表皮葡萄球菌生物被膜的形态学影响。结果表明:苦参碱对表皮葡萄球菌生物被膜菌的SMIC50和SMIC80分别为62.5 mg/L和500 mg/L;1 000 mg/L浓度的苦参碱对表皮葡萄球菌早期粘附有抑制作用;250 mg/L浓度的苦参碱对表皮葡萄球菌生物被膜的形态有显著影响。因此可见,苦参碱对表皮葡萄球菌生物被膜的形成与粘附均有抑制作用。  相似文献   

7.
8.
AIMS: To identify and characterize nonfimbrial proteins from Aeromonas veronii involved in the attachment to epithelial cells in vitro. METHODS AND RESULTS: Two Aer. veronii mucin- and lactoferrin-binding proteins with molecular masses of 37 and 48 kDa were identified by Western blot analysis. According to its N-terminal amino acid sequence, the 48-kDa protein was identified as Omp48, an outer-membrane protein similar to LamB of Escherichia coli. LamB is a well-known porin involved in maltose transport across the outer membrane in E. coli. In a microtitre plate assay, Omp48 bound to the immobilized extracellular matrix proteins collagen and fibronectin, and the mucin- and lactoferrin-binding activity was confirmed. Adhesion of Omp48 to mucin, lactoferrin and collagen was diminished by preincubation with homologous glycoproteins or other carbohydrates, suggesting a putative Omp48 lectin-like binding domain. Anti-Omp48 antiserum significantly inhibited the Aer. veronii adhesion to confluent HeLa cell monolayers and pretreatment of cells with purified Omp48 elicited competitive inhibition of adhesion. Similarly, cross-inhibition of Aer. hydrophila and Aer. caviae adhesion was achieved with the same treatments, indicating the existence of a conserved surface protein among these species. CONCLUSIONS: Taken together, these data indicate that Omp48 is involved in Aer. veronii adhesion to epithelial cells and might be an alternative adhesion factor of this micro-organism. SIGNIFICANCE AND IMPACT OF THE STUDY: The adhesive potential of Aeromonas spp. is correlated with pathogenicity; however, the adhesion mechanism is complex and not well understood. This study provides evidence of a putative adhesion factor that might be contributing to pathogenicity of Aer. veronii and could be used for vaccine development.  相似文献   

9.
R. Radek  G. Tischendorf 《Protoplasma》1999,207(1-2):43-53
Summary The attachment modes of rodlike ectobiotic bacteria to the surface of two different termite flagellates were studied.Devescovina glabra was covered by laterally attached bacteria. Treatment with chemicals that disturb hydrophobic interactions and solubilize proteins removed the ectobionts. Freeze-fracture and freeze-etching electron microscopy revealed rows of intramembrane particles that occurred exclusively along the attachment sites. The adhering Gram-negative bacteria possessed an S-layer (surface layer) composed of globular protein particles. The S-layer could be removed by protein-solubilizing chemicals, e.g., urea, as shown by ultrathin-section electron microscopy. Therefore, it seems plausible that the attachment was mediated by hydrophobic interactions between the flagellate's plasma membrane and the S-layer of the bacteria. The bacteria of the second flagellate,Joenia annectens, adhered by their tips. The attachment was extremely strong. Chemicals disturbing ionic or hydrophobic bindings or solubilizing proteins did not detach the ectobionts. Globular intramembrane protein particles were preferentially found in a ringlike array at the external fracture face of the flagellate's contact sites.Abbreviations DIC differential interference contrast - EGTA ethylene glycol-bis(-aminoethyl ether) N,N,N,N-tetraacetic acid - TEM transmission electron microscope - Tween 20 polyoxyethylenesorbitan  相似文献   

10.
Summary Amphibian skin is a rich source of peptides that are specific to pathogens and act by disrupting bacterial membranes. Three antimicrobial peptides were isolated from the skin glands of Australian tree frogs,Litoria caerulea andLitoria genimaculata. NMR spectroscopy was used to observe changes induced by these peptides in the31P resonances of bacterial membranes in vivo. Caerin 1.1 and maculatin 1.1, both wide-spectrum antibiotics disrupted the membranes ofBacillus cereus andStaphylococcus epidermidis (Gram-positive), leading to an increase in the isotropic31P NMR signal. Caerin 4.1, a narrow-spectrum antibiotic, however, did not affect the31P spectra of these organisms. The results demonstrate the use of31P NMR to study the effects of membrane-disrupting agents on the membranes of live bacteria.  相似文献   

