首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-molecular-weight (250 000) bile salt hydrolase (cholylglycine hydrolase, EC 3.5.-.-) was isolated and purified 128-fold from the "spheroplast lysate" fraction prepared from Bacteroids fragilis subsp. fragilis ATCC 25285. The intact enzyme had a molecular weight of approx. 250 000 as determined by gel infiltration chromatography. One major protein band, corresponding to a molecular weight of 32 500, was observed on 7% sodium dodecyl sulfate polyacrylamide gel electrophoresis of pooled fractions from DEAE-cellulose column chromatography (128-fold purified). The pH optimum for the 64-fold purified enzyme isolated from Bio-Gel A 1.5 M chromatography was 4.2 and bile salt hydrolase activity measured in intact cell suspensions had a pH optimum of 4.5. Substrate specificity studies indicated that taurine and glycine conjugates of cholic acid, chenodeoxycholic acid and deoxycholic acid were readily hydrolyzed; however, lithocholic acid conjugates were not hydrolyzed. Substrate saturation kinetics were biphasic with an intermediate plateau (0.2--0.3 mM) and a complete loss of enzymatic activity was observed at high concentration for certain substrates. The presence or absence of 7-alpha-hydroxysteroid dehydrogenase was absolutely correlated with that of bile salt hydrolase activity in six to ten strains and subspecies of B. fragilis.  相似文献   

2.
A heterologous phosphotriesterase (parathion hydrolase), previously cloned from a Flavobacterium species into Streptomyces lividans, was secreted at high levels and purified to homogeneity. N-terminal analysis revealed that it had been processed in the same manner as the native membrane-bound Flavobacterium hydrolase. The enzyme consisted of a single polypeptide with an apparent molecular weight of 35,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Substrate specificity studies showed Kms of 68 microM for parathion, 46 microM for O-ethyl O-p-nitrophenyl phenylphosphonothioate, 599 microM for methyl parathion, and 357 microM for p-nitrophenyl ethyl(phenyl)phosphinate. Temperature and pH optima were 45 degrees C and 9.0, respectively. The purified enzyme was inhibited by 1 mM dithiothreitol and 1 mM CuSO4. After chelation and inactivation by o-phenanthroline, however, activity could be partially restored by 1 mM CuCl or 1 mM CuSO4. The results showed that the purified recombinant parathion hydrolase has the same characteristics as the native Flavobacterium hydrolase. This system provides a source of milligram quantities of parathion hydrolase for future structural and mechanism studies and has the potential to be used in toxic waste treatment strategies.  相似文献   

3.
A heterologous phosphotriesterase (parathion hydrolase), previously cloned from a Flavobacterium species into Streptomyces lividans, was secreted at high levels and purified to homogeneity. N-terminal analysis revealed that it had been processed in the same manner as the native membrane-bound Flavobacterium hydrolase. The enzyme consisted of a single polypeptide with an apparent molecular weight of 35,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Substrate specificity studies showed Kms of 68 microM for parathion, 46 microM for O-ethyl O-p-nitrophenyl phenylphosphonothioate, 599 microM for methyl parathion, and 357 microM for p-nitrophenyl ethyl(phenyl)phosphinate. Temperature and pH optima were 45 degrees C and 9.0, respectively. The purified enzyme was inhibited by 1 mM dithiothreitol and 1 mM CuSO4. After chelation and inactivation by o-phenanthroline, however, activity could be partially restored by 1 mM CuCl or 1 mM CuSO4. The results showed that the purified recombinant parathion hydrolase has the same characteristics as the native Flavobacterium hydrolase. This system provides a source of milligram quantities of parathion hydrolase for future structural and mechanism studies and has the potential to be used in toxic waste treatment strategies.  相似文献   

