首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient scavenger for radiolytically generated hydroxyl (OH) radicals, p-nitrosodimethylaniline, was used to try to substantiate the presence of this oxygen radical species in several biochemical systems. Most of these systems which were investigated had previously been assumed to generate OH radicals, e.g. the autoxidation of 6-hydroxydopamine, the hydroxylating system NADH/phenazine methosulfate, and the oxidation of xanthine or acetaldehyde by xanthine oxidase. We did not observe inhibition of the bleaching of p-nitrosodimethylaniline in oxygenated solutions by other scavengers of OH radicals nor, in the case of xanthine/xanthine oxidase, by catalase and superoxide dismutase. We therefore conclude that, under biochemical conditions as opposed to radiolysis or photolysis, no freely diffusable OH radicals are formed. Rather, a strongly oxidizing OH-analogous complex is considered to represent the p-nitrosodimethylaniline-detectable species formed under these conditions.  相似文献   

2.
3.
Mutagenicity of nitroxide-free radicals   总被引:2,自引:0,他引:2  
Stable nitroxides were found to be mutagenic using Salmonella typhimurium tester strain TA 104, a strain chosen on the basis of its high sensitivity to oxidative damage. Nitroxide mutagenicity was dramatically increased in the presence of the superoxide radical generating system, xanthine oxidase/hypoxanthine, and it was suppressed in cells carrying the oxyR1 mutation, which causes induction of enzymes protecting against oxidative stress. As nitroxide-free radicals occur biologically, e.g., in the metabolism of aromatic amines, these radical-induced mutations could be a model for the carcinogenicity observed with these compounds.  相似文献   

4.
Pulse radiolysis studies show that the spin trap 3,5,dibromo-4-nitrosobenzene sulphonate (I) reacts rapidly with O2.- but the product formed is very unstable. No radicals were detected in ESR studies of solutions of I after reaction with O2.- formed by gamma-radiolysis. Evidence is presented that the stable radical observed by some, but not all workers, following exposure of I to the O2.(-)-generating xanthine/xanthine oxidase system, is produced by a peroxidatic oxidation using hydrogen peroxide formed by O2-. dismutation and that formation of this radical depends on the presence of peroxidase activity in the xanthine oxidase sample employed.  相似文献   

5.
Chrysoeriol and its glycoside (chrysoeriol-6-O-acetyl-4'-beta-D-glucoside) are two natural flavonoids extracted from the tropical plant Coronopus didymus. The aqueous solutions of both the flavonoids were tested for their ability to inhibit lipid peroxidation induced by gamma-radiation, Fe (III) and Fe (II). In all these assays chrysoeriol showed better protecting effect than the glycoside. The compounds were also found to inhibit enzymatically produced superoxide anion by xanthine/xanthine oxidase system; here the glycoside is more effective than the aglycone. The rate constants for the reaction of the compounds with superoxide anion determined by using stopped-flow spectrometer were found to be nearly same. Chrysoeriol glycoside reacts with DPPH radicals at millimolar concentration, but the aglycone showed no reaction. Using nanosecond pulse radiolysis technique, reactions of these compounds with hydroxyl, azide, haloperoxyl radicals and hydrated electron were studied. The bimolecular rate constants for these reactions and the transient spectra of the one-electron oxidized species indicated that the site of oxidation for the two compounds is different. Reaction of hydrated electron with the two compounds was carried out at pH 7, where similar reactivity was observed with both the compounds. Based on all these studies it is concluded that chrysoeriol exhibits potent antioxidant activity. O-glycosylation of chrysoeriol decreases its ability to inhibit lipid peroxidation and reaction with peroxyl radicals. However the glycoside is a more efficient scavenger of DPPH radicals and a better inhibitor of xanthine/xanthine oxidase than the aglycone.  相似文献   