11.
The adhesion of Staphylococcus epidermidis, Escherichia coli, and Candida albicans on mucin coatings was evaluated to explore the feasibility of using the coating to increase the infection resistance of biomaterials. Coatings of bovine submaxillary mucin (BSM) were deposited on a base layer consisting of a poly(acrylic acid-b-methyl methacrylate) (PAA-b-PMMA) diblock copolymer. This bi-layer system exploits the mucoadhesive interactions of the PAA block to aid the adhesion of mucin to the substratum, whereas the PMMA block prevents dissolution of the coating in aqueous environments. The thickness of the mucin coating was adjusted by varying the pH of the solution from which it was deposited. Thin mucin coatings decreased the numbers of bacteria but increased the numbers of C. albicans adhering to the copolymer and control surfaces. Increasing the mucin film thickness resulted in a further lowering of the density of adhering S. epidermidis cells, but it did not affect the density of E. coli. In contrast, the density of C. albicans increased with an increase in mucin thickness.  相似文献   

12.
人体皮肤表面定居着多种微生物,这些微生物与皮肤健康密切相关。表皮葡萄球菌(Staphylococcusepidermidis)是正常人群皮肤表面微生物的主要成员之一,对维持皮肤的健康状态发挥着重要作用。在正常生理环境下,表皮葡萄球菌通过抗菌肽参与皮肤固有免疫,其细胞壁成分脂磷壁酸有助于适应性免疫系统的发育和启动,从而调节皮肤免疫过程。通过分泌鞘磷脂酶,表皮葡萄球菌可以对皮肤上的神经酰胺进行补充,同时可以增强角质形成细胞间的紧密连接,进而维护皮肤屏障稳态。表皮葡萄球菌可以和多种细菌进行交流,在皮肤抗菌防御中发挥着良性的作用,并且可以促进皮肤的再上皮化,加速伤口修复。本文归纳总结了表皮葡萄球菌在维持健康皮肤方面的最新研究结果及认识,有助于深入了解其作为潜在益生菌充分发挥对皮肤的有益影响,为皮肤病的治疗及化妆品的研发提供借鉴。  相似文献   

13.
A large number of bacterial pathogens targets cell adhesion molecules to establish an intimate contact with host cells and tissues. Members of the integrin, cadherin and immunoglobulin-related cell adhesion molecule (IgCAM) families are frequently recognized by specific bacterial surface proteins. Binding can trigger bacterial internalization following cytoskeletal rearrangements that are initiated upon receptor clustering. Moreover, signals emanating from the occupied receptors can result in cellular responses such as gene expression events that influence the phenotype of the infected cell. This review will address recent advances in our understanding of bacterial engagement of cellular adhesion molecules by discussing the binding of integrins by Staphylococcus aureus as well as the exploitation of IgCAMs by pathogenic Neisseria species.  相似文献   

14.
Amphibian skin is a rich source of peptides that are specificto pathogens and act by disrupting bacterial membranes. Threeantimicrobial peptides were isolated from the skin glands ofAustralian tree frogs, Litoria caerulea and Litoriagenimaculata. NMR spectroscopy was used to observe changesinduced by these peptides in the 31P resonances of bacterialmembranes in vivo. Caerin 1.1 and maculatin 1.1, both wide-spectrum antibiotics, disrupted the membranes ofBacillus cereus and Staphylococcus epidermidis (Gram-positive), leadingto an increase in the isotropic 31P NMR signal. Caerin 4.1, anarrow-spectrum antibiotic, however, did not affect the 31Pspectra of these organisms. The results demonstrate the use of31P NMR to study the effects of membrane-disrupting agents onthe membranes of live bacteria.  相似文献   