4.
A galactosyltransferase, which transfers galactose from UDP-galactose to N-acetylglucosamine, was purified 286,000-fold to homogeneity with 40% yield from human plasma by repeated affinity chromatography on alpha-lactalbumin-Sepharose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band with molecular weight of 49,000. The enzyme is a glycoprotein with 11% by weight carbohydrate, which seems to have only asparagine-N-acetylglucosamine linkage-type carbohydrate chains. The enzyme showed characteristic changes in activity at different alpha-lactalbumin concentrations, indicating that the enzyme is the A protein of lactose synthetase. Km values for the substrates were found to be 0.056 mM for UDP-galactose, 3.2 mM for GlcNAc, and 0.44 mM for Mn2+, and in the presence of alpha-lactalbumin, 3.4 mM for Glc, and 0.20 mM for Mn2+. The activity of the enzyme was neutralized by anti-enzyme antibody, but the antibody did not neutralize the bovine milk galactosyltransferase (A protein) activity.  相似文献   

5.
An extracellular beta-glucosidase was purified 154-fold to electrophoretic homogeneity from the brown-rot basidiomycete Fomitopsis palustris grown on 2.0% microcrystalline cellulose. SDS-polyacrylamide gel electrophoresis gel gave a single protein band and the molecular mass of purified enzyme was estimated to be approximately 138 kDa. The amino acid sequences of the proteolytic fragments determined by nano-LC-MS/MS suggested that the protein has high homology with fungal beta-glucosidases that belong to glycosyl hydrolase family 3. The Kms for p-nitorophenyl-beta-D-glucoside (p-NPG) and cellobiose hydrolyses were 0.117 and 4.81 mM, and the Kcat values were 721 and 101.8 per sec, respectively. The enzyme was competitively inhibited by both glucose (Ki= 0.35 mM) and gluconolactone (Ki= 0.008 mM), when p-NPG was used as substrate. The optimal activity of the purified beta-glucosidase was observed at pH 4.5 and 70 degrees. The F. palustris protein exhibited half-lives of 97 h at 55 degrees and 15 h at 65 degrees, indicating some degree of thermostability. The enzyme has high activity against p-NPG and cellobiose but has very little or no activity against p-nitrophenyl-beta-lactoside, p-nitrophenyl-beta-xyloside, p-nitrophenyl-alpha-arabinofuranoside, xylan, and carboxymethyl cellulose. Thus, our results revealed that the beta-glucosidase from F. palustris can be classified as an aryl-beta-glucosidase with cellobiase activity.  相似文献   

6.
We established a hybridoma clone that produced anti-bleomycin hydrolase antibody. The subclass of the monoclonal antibody was immunoglobulin M. The antibody significantly reacted with bleomycin hydrolase from rabbit tissues, mouse livers, sarcoma 180, and adenocarcinoma 755 but not significantly with that from MH 134 and Ehrlich carcinoma. The enzyme from L5178Y cells showed an intermediate reactivity. Bleomycin hydrolase was purified from rabbit liver by immunoaffinity with the monoclonal antibody and DEAE gel chromatography. Approximately 1300-fold-purified bleomycin hydrolase was obtained. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing on a polyacrylamide slab gel of purified bleomycin hydrolase showed a single band with an apparent Mr of 48K and an isoelectric pH of 5.2. The molecular weight of bleomycin hydrolase determined on gel filtration high-performance liquid chromatography was ca. 300K, suggesting a hexameric enzyme. The enzyme showed an optimum pH of 6.8-7.8 and gave a Vmax value of 6.72 mg min-1 mg-1 for peplomycin and 9.24 mg min-1 mg-1 for bleomycin B2 and a Km value of 0.79 mM for both substrates. The enzyme was inhibited by E-64, leupeptin, p-tosyl-L-lysine chloromethyl ketone, N-ethylmaleimide, Fe2+, Cu2+, and Zn2+ but was enhanced by dithiothreitol. The results suggest that bleomycin hydrolase is a thiol enzyme.  相似文献   

7.
Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis was ca. 40,000 Da. The intact enzyme had a relative molecular weight of ca. 250,000 as determined by gel filtration chromatography, suggesting that the native BSH of B. longum is probably a hexamer. The purified enzyme is active towards both glycine and taurine conjugates of cholate, deoxycholate, and chenodeoxycholate. The pH optimum is in the range of 5.5 to 6.5. A loss of BSH activity is observed after incubation at temperatures higher than 42(deg)C; at 60(deg)C, 50% of the BSH activity is lost. The importance of free sulfhydryl groups at the enzyme active center is suggested. For B. longum BB536, no significant difference in the initial rate of deconjugation and enzymatic efficiency appears between bile salts. The enzymatic efficiency is higher for B. longum BB536 than for other genera. In this paper, a new method which permits a display of BSH activity directly on polyacrylamide gels is described; this method confirms the molecular weight obtained for B. longum BB536 BSH.  相似文献   