6.
Tyrosinase isolated from cultured human melanoma cells was studied for tyrosine oxygenation activity. l -Tyrosine and d -tyrosine were used as substrates and dopa was measured with HPLC and electrochemical detection as the product of oxygenation. Incubations were performed in the presence or absence of dopamine as co-substrate. Oxygenation of l -tyrosine occurred only in the presence of dopamine as co-substrate. No oxygenation of d -tyrosine was found, and we conclude that human tyrosinase is characterised by exclusive specificity for the l -isomer of tyrosine in its oxygenase function. It has recently been suggested that superoxide anion is a preferential oxygen substrate for human tyrosinase. Incubations were therefore performed with l - and d -tyrosine, human tyrosinase, and xanthine/xanthine oxidase in the system, generating superoxide anion and hydrogen peroxide. Considerable formation of dopa was observed, but the quantity was the same irrespective of whether d -tyrosine or l -tyrosine was used as the substrate. Furthermore, formation of dopa occurred in a xanthine/xanthine oxidase system when bovine serum albumin (BSA) was substituted for tyrosinase. Our results provide no evidence that superoxide anion is an oxygen substrate for human tyrosinase. In the incubate containing xanthine/xanthine oxidase, catalase completely inhibited dopa formation, and superoxide dismutase and mannitol each strongly inhibited dopa formation. The results are compatible with hydroxyl radicals being responsible for the formation of dopa, since such radicals may be secondarily formed in the presence of superoxide anion and hydrogen peroxide.  相似文献   

7.
The effect of scavengers of oxygen radicals on canine cardiac sarcoplasmic reticulum (SR) Ca2+ uptake velocity was investigated at pH 6.4, the intracellular pH of the ischemic myocardium. With the generation of oxygen radicals from a xanthine-xanthine oxidase reaction, there was a significant depression of SR Ca2+ uptake velocity. Xanthine alone or xanthine plus denatured xanthine oxidase had no effect on this system. Superoxide dismutase (SOD), a scavenger of .O2-, or denatured SOD had no effect on the depression of Ca2+ uptake velocity induced by the xanthine-xanthine oxidase reaction. However, catalase, which can impair hydroxyl radical (.OH) formation by destroying the precursor H2O2, significantly inhibited the effect of the xanthine-xanthine oxidase reaction. This effect of catalase was enhanced by SOD, but not by denatured SOD. Dimethyl sulfoxide (Me2SO), a known .OH scavenger, completely inhibited the effect of the xanthine-xanthine oxidase reaction. The observed effect of oxygen radicals and radical scavengers was not seen in the calmodulin-depleted SR vesicles. Addition of exogenous calmodulin, however, reproduced the effect of oxygen radicals and the scavengers. The effect of oxygen radicals was enhanced by the calmodulin antagonists (compounds 48/80 and W-7) at concentrations which showed no effect alone on Ca2+ uptake velocity. Taken together, these findings strongly suggest that .OH, but not .O2-, is involved in a mechanism that may cause SR dysfunction, and that the effect of oxygen radicals is calmodulin dependent.  相似文献   

8.
In this study we investigated the superoxide radicals scavenging effect and xanthine oxidase inhibitory activity by magnesium lithospermate B, which was originally isolated from the roots of Salvia miltiorrhiza (also named Danshen or Dansham), an important herb in Oriental medicine. Superoxide radicals were generated both in beta-NADH/PMS system and xanthine/ xanthine oxidase system. Magnesium lithospermate B significantly inhibited the reduction of NBT induced by superoxide radicals with an IC(50) of 29.8 microg/mL and 4.06 microg/mL respectively in the two systems. Further study suggested that magnesium lithospermate B can directly inhibit xanthine oxidase and exhibits competitive inhibition. Magnesium lithospermate B was also found to have the hypouricemic activity in vivo against potassium oxonate-induced hyperuricaemia in mice. After oral administration of magnesium lithospermate B at doses of 10, 20 and 30 mg/kg, there was a significant decrease in the serum urate level when compared to the hyperuricemia control. In addition, magnesium lithospermate B significantly protected HL-60 cells from superoxide radicals-induced apoptosis in the xanthine/ xanthine oxidase reactions. This study provided evidence that magnesium lithospermate B exhibits direct superoxide radicals scavenging and xanthine oxidase inhibitory activity.  相似文献   