15.
The ability of oral Streptococcus strains to utilize oligosaccharide chains in mucin as a source of carbohydrate was studied in batch cultures. Pig gastric mucin, as a substitute of human salivary mucin, was added to chemically defined medium containing no other carbohydrates. Strains of S. mitior attained the highest cell density, while mutans streptococci: S. mutans, S. sobrinus, S. rattus, grew very little in the medium with mucin. S. mitis, S. sanguis, and S. milleri in decreasing order, showed intermediate growth. Mucin break-down as measured by sugar analyses indicated that oligosaccharide chains were only partially degraded. Every strain produced one or more exoglycosidases potentially involved in hydrolysis of oligosaccharide. The enzyme activities occurred mainly associated with the cells, and very little activity was found in the culture fluids. The relationships between glycosidase activities and growth, or mucin degradation were not always clear.  相似文献   

16.
17.
Phenotypic variation of Staphylococcus epidermidis involving the slime related ica operon results in heterogeneity in surface characteristics of individual bacteria in axenic cultures. Five clinical S. epidermidis isolates demonstrated phenotypic variation, i.e. both black and red colonies on Congo Red agar. Black colonies displayed bi-modal electrophoretic mobility distributions at pH 2, but such phenotypic variation was absent in red colonies of the same strain as well as in control strains without phenotypic variation. All red colonies had lost ica and the ability to form biofilms, in contrast to black colonies of the same strain. Real time PCR targeting icaA indicated a reduction in gene copy number within cultures exhibiting phenotypic variation, which correlated with phenotypic variations in biofilm formation and electrophoretic mobility distribution of cells within a culture. Loss of ica was irreversible and independent of the mobile element IS256. Instead, in high frequency switching strains, spontaneous mutations in lexA were found which resulted in deregulation of recA expression, as shown by real time PCR. RecA is involved in genetic deletions and rearrangements and we postulate a model representing a new mechanism of phenotypic variation in clinical isolates of S. epidermidis. This is the first report of S. epidermidis strains irreversibly switching from biofilm-positive to biofilm-negative phenotype by spontaneous deletion of icaADBC.  相似文献   

18.
Staphylococcus aureus adhesion to the host''s skin and mucosae enables asymptomatic colonization and the establishment of infection. This process is facilitated by cell wall-anchored adhesins that bind to host ligands. Therapeutics targeting this process could provide significant clinical benefits; however, the development of anti-adhesives requires an in-depth knowledge of adhesion-associated factors and an assay amenable to high-throughput applications. Here, we describe the development of a sensitive and robust whole cell assay to enable the large-scale profiling of S. aureus adhesion to host ligands. To validate the assay, and to gain insight into cellular factors contributing to adhesion, we profiled a sequence-defined S. aureus transposon mutant library, identifying mutants with attenuated adhesion to human-derived fibronectin, keratin, and fibrinogen. Our screening approach was validated by the identification of known adhesion-related proteins, such as the housekeeping sortase responsible for covalently linking adhesins to the cell wall. In addition, we also identified genetic loci that could represent undescribed anti-adhesive targets. To compare and contrast the genetic requirements of adhesion to each host ligand, we generated a S. aureus Genetic Adhesion Network, which identified a core gene set involved in adhesion to all three host ligands, and unique genetic signatures. In summary, this assay will enable high-throughput chemical screens to identify anti-adhesives and our findings provide insight into the target space of such an approach.  相似文献   