8.
A novel esterase catalyzing regioselective hydrolysis was purified from the membrane fraction of Microbacterium sp. 7-1W, and characterized. The enzyme was solubilized with Brij 58 and purified 13.8-fold to apparent homogeneity with 2.58% overall recovery. The relative molecular mass of the native enzyme as estimated by gel filtration was more than 600,000 Da, and the subunit molecular mass was 62,000 Da. The enzyme catalyzed cleavage of the terminal ester bonds of cetraxate esters and pantothenate esters. The K(m) and V(max) values for methyl cetraxate were 0.380 mM and 7.76 micromole min(-1) mg(-1) protein, respectively. The enzyme was inhibited by serine hydrolase inhibitors.  相似文献   

9.
A beta-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified beta-glucosidase evidenced high homology with the fungal beta- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and 60 degrees C, and the enzyme had a half-life of 53 h at 60 degrees C. The Km values for p-nitrophenyl-beta-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose (Ki=1.7 mM) and glucono-delta-lactone (Ki=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM Cu2+ and stimulated by 20% by 10 mM Mg2+.  相似文献   

10.
The solubilization of angiotensin I-converting enzyme (peptidyldipeptide hydrolase, EC 3.4.15.1) from rabbit lung was carried out using trypsin treatment. A good recovery of 76% was obtained. The enzyme from solubilized fraction was purified using colums of Sephadex G-200, hydroxyapatite and DEAE-cellulose. The purified enzyme was shown to convert angiotensin I to angiotensin II and also to inactivate bradykinin. The specific activity of the enzyme was 24.3 units/mg protein for hippurylhistidylleucyl hydroxide and 0.182 mumol/min per mg protein for angiotensin I. The enzymic activity obtained after trypsin treatment for 5 h could be divided into two components: (i) an enzyme of molecular weight 300 000 (peak II) and (ii) an enzyme of molecular weight 145 000 (peak III), by Sephadex G-200 gel filtration. The molecular weight of the denatured enzyme was found to be 155 000 by disc gel electrophoresis in the presence of sodium dodecyl sulfate. Km values of peak II and peak III fraction for Hippuryl-His Leu-OH were 2.6 mM.  相似文献   

11.
By Q-sepharose column ion-exchange chromatography, alkyl-sepharose column hydrophobic chromatography the purified fibrinogenolytic enzyme was obtained from Agkistrodon halys halys venom. It is a single peptide-chain with molecular weight about 28 kDa. It was founded that this enzyme cleaved A alpha-chain of fibrinogen, pH-optimum was determined in the range of 7.5-8.0. Its fibrinogenolytic activity was estimated 15.6 mM fibrinogen/min per mg protein; caseinolytic activity was estimated 7.5 c.u., and amidolytic activity was 0.325 mM pNA/min/mg and 0.175 mM pNA/min/mg for S2238 and S2251 respectively; K(m) was 5.6 mM. The enzyme activity was inhibited by DFP and benzamidine. These results suggest that the enzyme is serine protease. It inhibited the platelet-aggregation.  相似文献   