9.
The ability of free radicals to convert l-aminocyclopropane-l-carboxylicacid (ACC) to ethylene under strictly chemical conditions hasbeen investigated using the aerobic xanthine/xanthine oxidasereaction and the Fenton reaction. Ethylene is formed when 1mM ACC is added to either of these reactions. Ethylene productionby the xanthine/xanthine oxidase system can be stimulated byH2O2 and inhibited by both catalase and superoxide dismutase,suggesting that the hydroxyl radical (OH?) formed by the Haber-Weissreaction is reacting with ACC to form ethylene. Ethylene productionfrom ACC by the Fenton reagent, which also produces OH?, showsa strong dependence upon H2O2. Involvement of the OH? radicalwas confirmed by spin-trap studies using 5,5-dimethyl-l-pyrroline-l-oxide(DMPO). Only the hydroxyl adduct of DMPO was detectable in boththe xanthine/xanthine oxidase reaction and the Fenton reaction.When ACC was added to the Fenton reaction, an additional adductof DMPO was detectable, which, on the basis of its hyperfinesplitting constants, can be tentatively identified as the DMPOadduct of a carbon-centered free radical. The data are consistentwith the view that formation of ethylene from ACC entails attackby OH? and the resultant formation of a carbon-centered radical,possibly of ACC. The chemical conversion of ACC to ethyleneis less efficient than that characteristic of senescing tissues,in which the reaction is enzymatically mediated. (Received October 1, 1981; Accepted November 17, 1981)  相似文献   

10.
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   

11.
Modification of contractile proteins by oxygen free radicals in rat heart   总被引:2,自引:0,他引:2  
This study was undertaken to investigate the effects of oxygen free radicals on myofibrillar creatine kinase activity. Isolated rat heart myofibrils were incubated with xanthine+xanthine oxidase (a superoxide anion radical-generating system) or hydrogen peroxide and assayed for creatine kinase activity. To clarify the involvement of changes in sulfhydryl groups in causing alterations in myofibrillar creatine kinase activity, 1) effects of N-ethylmaleimide (sulfhydryl groups reagent) on myofibrillar creatine kinase activity, 2) effect of oxygen free radicals on myofibrillar sulfhydryl groups content, and 3) protective effects of dithiothreitol (sulfhydryl groups-reducing agent) on the changes in myofibrillar creatine kinase activity due to oxygen free radicals were also studied. Xanthine+xanthine oxidase inhibited creatine kinase activity both in a time-and a concentration-dependent manner. Superoxide dismutase (SOD) showed a protective effect on the depression in creatine kinase activity caused by xanthine+xanthine oxidase. Hydrogen peroxide inhibited creatine kinase activity in a concentration-dependent manner; this inhibition was prevented by the addition of catalase. N-ethylmaleimide reduced creatine kinase activity in a dose-dependent manner. The content of myofibrillar sulfhydryl groups was decreased by xanthine+xanthine oxidase; this reduction was protected by SOD. Furthermore, the depression in myofibrillar creatine kinase activity by xanthine+xanthine oxidase was protected by the addition of dithiothreitol. Oxygen free radicals may inhibit myofibrillar creatine kinase activity by modifying sulfhydryl groups in the enzyme protein. The reduction of myofibrillar creatine kinase activity may lead to a disturbance of energy utilization in the heart and may contribute to cardiac dysfunction due to oxygen free radicals.  相似文献   

12.
The release of D-[3H]aspartate, [3H]noradrenaline, and of endogenous glutamate and aspartate from rat hippocampal slices was significantly increased when the slices were incubated with xanthine oxidase plus xanthine to produce superoxide and hydroxyl free radicals locally. Allopurinol, a specific xanthine oxidase inhibitor, the hydroxyl-radical scavenger D-mannitol, or the superoxide-radical scavenger system formed by superoxide dismutase plus catalase prevented this release. These results suggest that endogenous excitatory amino acids are released consequent to the formation of free radicals. The excess of glutamate and aspartate released by this mechanism could be one of the factors contributing to the death of neurons after anoxic or ischemic injuries.  相似文献   

13.
Bleomycin, in the presence of ferric salts, oxygen and a suitable reductant, degrades DNA with the release of base propenals, detected as thiobarbituric acid (TBA) reactivity, and the formation of 8-hydroxydeo-xyguanosine (80HdG) detected by HPLC. When xanthine oxidase is added to the incubated mixture of DNA degradation products, TBA-reactivity is destroyed but 80HdG formation is increased. EPR Spin trapping experiments show that hydroxyl radicals (OH) are formed in the reaction mixture and can be inhibited by the inclusion of either superoxide dismutase or catalase. These findings suggest that the base propenals and possibly malondialdehyde, formed from them, are aldehydic substrates for xanthine oxidase and, the product of this reaction is superoxide (O2-) and hydrogen peroxide (H2O2). Thus, TBA reactivity is destroyed in the formation of O2- and H2O2 which stimulate further oxidative damage to DNA resulting in increased 8OHdG formation.  相似文献   