19.
Human airway mucins represent a very broad family of polydisperse high molecular mass glycoproteins, which are part of the airway innate immunity. Apomucins, which correspond to their peptide part, are encoded by at least 6 different mucin genes (MUC1, MUC2, MUC4, MUC5B, MUC5AC and MUC7). The expression of some of these genes (at least MUC2 and MUC5AC) is induced by bacterial products, tobacco smoke and different cytokines.Human airway mucins are highly glycosylated (70–80% per weight). They contain from one single to several hundred carbohydrate chains. The carbohydrate chains that cover the apomucins are extremely diverse, adding to the complexity of these molecules. Structural information is available for more than 150 different O-glycan chains corresponding to the shortest chains (less than 12 sugars).The biosynthesis of these carbohydrate chains is a stepwise process involving many glycosyl- or sulfo-transferases. The only structural element shared by all mucin O-glycan chains is a GalNAc residue linked to a serine or threonine residue of the apomucin. There is growing evidence that the apomucin sequences influence the first glycosylation reactions. The elongation of the chains leads to various linear or branched extensions. Their non-reducing end, which corresponds to the termination of the chains, may bear different carbohydrate structures, such as histo-blood groups A or B determinants, H and sulfated H determinants, Lewis a, Lewis b, Lewis x or Lewis y epitopes, as well as sialyl- or sulfo- (sometimes sialyl- and sulfo-) Lewis a or Lewis x determinants. The synthesis of these different terminal determinants involves three different pathways with a whole set of glycosyl- and sulfo-transferases.Due to their wide structural diversity forming a combinatory of carbohydrate determinants as well as their location at the surface of the airways, mucins are involved in multiple interactions with microorganisms and are very important in the protection of the underlying airway mucosa.Airway mucins are oversulfated in cystic fibrosis and this feature has been considered as being linked to a primary defect of the disease. However, a similar pattern is observed in mucins from patients suffering from chronic bronchitis when they are severely infected. Airway mucins from severely infected patients suffering either from cystic fibrosis or from chronic bronchitis are also highly sialylated, and highly express sialylated and sulfated Lewis x determinants, a feature which may reflect severe mucosal inflammation or infection.These determinants are potential sites of attachment for Pseudomonas aeruginosa, the pathogen responsible for most of the morbidity and mortality in cystic fibrosis, and the expression of the sulfo- and glycosyl-transferases involved in their biosynthesis is increased by TNF.In summary, airway inflammation may simultaneously induce the expression of mucin genes (MUC2 and MUC5AC) and the expression of several glycosyl- and sulfo-transferases, therefore modifying the combinatory glycosylation of these molecules.  相似文献   

20.
Glycosyltransferases acting onO-glycans have been shown to exhibit distinct specificity for the carbohydrate and the peptide moiety of their substrates. As an approach to study the 3-dimensional interactions between enzymes andO-glycan substrates, we determined the preferred conformations of five oligosaccharide-core structures of mucin type glycoproteins by NMR spectroscopy and by static and dynamic force field calculations. Seven oligosaccharides, representing five basic core structures, were investigated: Gal(1–3)GalNAcBzl (1, core 1), GlcNAc(1–6)[Gal(1–3)]GalNAcBzl (2, core 2), GlcNAc(1–3)GalNacBzl (3, core 3), GlcNAc(1–6)[GlcNAc(1–3)]GalNAcBzl (4, core 4), GlcNAc(1–6)GalNAcBzl (5, core 6), the elongated core 2, Gal(1–4)GlcNAc(1–6)[Gal(1–3)]GalNAcpNp (6) and GalNAc-Bzl (7). The dynamic behaviour of the molecules was studied by Metropolis Monte Carlo (MMC) simulations. Experimental coupling constants, chemical shift changes, and NOEs were compared with results from static energy minimizations and dynamic MMC simulations and show a good agreement. MMC simulations show that the (1–6) linkage is much more flexible than the (1–3) or the (1–4) linkages. The preferred conformations of the disaccharides (1) and (3) show only slight differences due to the additionalN-acetyl group in (3). The conformational equilibrium of (1–3) glycosidic bonds of1 and3 was not affected by attaching a (1–6) linked GlcNAc unit to the GalNAc residue in2 and4. However, experimental and theoretical data show that the (1–6) linkages of the trisaccharides2 and4, which carry an additional (1–3) linked glycosyl residue, change their preferred conformations when compared with (5). The 6-branch also shows significant interactions with the benzyl aglycon altering the preferred conformation of the hydroxymethyl group of the GalNAc to a higher proportion of the gt conformer. The (1–6) linkage of2, 4, and6 can have two different families of conformations of which the lower energy state is populated only to about 20% of the time whereas the other state with a relative enthalpy of 4 kcal mol–1 is populated to 80%. This fact demonstrates that the two conformational states have different entropy contents. Entropy is implicitly included in MMC simulations but cannot be derived from energy minimizations.Abbreviations Bzl benzyl - COSY correlation spectroscopy - Gal d-galactose - GalNAc N-acetyl-d-galactosamine - GalNAc-ol N-acetylgalactosaminitol - GlcNAc N-acetyl-d-glucosamine - HOHAHA homonuclear Hartmann-Hahn-spectroscopy - MMC metropolis Monte Carlo - NOE nuclear Overhauser enhancement - pNp p-nitrophenyl - ROESY rotating frame Overhauser enhancement spectroscopy - TOCSY totally correlated spectroscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号