12.
Human liver alpha-L-fucosidase has been purified 6300-fold to apparent homogeneity with 66% yield by a two-step affinity chromatographic procedure utilizing agarose epsilon-aminocaproyl-fucosamine. Isoelectric focusing revealed that all six isoelectric forms of the enzyme were purified. Polyacrylamide gel electrophoresis of the purified alpha-L-fucosidase demonstrated the presence of six bands of protein which all contained fucosidase activity. The purified enzyme preparation was found to contain only trace amounts of seven glycosidases. Quantitative amino acid analysis was performed on the purified fucosidase. Preliminary carbohydrate analysis indicated that only about 1% of the molecule is carbohydrate. Gel filtration on Sepharose 4B indicated an approximate molecular weight for alpha-L-fucosidase of 175,000 +/- 18,000. High speed sedimentation equilibrium yielded a molecular weight of 230,000 +/- 10,000. Sodium dodecyl sulfate polyacrylamide gels indicated the presence of a single subunit of molecular weight, 50,100 +/- 2,500. The enzyme had a pH optimum of 4.6 with a suggested second optimum of 6.5. Apparent Michaelis constants and maximal velocities were determined on the purified enzyme with respect to the 4-methylumbelliferyl and the p-nitrophenyl substrates and were found to be 0.22 mM and 14.1 mumol/mg of protein/min and 0.43 mM and 19.6 mumol/mg of protein/min, respectively. Several salts had little or no effect on fucosidase activity although Ag+ and Hg2+ completely inactivated the enzyme. Antibodies made against the purified fucosidase were dound to be monospecific against crude human liver supernatant fluids and the pure antigen. No cross-reacting material was detected in the crude liver supernatant fluid from a patient who died with fucosidosis.  相似文献   

13.
We have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving [14C]taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in medium free of bile salts. In cell-free extracts, however, the activity was about equal, 1.41 and 1.53 mumol/min per mg of protein, respectively, whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Both had similar substrate specificities, highest on taurodeoxycholic and glycocholic acid, and pH optima between 3.8 and 4.5. The kinetic properties were also similar, with Vmaxs of 17 and 53 micromoles/min per mg of protein and Kms of 0.76 and 0.95 mM taurocholic acid for A and B, respectively. Therefore, whether the enzyme exists in two forms in the cells remains to be determined.  相似文献   

14.
S-2-Hydroxyacylglutathione hydrolase (Glyoxalase II) from calf brain has been purified 8333-times compared to 65,000 g supernatant of brain homogenate. The purification procedure employs Affi-Gel blue and preparative isoelectric focussing and offers a suitable method for the preparation of highly purified enzyme. Calf brain Glyoxalase II is a basic protein with a pl of 7.63 determined by isoelectric focusing. An evaluation of the relative molecular mass by gel filtration gave a value of about 23,000. During the purification procedure a constant Km value of about 0.325 mM was observed. A turnover number of 16,100 min-1 was calculated for the purified enzyme.  相似文献   

15.
Purification of the beta-glucosidase from Sclerotinia sclerotiorum   总被引:1,自引:0,他引:1  
A beta-glucosidase (EC 3.2.1.21) has been isolated from culture filtrates of the fungus Sclerotinia sclerotiorum. The protein was purified by gel filtration on a column of Bio-Gel P-300 and by ion exchange chromatography on DEAE-Bio-Gel A. The molecular weight, determined by gel filtration, was 240,000. Km values for the enzyme towards p-nitrophenyl-beta-D-glucoside and cellobiose were respectively 0.10 mM and 1.23 mM. The beta-glucosidase activity was found to be strongly associated with a beta-xylosidase (EC 3.2.1.37) activity, suggesting that both activities could be represented in a single protein complex.  相似文献   

16.
Dipeptidase (dipeptide hydrolase [EC 3.4.13.11]) has been purified to homogeneity and crystallized from the cell extract of Bacillus stearothermophilus IFO 12983. The enzyme has a molecular weight of about 86,000, and is composed of two subunits identical in molecular weight (43,000). The enzyme contains 2 g atoms of zinc per mol of protein. A variety of dipeptides consisting of glycine or only L-amino acids serve as substrates of the enzyme; Km and Vmax values for L-valyl-L-alanine are 0.5 mM and 68.0 units/mg protein, respectively. The enzyme is significantly stable not only at high temperatures but also on treatment with protein denaturants such as urea and guanidine hydrochloride. The enzyme also catalyzes hydrolysis of several N-acylamino acids with Vmax values 3-30% of those for the hydrolysis of dipeptides. The thermostable dipeptidase shares various properties with bacterial aminoacylase [EC 3.5.1.14]: their subunit molecular weight, metal content and requirement, amino acid composition, and amino acid sequence in the N-terminal region are very similar.  相似文献   