14.
Xanthine oxidase is able to mobilize iron from ferritin. This mobilization can be blocked by 70% by superoxide dismutase, indicating that part of its action is mediated by superoxide (O2-). Uric acid induced the release of ferritin iron at concentrations normally found in serum. The O2(-)-independent mobilization of ferritin iron by xanthine oxidase cannot be attributed to uric acid, because uricase did not influence the O2(-)-independent part and acetaldehyde, a substrate for xanthine oxidase, also revealed an O2(-)-independent part, although no uric acid was produced. Presumably the amount of uric acid produced by xanthine oxidase and xanthine is insufficient to release a measurable amount of iron from ferritin. The liberation of iron from ferritin by xanthine oxidase has important consequences in ischaemia and inflammation. In these circumstances xanthine oxidase, formed from xanthine dehydrogenase, will stimulate the formation of a non-protein-bound iron pool, and the O2(-)-produced by xanthine oxidase, or granulocytes, will be converted by 'free' iron into much more highly toxic oxygen species such as hydroxyl radicals (OH.), exacerbating the tissue damage.  相似文献   

15.
In this study we investigated the superoxide radicals scavenging effect and xanthine oxidase inhibitory activity by magnesium lithospermate B, which was originally isolated from the roots of Salvia miltiorrhiza (also named Danshen or Dansham), an important herb in Oriental medicine. Superoxide radicals were generated both in β-NADH/PMS system and xanthine/ xanthine oxidase system. Magnesium lithospermate B significantly inhibited the reduction of NBT induced by superoxide radicals with an IC50 of 29.8 μg/mL and 4.06 μg/mL respectively in the two systems. Further study suggested that magnesium lithospermate B can directly inhibit xanthine oxidase and exhibits competitive inhibition. Magnesium lithospermate B was also found to have the hypouricemic activity in vivo against potassium oxonate-induced hyperuricaemia in mice. After oral administration of magnesium lithospermate B at doses of 10, 20 and 30 mg/kg, there was a significant decrease in the serum urate level when compared to the hyperuricemia control. In addition, magnesium lithospermate B significantly protected HL-60 cells from superoxide radicals-induced apoptosis in the xanthine/ xanthine oxidase reactions. This study provided evidence that magnesium lithospermate B exhibits direct superoxide radicals scavenging and xanthine oxidase inhibitory activity.  相似文献   

16.
In a recent publication [(1987) FEBS Lett. 210, 195-198] the authors claim the use of cytochrome c to detect superoxide anion underestimates the real rate of superoxide anion formation on the basis that: (i) the rate of uric acid formation by xanthine oxidase is about 4-fold faster than the rate of cytochrome c reduction and (ii) hydrogen peroxide formed upon dismutation of the superoxide anion generated by xanthine oxidase is capable of reoxidizing ferrocytochrome c. That paper may have been misleading for readers not very familiar with the field of oxygen radicals, since both assumptions are, in fact, incorrect. In this report we demonstrate that the build up in concentration of H2O2 during most reactions in which superoxide anion is being produced is not enough to affect the rate of cytochrome c reduction. Our results suggest that the authors may have been misled by an artifact due to exposure of the samples containing H2O2 to UV light, which generates hydroxyl radicals by photolysis.  相似文献   

17.
Xanthine oxidase has been hypothesized to be an important source of biological free radical generation. The enzyme generates the superoxide radical, .O2- and has been widely applied as a .O2- generating system; however, the enzyme may also generate other forms of reduced oxygen. We have applied electron paramagnetic resonance (EPR) spectroscopy using the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) to characterize the different radical species generated by xanthine oxidase along with the mechanisms of their generation. Upon reaction of xanthine with xanthine oxidase equilibrated with air, both DMPO-OOH and DMPO-OH radicals are observed. In the presence of ethanol or dimethyl sulfoxide, alpha-hydroxyethyl or methyl radicals are generated, respectively, indicating that significant DMPO-OH generation occurred directly from OH rather than simply from the breakdown of DMPO-OOH. Superoxide dismutase totally scavenged the DMPO-OOH signal but not the DMPO-OH signal suggesting that .O2- was not required for .OH generation. Catalase markedly decreased the DMPO-OH signal, while superoxide dismutase + catalase totally scavenged all radical generation. Thus, xanthine oxidase generates .OH via the reduction of O2 to H2O2, which in turn is reduced to .OH. In anaerobic preparations, the enzyme reduces H2O2 to .OH as evidenced by the appearance of a pure DMPO-OH signal. The presence of the flavin in the enzyme is required for both .O2- and .OH generation confirming that the flavin is the site of O2 reduction. The ratio of .O2- and .OH generation was affected by the relative concentrations of dissolved O2 and H2O2. Thus, xanthine oxidase can generate the highly reactive .OH radical as well as the less reactive .O2- radical. The direct production of .OH by xanthine oxidase in cells and tissues containing this enzyme could explain the presence of oxidative cellular damage which is not prevented by superoxide dismutase.  相似文献   

18.
Trace elements play an important role in oxygen metabolism and therefore in the formation of free radicals. Whereas iron and copper are usually the main enhancers of free radical formation, other trace elements, such as zinc and selenium, protect against the harmful effects of these radicals. To investigate the different protective mechanisms of zinc on radical formation, we examined the effects of added zinc and copper on superoxide dismutase activity. We also studied the effects of copper and iron on xanthine oxidase activity and on the Haber-Weiss cycle (iron, superoxide, and hydrogen peroxide), which generates hydroxyl radicals in vitro. The hypoxanthine/xanthine oxidase radical generating system contained a variety of different physiological ligands for binding the iron. This study confirmed the inhibitory effect of copper on xanthine oxidase activity. Moreover, it demonstrated that zinc inhibited hydroxyl radical formation when this formation was catalyzed by a citrate-iron complex in the hypoxanthine/xanthine oxidase reaction. Finally, human blood plasma inhibited citrate-iron-dependent hydroxyl radical formation under the same conditions. Although trace elements seemed responsible for this antioxidant activity of plasma, it is likely that zinc played no role as a plasma antioxidant. Indeed, calcium appeared to be responsible for most of this effect under our experimental conditions.  相似文献   

19.
Hepatic lipid peroxidation has been implicated in the pathogenesis of alcohol-induced liver injury, but the mechanism(s) by which ethanol metabolism or resultant free radicals initiate lipid peroxidation is not fully defined. The role of the molybdenum-containing enzymes aldehyde oxidase and xanthine oxidase in the generation of such free radicals was investigated by measuring alkane production (lipoperoxidation products) in isolated rat hepatocytes during ethanol metabolism. Inhibition of aldehyde oxidase and xanthine oxidase (by feeding tungstate at 100 mg/day per kg) decreased alkane production (80-95%), whereas allopurinol (20 mg/kg by mouth), a marked inhibitor of xanthine oxidase, inhibited alkane production by only 35-50%. Addition of acetaldehyde (0-100 microM) (in the presence of 50 microM-4-methylpyrazole) increased alkane production in a dose-dependent manner (Km of aldehyde oxidase for acetaldehyde 1 mM); menadione, an inhibitor of aldehyde oxidase, virtually inhibited alkane production. Desferrioxamine (5-10 microM) completely abolished alkane production induced by both ethanol and acetaldehyde, indicating the importance of catalytic iron. Thus free radicals generated during the metabolism of acetaldehyde by aldehyde oxidase may be a fundamental mechanism in the initiation of alcohol-induced liver injury.  相似文献   

20.
In vitro metabolism of furazolidone (N-(5-nitro-2-furfuryliden)-3-amino-2-oxazolidone) was investigated by using milk xanthine oxidase and rat liver 9000g supernatant. As a result, a new type of reduction product was isolated as one of the main metabolites from the incubation mixture and it was tentatively identified as 2,3-dihydro-3-cyanomethyl-2-hydroxyl-5-nitro-1a, 2-di(2-oxo-oxazolidin-3-yl)iminomethyl-furo[2,3- b]furan. In addition, the present study demonstrated the formation of N-(5-amino-2-furfurylidene)-3-amino-2-oxazolidone as a minor metabolite of nitrofuran in a milk xanthine oxidase system. The aminofuran derivative was easily degraded by milk xanthine oxidase under aerobic, but not anaerobic, conditions. The degradation appears to be due to superoxide anion radicals, hydroxyl radicals, and/or singlet oxygen, which are produced in this enzyme system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号