17.
Bala  Arpita  Roy  Amit  Das  Ayan  Chakraborti  Dipankar  Das  Sampa 《BMC biotechnology》2013,13(1):1-11
β-Fructofuranosidases (or invertases) catalyse the commercially-important biotransformation of sucrose into short-chain fructooligosaccharides with wide-scale application as a prebiotic in the functional foods and pharmaceutical industries. We identified a β-fructofuranosidase gene (CmINV) from a Ceratocystis moniliformis genome sequence using protein homology and phylogenetic analysis. The predicted 615 amino acid protein, CmINV, grouped with an existing clade within the glycoside hydrolase (GH) family 32 and showed typical conserved motifs of this enzyme family. Heterologous expression of the CmINV gene in Saccharomyces cerevisiae BY4742∆suc2 provided further evidence that CmINV indeed functions as a β-fructofuranosidase. Firstly, expression of the CmINV gene complemented the inability of the ∆suc2 deletion mutant strain of S. cerevisiae to grow on sucrose as sole carbohydrate source. Secondly, the recombinant protein was capable of producing short-chain fructooligosaccharides (scFOS) when incubated in the presence of 10% sucrose. Purified deglycosylated CmINV protein showed a molecular weight of ca. 66 kDa and a Km and Vmax on sucrose of 7.50 mM and 986 μmol/min/mg protein, respectively. Its optimal pH and temperature conditions were determined to be 6.0 and 62.5°C, respectively. The addition of 50 mM LiCl led to a 186% increase in CmINV activity. Another striking feature was the relatively high volumetric production of this protein in S. cerevisiae as one mL of supernatant was calculated to contain 197 ± 6 International Units of enzyme. The properties of the CmINV enzyme make it an attractive alternative to other invertases being used in industry.  相似文献   

18.
beta-Galactosidase (EC 3.2.1.32) was purified 80-fold from the yeast Kluyveromyces lactis induced for this enzyme by growth on lactose. When the purified enzyme was subjected to electrophoresis on an acrylamide gel in the presence of sodium dodecyl sulfate, one protein with an apparent molecular weight of 135,000 was observed. The enzyme has a sedimentation coefficient of 9.6S. This beta-galactosidase and the one from Escherichia coli are not antigenically related. Maximal enzyme activity requires Na+ and Mn2+ and a reducing agent. beta-Galactosidase has Km values of 12 to 17 and 1.6 mM for lactose and o-nitrophenyl-beta-D-galactoside, respectively. The hydrolase and transgalactosylase activities of the enzyme are similar to those of E. coli beta-galactosidase.  相似文献   

19.
Angiotensin I-converting enzyme (peptidyl dipeptide hydrolase, EC 3.4.15.1) was solubilized from the membrane fraction of human lung using trypsin treatment and purfied using columns of DE 52-cellulose, hydroxyapatite and Sephadex G-200. The purified enzyme was shown to convert angiotensin I to angiotensin II and also to inactivate bradykinin. The specific activity of the enzyme was 9.5 units/mg protein for Hippuryl-His-Leu-OH and 0.665 mumol/min per mg protein for angiotensin I. The enzymic activity obtained after trypsin treatment (1 mg/200 mg protein) for 2 h could be divided into three components: (i) an enzyme of molecular weight 290 000 (peak I), (ii) an enzyme of molecular weight 180 000 (peak II) and (iii) an enzyme of molecular weight 98 000 (peak III), by columns of DE 52-cellulose and Sephadex G-200. Km values of peak I, II and III fraction for Hippuryl-His-Leu-OH were identical at 1.1 mM. pH optimum of the enzyme was 8.3 for Hippuryl-His-Leu-OH.  相似文献   

20.
The objective of this work was to apply low cost materials, agricultural residues, to the purification of xylanase. The results showed that crude extracellular, cellulase-free xylanase of an alkaliphilic Bacillus sp. strain K-8 could be purified in a single step by affinity adsorption–desorption on a corn husk column using a high flow rate, under the conditions 25 mM acetate buffer, pH 4.0, 4 °C, which prevented the hydrolysis of xylan by xylanase. After adsorption, the xylanase was eluted from the enzyme–corn husk complex with 500 mM Urea. The enzyme was purified 5.3-fold to homogeneity from culture supernatant. The molecular weight of the purified enzyme was 24 kDa as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity and recovery yield after purification were 25.4 U/mg protein and 42.3%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号